@article {256, title = {Relaxivity of Gadolinium Complexes Detected by Atomic Magnetometry}, journal = {Magnetic Resonance in Medicine}, volume = {66}, year = {2011}, note = {Magn Reson Med799AVTimes Cited:1Cited References Count:23}, month = {Aug}, pages = {605-608}, abstract = {

Laser atomic magnetomeby is a portable and low-cost yet highly sensitive method for low magnetic field detection. In this work, the atomic magnetometer was used in a remote-detection geometry to measure the relaxivity of aqueous gadolinium-diethylenetriamine pentaacetic acid Gd(DTPA) at the Earth\&$\#$39;s magnetic field (40 mu T). The measured relaxivity of 9.7 +/- 2.0 s(-1) mM(-1) is consistent with field-cycling experiments measured at slightly higher magnetic fields, but no cryogens or strong and homogeneous magnetic field were required for this experiment. The field-independent sensitivity of 80 fT Hz(-1/2) allowed an in vitro detection limit of similar to 10 mu M Gd(DTPA) to be measured in aqueous buffer solution. The low detection limit and enhanced relaxivity of Gd-containing complexes at Earth\&$\#$39;s field motivate continued development of atomic magnetometry toward medical applications. Magn Reson Med 66:605-608, 2011. (C) 2011 Wiley-Liss, Inc.

}, keywords = {nmr}, isbn = {0740-3194}, doi = {Doi 10.1002/Mrm.22811}, url = {://WOS:000293256800033}, author = {Michalak, D. J. and Xu, S. J. and Lowery, T. J. and Crawford, C. W. and Ledbetter, M. and Bouchard, L. S. and Wemmer, D. E. and Budker, D. and Pines, A.} }