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Abstract. A theory of sideband intensity is derived by expanding into a Taylor series the free
induction decay observed under magic angle spinning (MAS). According to this procedure,
the free induction decay signal is completely represented by a basis of irreducible tensors from
rank zero to rank infinity. After averaging over all orientations, only the zero-order irreducible
tensors contribute to the sideband intensities. Symmetry properties of the sidebands can be
seen clearly in this expansion, and an approximate formula up to ninth order is obtained by
truncating the series. Sideband intensities can be calculated rapidly with this formula. The re­
sults agree satisfactorily with the exact sideband intensities obtained by numerical simulation if
the ratio of the anisotropy to the spinning speed, W o6/w" is smaller than 3. The relationship
of the sideband intensities with the moments of a MAS spectrum shows that the proposed
method is an alternative to moment analysis when the spinning speed is not very slow. Aniso­
tropic information about the chemical shift anisotropy interaction therefore can be extracted
efficiently from experimental spectra by this approximate method.

1. Introduction

Nuclear magnetic resonance is widely used for studying structure and dyna­
mics of solid materials. In contrast to the sharp spectral lines obtained from
liquids, however, NMR resonance frequencies of polycrystalline or amor­
phous solid samples are severely broadened owing to the absence of fast iso­
tropic tumbling. Such motion, where present, acts to average anisotropic in­
teractions such as chemical shift anisotropy (CSA), dipolar, and quadrupolar
couplings to zero. Where the necessary internal averaging does not occur,
macroscopic motion generally has to be applied to the spin system to im­
prove spectral resolution. Magic angle spinning (MAS), in which the sample
rotates around an axis inclined at the magic angle (i}m = 54.74°) with respect
to the external magnetic field H 0 today is the most common method used
for this purpose.
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MAS was first proposed by Andrew et al., and Lowe in the late 1950s to
suppress homogeneous broadening due to the dipolar interaction [1-3].
Later, Schaefer and Stejskal showed that CSA also can be averaged to zero
by MAS [4]. In the extreme where the spinning speed far exceeds the
breadth of the anisotropy, MAS yields the isotropic shift at the expense of
any information concerning the anisotropy. This condition must be met for
homogeneous broadening, such as that caused by homonuclear dipolar inter­
actions. However, for inhomogeneous broadening (for example, CSA and
the first-order quadrupolar interaction) sidebands develop around the iso­
tropic peak if the spinning speed is smaller than the anisotropy [5]. Maricq
and Waugh [6] subsequently proposed that the free induction decay (FID)
signal be expanded as a series of moments in order to extract the aniso­
tropic information from the sidebands. Herzfeld and Berger [7] also de­
veloped a general method, involving Bessel functions, to calculate sideband
intensities. The anisotropic information is recovered by numerical simulation
of he individual sideband intensities.

In this paper we propose a new method to calculate approximate sideband
intensities rapidly without using a large data base. The method involves ex­
panding the FID signal in a basis of irreducible spatial tensors in such a way
that, when averaged over all orientations, only zero-rank irreducible tensors
(scalar operators) contribute to the sideband intensities. Symmetry proper­
ties of the sidebands can be seen clearly in this expansion, and an approxi­
mate formula up to ninth-rank irreducible tensors is obtained by truncating
the series. The dependence of sideband intensities on anisotropic parameters
(0, YJ) can then be expressed explicitly. With least square fitting programs,
the extraction of the principal values of the chemical shift anisotropy from
the sideband intensities obtained from MAS spectra can be performed
quickly and easily. Comparison of sideband intensities calculated by this ap­
proximate method with those determined by moment analysis shows that the
new method offers an effective alternative when the spinning speed is not
very slow. Finally, the technique is used to calculate the centerband intensity
after applying a TOSS pulse sequence [8, 9].

