@article {314, title = {SQUID-detected MRI at 132 mu T with T(1)-weighted contrast established at 10 mu T-300 mT}, journal = {Magnetic Resonance in Medicine}, volume = {53}, year = {2005}, note = {Magn Reson Med888NETimes Cited:73Cited References Count:20}, month = {Jan}, pages = {9-14}, abstract = {

T(1)-weighted contrast MRI with prepolarization was detected with a superconducting quantum interference device (SQUID). A spin evolution period in a variable field between prepolarization and detection enabled the measurement of T(1) in fields between 1.7 muT and 300 mT; T, dispersion curves of agarose gel samples over five decades in frequency were obtained. SQUID detection at 5.6 kHz drastically reduces the field homogeneity requirements compared to conventional field-cycling methods using Faraday coil detection. This allows T(1) dispersion measurements to be easily combined with MRI, so that T(1) in a wide range of fields can be used for tissue contrast. Images of gel phantoms with T(1)-weighted contrast at four different fields between 10 muT and 300 mT demonstrated dramatic contrast enhancement in low fields. A modified inversion recovery technique further enhanced the contrast by selectively suppressing the signal contribution for a specific value of the low-field T(1). Published 2004 Wiley-Liss, Inc.

}, keywords = {dispersion}, isbn = {0740-3194}, doi = {Doi 10.1002/Mrm.20316}, url = {://WOS:000226380700003}, author = {Lee, S. K. and Mossle, M. and Myers, W. and Kelso, N. and Trabesinger, A. H. and Pines, A. and Clarke, J.} }