Shimming systems are required to provide sufficient field homogeneity for high resolution nuclear magnetic resonance (NMR). In certain specialized applications, such as rotating-field NMR and mobile ex situ NMR, permanent magnet-based shimming systems can provide considerable advantages. We present a simple two-dimensional shimming method based on harmonic corrector rings which can provide arbitrary multipole order shimming corrections. Results demonstrate, for example, that quadrupolar order shimming improves the linewidth by up to an order of magnitude. An additional order of magnitude reduction is in principle achievable by utilizing this shimming method for z-gradient correction and higher order xy gradients. (c) 2007 American Institute of Physics.

}, keywords = {field}, isbn = {0034-6748}, doi = {Doi 10.1063/1.2713438}, url = {High-resolution NMR spectra of materials subject to anisotropic broadening are usually obtained by rotating the sample about the magic angle, which is 54.7 degrees to the static magnetic field. In projected magic angle spinning (p-MAS), the sample is spun about two angles, neither of which is the magic angle. This provides a method of obtaining isotropic spectra while spinning at shallow angles. The p-MAS experiment may be used in situations where spinning the sample at the magic angle is not possible due to geometric or other constraints, allowing the choice of spinning angle to be determined by factors such as the shape of the sample, rather than by the spin physics. The application of this technique to bovine tissue samples is demonstrated as a proof of principle for future biological or medical applications.

}, keywords = {field}, isbn = {0740-3194}, doi = {Doi 10.1002/Mrm.20585}, url = {