2. Theory

We start with a rare spin nuclear system (such as l3C) in which nuclear spins
interact with the external static magnetic field H a via anisotropic chemical
shielding. According to the notation and conventions given by Mehring [10],
we can represent the spin Hamiltonian as

Z

ytJ = wolz + woolz + YN L (-I)m A z- mTzm ,
m~-Z

(1)
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where YN is the nuclear gyromagnetic ratio of the spin species involved, a
is the isotropic chemical shielding, I, is the spin operator, and A z-m and TZm
are the components of the second-rank irreducible spatial and spin tensors
respectively. In Eq.(l) the first term represents the Zeeman interaction,
while the second term is the isotropic chemical shift and the third term is
the chemical shift anisotropy (CSA). The principal values, QZm' of the CSA
tensor are given by

Q±l = °. (2)

The Az,m in Eq.(l), which reflect the orientation dependence of the CSA
Hamiltonian, can be expressed as

Z

A Zm= I »s: (Q)QZm' ,

m'--Z

(3)

D ~~ln (Q) are the components of the Wigner rotation matrices and
Q = Q(a,{3, y) are Euler angles.

After the spin Hamiltonian given in Eq.(l) is transformed into the rotating
frame by the unitary operator exp(-iwo/zt), the time dependent terms in the
total Hamiltonian may be neglected under the first-order perturbation ap­
proximation, and the total Hamiltonian becomes

(4)

assuming that the isotropic chemical shift (wo ii) is zero in this particular
case.

As the sample rotates around a fixed axis inclined at an angle t} with respect
to H 0' the external magnetic field, as viewed in the rotor frame, moves on a
cone with a half-angle t} (see Fig. 1). In other words, the external magnetic
field traverses the spinning trajectory of the sample, and the local fields
determined by the CSA tensor change periodically. The component of the
second-rank irreducible spatial tensor, A zo, thus becomes time dependent.
Expressed in terms of the Wigner rotation matrices, the spin Hamiltonian in
the rotating frame is given by

Z

.YfJ = YN Tzo I D~b(Qr)AZm ,
m--Z

(5)

where Q r = Qr(O,t},wrt), t} is the angle between the rotor axis and H o, and
or.t is the azimuth of the x-axis of the rotor frame with respect to H o. In
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Fig. 1. The external magnetic field, viewed in the sample-fixed coordinate frame, travels on a
magic angle cone with half-apex angle, il m = 54.74" under MAS. The magic angle cone crosses

three vertices (V) of an octahedron.

Eq.(5), the time-independent part, corresponding to m = 0, disappears when
ft= ftm, the magic angle of the second-order Legendre polynomial. The re­
maining components in Eq.(5) are time dependent. Since the sample spin­
ning is only applied on the spatial parts of the spin Hamiltonian, the spin
Hamiltonian commutes with itself at all times. This means that the eigenvec­
tors of the spin Hamiltonian remain unchanged, but the eigenvalues are
modulated by a set of harmonics. Hence the resonance frequency becomes
time dependent, and the FID signal for a spin 1= 1/2 system can be written
as

where

and

g( t) = exp[-i cp (t)1, (6)

(7)

(8)

In general, Eq.(6) describes a phase-modulated signal with the associated
Fourier spectrum showing a band structure. Each oriented single crystal
contributes a particular sideband pattern, and what we see is the average
over all orientations for a powder sample. Such an averaged sideband pat­
tern is not related simply to the anisotropies and asymmetry parameters of
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the CSA tensors, however. In order to extract these parameters from the ex­
perimental results obtained under MAS, Maricq and Waugh expanded
Eq.(6) in a multiple moment series, and found that the second and third mo­
ments of the MAS NMR spectra are indeed related fairly simply to c5 and YJ.
In practical applications of the moment analysis method, the second and the
third moments are first calculated from the sideband intensities and the spin­
ning speeds of the sample obtained from the experimental MAS NMR spec­
tra, and then, using the relationships between the moments and the principal
values of the CSA tensors, the anisotropies and asymmetry parameters are
obtained. Since the intensity of the N-th order sideband, in general, decays,
as the sideband frequency increases, the contribution of small sideband in­
tensity to the moments cannot be ignored. Therefore this method requires
very accurate measurement of all sideband intensities, which is difficult to
do. Moreover, the method fails when sidebands originating from different
site in a spin system overlap. To overcome these problems, Herzfeld and
Berger first expanded Eq.(6) using Bessel functions and subsequently con­
verted it to a Fourier series. The N-th coefficient in the Fourier expansion
then corresponds to the N-th sideband intensity. Nevertheless, the intensity
of each sideband has a very complicated dependence on the anisotropic par­
ameters, and the problem can be inverted only by time-consuming numerical
simulations.

