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Abstract 

Berry's phase can give rise to coherence dephasing in optically detected nuclear quadrupole resonance of gaseous 131Xe. 
Diffusion of xenon atoms around a toroidal container should cause incoherent acquisition of Berry's phase, with consequent 
loss of phase coherence between atoms. This leads to signal loss which is equivalent to spin relaxation. The rate of 
dephasing is calculated by two different methods: first, using an exact treatment of diffusion, and secondly, using average 
propagators. Berry dephasing is predicted to be an important relaxation mechanism in this system. 

If  a system is prepared in a non-degenerate eigen- 
state of  a Hamiltonian, and the Hamiltonian is slowly 
varied, the system remains in an eigenstate of  the 
instantaneous Hamiltonian. Consequently, if the 
Hamiltonian is slowly changed along a cyclic path, 
the system will return to its original state, apart from 
a phase factor, when the Hamiltonian returns to its 
original form. Berry showed that, in addition to the 
normal dynamic phase factor, the system also ac- 
quires a 'geometric phase',  y ,  which depends on the 
geometry of  the circuit [1]. Since then, several au- 
thors have published theoretical treatments, in which 
Berry's phase and similar phenomena are related to 
parallel transport in curved space and to gauge trans- 
formations [2,3]. Furthermore, the original limita- 
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tions of  non-degenerate eigenstates and adiabatic 
changes in the Hamiltonian have been lifted [3,4]. 

Experimentally, Berry's phase has been observed 
in a wide range of  systems [5,6], including nuclear 
quadrupole resonance (NQR). Tycko showed that if 
a crystal of  NaCIO33 is rotated rapidly about an axis 
while its zero-field 5Cl NQR spectrum is observed, 
the NQR line is split, with splittings proportional to 
the rotation rate [7]. These splittings arise from the 
linear accumulation of  Berry 's  phase: after every 
rotation each eigenstate acquires a different phase, 
and so a coherent superposition of eigenstates ac- 
quires a frequency shift proportional to the rate of 
rotation. Appelt et al. have performed similar experi- 
ments using optically detected 131Xe NQR [8]. 
Gaseous 131Xe in a small container undergoes fast 
exchange between wall sites, and thus has an average 
quadrupolar interaction with the container's inner 
surface [9,10]; rotation of  the container causes the 
quadrupole axis to rotate. The low magnitude of the 
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Fig. 1. Schematic depiction of a xenon atom in a toroidal con- 
tainer. As long as the tube radius, r, is small compared with the 
torus radius, R, the nucleus experiences an average electric field 
gradient with local cylindrical symmetry, and consequently has an 
axially symmetric quadrupolar coupling to the container with an 
axis directed along the local cylinder axis, that is tangential to the 
toms. As the atom moves around the torus the local cylinder axis 
changes, causing the quadrupole axis to rotate. 

average quadrupole coupling (about 0.5 Hz) means 
that a wide range of adiabatic and non-adiabatic 
regimes may be readily achieved by macroscopic 
container motions. 

If gaseous ~3tXe is allowed to diffuse in a shaped 
container, it should be possible to observe Berry's 
phase effects without macroscopic motion of the 
container. For example, the local geometry of a torus 
is like a cylinder, and so a xenon atom at some point 
will experience an average quadrupolar coupling with 
a symmetry axis along the cylinder axis, that is, 
tangential to the torus (see Fig. 1). As any particular 
xenon atom diffuses around the torus, the direction 
of its quadrupolar axis will vary, and this variation 
can be described as a rotation around an axis thread- 
ing the torus. This rotation will cause the xenon 
nuclei to acquire Berry phases, which depend only 
on the positions of the atoms. Two nuclei which start 
at the same position in the toms, but end up at 
different positions, will acquire a relative phase shift, 
which could be measured by exciting and detecting 
only selected regions of the toms. If the excitation 
and detection includes the whole torus, different 

atoms will acquire different phases, and signals from 
them will interfere, resulting in signal loss. 