The dependence of the intensities on anisotropic parameters is complicated
because the integrals over all orientations in Eq.(6) cannot be solved analyti­
cally. Taking a new approach, we will instead expand the FID signal in a
Taylor series. By virtue of the properties of the products of two irreducible
tensors, the FID signal is recast in a basis of irreducible tensors from rank
zero the rank infinity. The rotational transformation properties of irreducible
tensors yield analytical solutions for integrals up to any order.

The first step in this new method is to expand Eq.(6) into a Taylor series to
obtain

~ 1 k
get) = L,; k! [ep(t)] .

k

Substituting Eq.(7) into Eq.(9), we then have:

~ 1 ( t!:- W c5)k
get) = L,; k! V3 ~r A(t) ,

k

where

(9)

(10)
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(12)

Later, we will see that the function Ik( t) depends only on the asymmetry
parameter 'YJ.

In the next step, we introduce the product of two irreducible tensors given
by Ill]

1,+1 2

A1"ffilAI2,ffi, = L C(/l,lz,l;ml,mZ,m l +mZ)A 1, ffil+ffi2 ' (13)
1~ll,-121

where C(/l,lz,l;ml,mZ,m l +mz) are the Clebsch-Gordan coefficients. Iter­
ating using Eq.(13), we can represent the product of k second-rank irreduc­
ible tensors as

lk_2+ZL C(2,2,lll ml,mZ )

lk-l-llk-2-ZI

k-l

X C(/1,2,lz,ml +mZ,m3) ..· C(/k-z,2,lk-l, Lmi,mdA1k_l,!m,' (14)
i=l i-I

With the orientation dependence expressed in terms of the Wigner rotation
matrices, the average of the l-th rank irreducible tensor over all orientations
is

if I = °and m = °
otherwise. (15)

Hence only the scalar part in Eq.(II) remains after the powder average:

z

Ao,o (/1' ..., Ik-3) = LC(2,2,l1,n l,n Z ) C(/1,2,lz,n l +nz) ...
nb··· nk-l=-2

k-l k-l

C(2,2,O, Ln i , - Ln;)Qz,n\ Q2,n2 ... QZ,nk-l a.: In, . (16)
i=l i=l i-I

In this equation, the product of k components QZ,nj ( i= l...k) is of order 0 k,

and will cancel with the 0 k in coefficient B of Eq.(ll). Thus A(t) is only a
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function of the asymmetry factor 'YJ. From Eq.(2), the power of the asym­
metry factor in A( t) is determined by

n = [1~lIJ + [1~2IJ +.oo + [1~kIJ (17)

The result of the square-brackets, representing the truncation of each indi­
vidual term in Eq.(17), is an integer with the value zero or one. Since, from
Eq.(3), Qn, are unequal to zero only if n i = 0, ±2, and since, according to
Eq.(15), the sum over all indices, ~~1 n i , must be zero after the powder
average, the number of indices with values of 2 must equal the number of
indices with values of -2. Thus Eq.(17) can only result in an even integer.
The power of 'YJ must be even and, consequently, the sideband intensities are
not sensitive to the sign of the asymmetry factor. It follows, then, that
sample rotation does not change the symmetry of the spin system, in agree­
ment with the relationship between the static powder lineshapes and the
asymmetry parameters 'YJ (0 ~ 'YJ ~ 1).

The symmetry of the coefficients B can be easily found after the powder
average by use of the properties of reduced Wigner rotation matrices:

In the final step, from Eqs.(14) and (15) we have m k = ~f.:l mi' Inserting
this condition into Eq.(ll), we obtain

k k

H _ 1 + (-it '\' n '\'

CPmloo·CPmk-1CP_'j;r- 2 +2L,;(-1) L,;'"
n w l 11-1

{
cos[( mil + .oo +mjJwrt]

isin[( mil + oo. +mjJ W r t]

for even k

for odd k. (19)

In Eq.(19), when k is an even number the product of k functions
CPi (i= 1.ook) is also an even function of N W r t; otherwise, it is odd. This
means that even-order terms in the Taylor expansion add a symmetric cor­
rection to the intensities of the sidebands, whereas the odd terms create the
differences in sideband intensities about the centerband. Because the odd
terms are antisymmetric, they make no contribution to the centerband.

With substitution of Eqs.(15), (16), and (19) into Eq.(l1), A(t) can be ex­
pressed by
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A(t) = ~ ~)k.m,n 'YJZn exp(-imwrt) ,
m--ZN n-O

(20)

where N = k /2 and

k-l k-l

X C(2,2,ll ;m1,m Z ) C( ll,2,lz;ml +mZ,m 3 ) ... C(2,2,0, I m; - I m i )

i~l i-I

k-l k-l

X C(2,2,ll ;n1,nZ)C( ll,2,lz;n 1+nZ,n 3 ) ... C(2,2,0,I ni, - I nJ
i-I i-I

j j k-l

xQ;,nj ..·Q;,-In,[o(m- Im i ) + (-l)k o(m+ Im i )]O(2n - II;d) (21)
i-I i=l i=l i=l

and where B' = Ok B. The Qlm are equal to QZm' with 0 = 1 and 'YJ = 1 as
given in Eq.(3). '

From the definition of moments of a spectrum, the k-th moment can be
written as

M - 'k~ ()Ik - 1 dt k g t 1-0' (22)

Inserting Eqs.(9) and (21) into Eq.(22) yields the relationship of the k-th
moment with Fourier coefficients, lk,m,ll' given by

As the spinning speed increases, the sideband intensities, 1m , (m"# 0) de­
crease. The moments calculated by Eq.(23) from experimental spectra are
therefore less accurate, and any anisotropic parameters subsequently ex­
tracted by the moment analysis method are inaccurate. However, the side­
band intensities calculated by the Fourier coefficients, lkmll' get closer to the
actual values. In these circumstances, the approximate ~~thod proves to be
an alternative to moment analysis. Another advantage is that the technique
we propose is still valid for multi-site cases.
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3. Results and Discussion

51

In the last Section, we have solved the powder average up to infinite order
in the Taylor expansion of the Fill signal. After substitution of Eqs.(ll),
(16), and (17) into (9), however, the FID signal can be represented as a
Fourier series again (see Eq.(20)) and the sideband intensities can be ob­
tained by evaluating the Fourier coefficients. As the order in the Taylor ex­
pansion increases, the number of summations over all Clebsch-Gordan coef­
ficients also increases as (k - 3), where k is the k-th order in the expansion.
Using a computer, it is easy to determine the coefficients of the first ten or­
ders in the Taylor expansion, but calculation of higher-order coefficients
becomes very time consuming. Fortunately, though, in practice the spinning
speed typically is not much smaller than the CSA (especially for 13q, and in
these circumstances the approximation up to ninth order, as we will see, is
already very good for the calculation of sideband intensities.

Here we only list the coefficients of the first four orders in the Taylor ex­
pansion and use them to draw some general properties of the sideband in­
tensities under MAS. All other coefficients can be obtained from Eqs.(ll),
(14), (16), and (19), and the numerically calculated values of the Fourier
coefficients, Ik,m,n, for values of index, k, from 2 to 9 are listed in Appendix
in Tables 2 to 9. The expressions are

Io(t) = 1,

II (t) = 0,

- 1 [32 1 ]I2(t) =5(3 + 1]2) -4+3cos(wrt)+12cos(2wrt) ,

I3(t) = ~~iA(-l + 1]2)[2sin(wrt) - sin(2w r t)] . (24)

From Eq.(24) we note, first, that the zero-order term is always equal to one
while the first-order term is zero. The first-order term therefore adds no
correction to the first-order (± 1) sidebands regardless of the value of the
asymmetry parameter, and consequently sideband intensities become more
or less symmetric around the centerband once the spinning speed is larger
than the linewidth of the static powder pattern. Such a distribution of side­
band intensity which is no longer sensitive to 1] cannot be used to extract
the anisotropic information.

Second, we observe that when 1] = 1 the value of I3 (t) is zero. This conclu­
sion can be extended to all odd terms in accordance with the symmetry
properties of odd and even orders in the Taylor expansion as discussed at
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the end of the last Section. The static powder pattern is of course symmetric
around the isotropic frequency once 'YJ = 1, and intuitively one would expect
that the sidebands should also be symmetric around the centerband.

A third feature of Eq.(24) is that the sum of all coefficients of sidebands in
A( t) is always zero except for k = O. The correction for each order just re­
distributes each sideband intensity over the whole set of sidebands, and the
FID signal is always normalized. Finally, A( t) is proportional to the k-th
moments, arising from Eq.(23).

To test the accuracy of the approximate method we have to evaluate the
sideband intensities exactly from Eq.(6). According to the result given by
Herzfeld and Berger [7], the intensity of the N-th sideband is

J[ 23t 2n

IN = 1;n4 f f sin({3)d{3dy If exp(-i[Ni>+ ljJ(i»]}di>l z , (25)
o 0 0

where

fi Iz d(Z)(i»
ljJ(i» = - ~ m,O m A exp(-imi».

3 -lW
r

m Z,m
m--Z

(26)

Composite ten-point Gaussian (Gauss-Legendre) quadrature has been used
to evaluate the three-dimensional integral in Eq.(26). Fig. 2 shows a com­
parison of sideband intensities computed through the first ten orders of the
Taylor expansion (dashed line) with the exact solution (solid line) obtained
by numerical simulation [7]. Since the ratio of the number of multiplications
involved in the numerical integration of the exact solution given in Eq.(25)
to that in the approximate method is at least on the order of 104, the com­
puting time is reduced from about six hours on a Micro VAX II for the
exact result to a few seconds for the approximate method. Both results are
very close when the ratio of the anisotropy to the spinning speed, woOl W n is
smaller than 3. For WoOl Wr > 3, the sideband intensities calculated by the
approximate method, however, tend to diverge. Fig. 3 shows the conver­
gence under approximations of different order. We see that the sideband in­
tensities converge at higher orders, and that the rate of convergence is much
the same as for the sinusoidal functions. The total intensity obtained from
the sum over all sideband intensities is always one, even though each side­
band itself diverges. This is because the higher-order sideband intensities are
given by redistributing the lower-order sideband intensities and keeping the
whole intensity of the spectrum at unity. The divergence comes from an in­
correct intensity partition for each sideband at large value of W o01 W r •

In practice, experimental sideband intensities have to be normalized for
comparison with the theoretical values. Signal-to-noise therefore must be
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Fig. 2. Variation of sideband intensities with the ratio of chemical shift anisotropy (woo) to
spinning speed (wr ) , computed for the case 1] = 0.5. Solid lines are calculated by numerically
integrating Eq.(6) over all orientations, and dashed lines are obtained by our approximate
method (up to the ninth order). a Centerband intensities. b First-order sidebands (±1). c Sec-

ond-order sidebands (±2).

good enough to permit accurate measurement and summation of all side­
band intensities. To overcome this requirement, Herzfeld and Berger pro­
posed an alternative method in which the anisotropic information is ex­
tracted by measuring the ratios of the sideband intensities to the centerband
intensity. Furthermore, as mentioned above, the differences of positive and
negative sideband intensities around the centerband are relatively sensitive
to the asymmetry factor ('YJ), whereas the averages of these sideband inten­
sities are sensitive only to the anisotropy (0) (see Fig. 4). Although there is a
maximum difference of the N-th order sideband intensities around the cen­
terband, the change is minimized in axial and near-axial situations. This
method therefore is only slightly better than the method used by Herzfeld
and Berger. We use the ratios of the differences and averages to the center­
band intensity to extract the anisotropic parameters by least squares fitting.
In the fitting program (MASFIT), the initial values of the anisotropic par-
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Fig. 3. Variation of sideband intensities with the ratio of chemical shift anisotropy (woo) to
spinning speed (w r ) under the approximate method, with first four (dotted lines), six (short
dashed lines), eight (long dashed lines), and ten (solid lines) orders. 'YJ = 0.5. a, e Second-

order sideband. b, d First-order sideband. c Centerband.

ameters are calculated by Eq.(24) and then, by use of the Davidon-Fletcher­
Powell (DFP) algorithm [12], the anisotropic parameters can be extracted in
a few seconds. Fig. 5 shows contours of the surface used in the fitting pro­
gram. We can clearly see that there does exist a unique minimum, but that
the surface is very smooth in the dimension of the asymmetry factor rJ. As a
result, the determination of n is relatively less accurate than that of the ani­
sotropy d

The overall quality of the fitting can be seen in Table 1. Fig. 6 shows that
the experimental 31p MAS spectrum of phosphorus pentoxide agrees well
with the simulated spectrum by the approximate method. One severe prob­
lem appears when the asymmetry factor rJ is very small (that is, in the near­
axial regime). Here the differences of the sideband intensities for different rJ



An Approximate Method of Sideband Intensity Calculation 55

o
70-----;----::------.--

o
7
0----:----;:------.--

-5-;;.0-----;----::-----,;--

~ -1

N' -2
~

X -3

~ -4

, ,

Fig. 4. Ratios of the differences and averages of positive- and negative-order sideband inten­
sities to the centerband intensity as a function of W o61or, and the asymmetry factor (1]). The
four curves correspond to 1] = 0 (solid line), 1] = 0.3 (long dashed line), 1] = 0.7 (short dashed

line), and 1] = 1.0 (dotted line).

11

0.8

0.6

0.4

0.2

0.0
2.2 2.4 2.6 2.8
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56

Lead Nitrate (PbN03 ) e07Pb)
Reported
Powder lineshape
Sideband

Benzoic Acid (l3C)
Reported
Sideband

Phosphorus Pentoxide e1P)
Reported
Sideband
Powder lineshape

B.Q. Sun and A. Pines:

Table 1. Results of sideband analysis.

<5 (ppm)

35.4±3
35.9±5
34.6±5

71.0±4
63.4±5

218.0±20
190.6±5
193.0±5

0.0 ±0.16
0.0

0.08±0.1

0.6 ±0.12
0.8 ±0.1

0.0 ±0.18
0.05±0.1

0.0

are so small (see also Fig. 5) that extraction of YJ becomes quite difficult.
Such a problem exists both for moment analysis and powder lineshape simu­
lation [13] methods.

Our approximate method also can be applied to calculate the centerband in­
tensity after all sidebands are suppressed by a TOSS pulse sequence [8]. The
FID signal of a spectrum with sidebands contains a series of rotational
echoes. Moreover the rotational echo results from the periodicity of the

a

Experiment

b

Simulation

-20

Frequency (kHz)

20

Fig. 6. Comparison of MAS spectrum simulated by the approximate method with the ex­
perimental results. a 31p spectrum of solid phosphorus pentoxide, and b simulated spectrum

with the principal values listed in Table 1.
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Fig. 7. Variation of centerband intensity with woMw" at TJ = 0.5 after application of a TOSS
pulse sequence.

phase, which runs from 0 to 2:Tt over time. After TOSS, however, this
period no longer exists [9],and then Eq.(8) must be replaced by

(27)

leading to ({Jm! ({Jm2 •.• ({Jmk = exp(Lf_lmjWrt) = 1 in Eq.(ll), according to
Eq.(15) after the power average. Thus !k(t) is time independent, and g( t)
gives the intensity of the centerband. From Eq.(18) and the properties of the
Clebsch-Gordan coefficients, it can be found that !k(t) are zero if k is an
odd number. Fig. 7 shows the variation of the centerband intensity with the
ratio of the anisotropy to the spinning speed, woO!oi., at YJ = 0.5 in a TOSS
experiment. It can be seen that, after TOSS, the centerband intensity conver­
ges much faster than does a normal MAS centerband.

4. Conclusions

We have shown that the FID signal under MAS can be expanded into a
Taylor series which contains products of k irreducible spatial tensors
(k= 0 ...00) . The properties of irreducible tensors permit the integrals over
all orientations to be solved analytically. The FID signal then becomes an
expansion in a set of basis scalar operators, which are uniquely determined
by the anisotropic parameters of the CSA tensors, and the coefficients in the
expansion are given by a series of Clebsch-Gordan coefficients. After all the
coefficients and the scalar operators are evaluated, the sideband intensities
are functions of YJ 2, and the total pattern of sidebands can be understood as
a sum of symmetric and antisymmetric parts about the centerband. The odd
terms in the expansion determine the antisymmetric pattern, and make no
contribution to the centerband intensity, while the even terms contribute to
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the symmetric part. After manipulation of the Clebsch-Gordan coefficients,
we obtain the approximate formula up to the ninth order in the Taylor ex­
pansion of the FID signal. Sideband intensities can be rapidly calculated
using this formula even for spectra consisting of many different sites with
overlapping sidebands. The results are in satisfactory agreement with the
exact solution obtained by numerical simulation if the ratio of the anisotropy
to the spinning speed, WoOloi., is smaller than 3. The relationship of the
Fourier coefficients, Ik,m,n is given in Eq.(23), and shows that the moment
analysis method is valid in the slow spinning regime whereas our approxi­
mate method is an alternative choice if the spinning speed is not very slow.
The anisotropic parameters can be extracted very efficiently using this
method combining with least-squares fitting methods. We have also applied
the technique to calculate the centerband intensity after eliminating the side­
bands using a TOSS pulse sequence in MAS, and shown that the centerband
intensity after TOSS converges to the exact value much faster than for MAS.
The technique may also be applied to sideband intensity calculation in
double rotation (DOR) [14-17], and dynamical angle spinning (DAS)
[18, 19] NMR.

Appendix

The numerically calculated values of the Fourier coefficients, I k m n, of MAS
sideband intensities used in Eq.(21) for values of index, k, from'2 to 9 are
listed in Tales 2 to 9. In the calculation, double precision numbers were
used.

Table 2. Numerically calculated values of the Fourier coefficients [2,m,n'

n 0 1

-2 0.025000 0.008333
-1 0.200000 0.066667

0 -0.450000 -0.150000
1 0.200000 0.066667
2 0.025000 0.008333

Table 3. Numerically calculated values of the Fourier coefficients [3,m,n'

n 0 1

-2 0.052489 -0.052489
-1 -0.104978 0.104978

0 0.000000 0.000000
1 0.104978 -0.104978
2 -0.052489 0.052489
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Table 4. Numerically calculated values of the Fourier coefficients 14,m,n '
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n 0

-4 0.001339
-3 0.021429
-2 0.037500
-1 -0.364286

o 0.608036
1 -0.364286
2 0.037500
3 0.021429
4 0.001339

1

0.000893
0.014286
0.025000

-0.242857
0.405357

-0.242857
0.025000
0.014286
0.000893

2

0.000149
0.002381
0.004167

-0.040476
0.067560

-0.040476
0.004167
0.002381
0.000149

Table 5. Numerically calculated values of the Fourier coefficients 15,m,n'

n o 2

-4 0.005965
-3 0.035788
-2 -0.202798
-1 0.274374

o 0.000000
1 -0.274374
2 0.202798
3 -0.035788
4 -0.005965

-0.003976
-0.023859

0.135199
-0.182917

0.000000
0.182917

-0.135199
0.023859
0.003976

-0.001988
-0.011929

0.067600
-0.091459

0.000000
0.091459

-0.067600
0.011929
0.001988

Table 6. Numerically calculated values of the Fourier coefficients 16 ,m,n '

n 0 2 3

-6 0.000088 0.000111 0.000024 0.000004
-5 0.002107 0.002669 0.000578 0.000085
-4 0.018860 -0.008254 0.012312 0.000364
-3 -0.055773 0.057927 -0.043857 -0.000662
-2 -0.157148 -0.327617 -0.014499 -0.007925
-1 0.772950 0.850491 0.240416 0.029585

0 -1.162166 -1.150597 -0.389944 -0.042902
1 0.772950 0.850491 0.240416 0.029585
2 -0.157148 -0.327617 -0.014499 -0.007925
3 -0.055773 0.057927 -0.043857 -0.000662
4 0.018860 -0.008254 0.012312 0.000364
5 0.002107 0.002669 0.000578 0.000085
6 0.000088 0.000111 0.000024 0.000004
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Table 7. Numerically calculated values of the Fourier coefficients 17,m ,n .

n 0 2 3

-6 0.000602 -0.000201 -0.000335 -0.000067
-5 0.008431 -0.002810 -0.004684 -0.000937
-4 -0.002409 0.000803 0.001338 0.000268
-3 -0.196319 0.065444 0.109066 0.021812
-2 0.619605 -0.206561 -0.344274 -0.068848
-1 -0.686391 0.228852 0.381443 0.076267

0 0.000000 0.000000 0.000000 0.000000
1 0.686391 -0.228852 -0.381443 -0.076267
2 -0.619605 0.206561 0.344274 0.068848
3 0.196319 -0.065444 -0.109066 -0.021812
4 0.002409 -0.000803 -0.001338 -0.000268
5 -0.008431 0.002810 0.004684 0.000937
6 -0.000602 0.000201 0.000335 0.000067

Table 8. Numerically calculated values of the Fourier coefficients 18,m,n.

n 0 2 3 4

-8 0,000006 0,000013 0.000005 0.000001 0.000000
-7 0.000202 0.000424 0.000152 0.000020 0.000003
-6 0.003362 -0.000260 0.001715 0.000791 0.000022
-5 0.007780 -0.012918 0,002599 0.002590 0.000000
-4 -0.108238 0.109288 -0.043981 -0.031687 -0,000293
-3 0.153059 -0.526660 0.020917 0.067815 -0.001116
-2 0.461523 1.558837 0.412428 0.010160 0.009588
-1 -1.819799 -2.937437 -1.269512 -0.237990 -0.024564

0 2.601998 3.618606 1.750050 0.376696 0.032788
1 -1.819799 -2.937437 -1.269512 -0.237990 -0.024564
2 0.461523 1.558837 0.412428 0.010160 0.009588
3 0.153059 -0.526660 0.020917 0.067815 -0.001116
4 -0.108238 0.109288 -0.043981 -0.031687 -0.000293
5 0.007780 -0.012918 0.002599 0.002590 0.000000
6 0.003362 -0.000260 0.001715 0.000791 0.000022
7 0.000202 0.000424 0.000152 0.000020 0.000003
8 0.000006 0.000013 0.000005 0.000001 0.000000
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Table 9. Numerically calculated values of the Fourier coefficients 19,m,n'

n 0 1 2 3 4

-8 0.000024 0.000005 -0.000022 -0.000006 -0.000001
-7 0.000446 -0.000013 -0.000281 -0.000135 -0.000016
-6 0.002362 -0.001004 -0.000347 -0.000935 -0.000075
-5 -0.010645 0.008727 -0.003569 0.005201 0.000287
-4 -0.061344 -0.033566 0.081922 0.010302 0.002686
-3 0.397052 0.074909 -0.356256 -0.100074 -0.015630
-2 -0.871551 -0.102989 0.706910 0.234079 0.033551
-1 0.833058 0.077968 -0.650666 -0.228543 -0.031817

0 0.000000 0.000000 0.000000 0,000000 0.000000
1 -0.833058 -0.077968 0.650666 0.228543 0.031817
2 0.871551 0.102989 -0.706910 -0.234079 -0.033551
3 -0.397052 -0.074909 0.356256 0.100074 0.015630
4 0.061344 0.033566 -0.081922 -0.010302 -0.002686
5 0.010645 -0.008727 0.003569 -0.005201 -0.000287
6 -0.002362 0.001004 0.000347 0.000935 0.000075
7 -0.000446 0.000013 0.000281 0.000135 0.000016
8 -0.000024 -0.000005 0.000022 0.000006 0.000001
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