This signal loss arises from a loss of phase coher- 
ence between different nuclei, and so can be consid- 
ered as a form of geometric dephasing or spin relax- 
ation. This Letter contains calculations of the rate of 
relaxation arising from these effects, which should 
be observable using optical pumping and detection 
[9,10]. The relaxation rate is calculated in two differ- 
ent ways: first, by considering the diffusive motion 
of individual atoms, and secondly, by calculating 
average propagators. Papers describing the related 
problems of exchange broadening and relaxation in 
electron spin resonance [11], and both electron and 
nuclear spin-rotation relaxation [12-14] have ap- 
peared in the literature. 

The quadrupolar Hamiltonian for an individual 
nucleus is 

,~Q=taQ[I2z , - -½I( I+ 1)], (1) 

where taQ is the quadrupole coupling constant, z' is 
the (time dependent) quadrupole axis, and all ener- 
gies are expressed in angular frequency units. During 
any short period of time, the motion of the quadrupole 
axis can be described as a steady rotation around an 
axis threading the toms, and it is convenient to 
transform into a frame rotating around this axis, such 
that the quadrupole axis is static. In this frame the 
Hamiltonian is given by 

,~""(~ = taQ[ 12 -- ½1( I + 1)] + t a R I x ,  (2) 

where the second term is a fictitious magnetic field 
(gauge field) along the rotation axis, and ta R is the 
rotation rate. For a nucleus with I = 3 /2 ,  such as 
13t Xe, the matrix representation of this Hamiltonian 
in the basis of 1 z is 

0 to R 

0 0 

0 0 

w R 0 

--£OQ 1 ~r3- ta R 

2 ~/'3- ta R taQ 

(3) 

In the adiabatic limit (that is, tar << taO), ½V~'taR "~ 
2 taQ, and so four of the off-diagonal elements can be 
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Fig. 2. The eigenstates of a spin-3/2 nucleus under an axially 
symmetric quadrupolar coupling. Rotation of the quadrupolar axis 
around an axis at 90 ° causes the 1+ I/2)  states to split apart, with 
a splining of 2to R. The 1+3/2) states remain unaffected. 

serve magnetisation parallel to the rotation axis, that 
is perpendicular to the plane of  the toms. Within the 
rotating frame, the initial state and final detection 
operator are then both I x. Solving the SchriSdinger 
equation gives for the observed signal 

s ( t )  = 2 + 3 COS(2WQt) COS( Wat ) , (4)  

where an initial intensity factor has been dropped 
and other forms of  relaxation have been ignored. The 
offset corresponds to a line at zero frequency, while 
the oscillatory terms correspond to two groups of  
lines, centred at + 2 COQ, each of  which comprises a 
pair of  lines with splitting 2 ~o R (see Fig. 3). 

Over an extended period of  time the rotation rate 
of  any particular nucleus will vary. However the 
total phase acquired during a time period depends 

neglected. The other two off-diagonal elements, con- 
necting the [ + 1 / 2 )  states, must be retained. 

Within the adiabatic limit, it is clear that the 
I +  3 / 2 )  states are completely unaffected by the 
fictitious field, and so remain degenerate at COQ. It is 
initially tempting to treat the l +  1 / 2 )  states as a 
fictious sp in - I / 2 ,  but this must be done with care. A 
true s p i n - l / 2  nucleus would be split by the field to 

I give two states, with eigenvalues split by + i w  a, 
but the I +  1 / 2 )  states are in fact split by twice this 
amount, to give two new eigenstates, I +  1 / 2 ) +  
I - 1 / 2 ) ,  with eigenvalues - OJQ + oJ R (Fig. 2). This 
effect is analogous to a well-known effect in NMR 
of quadrupolar nuclei: when a half-odd-integer spin 
quadrupolar nucleus is excited with a weak radio 
frequency (RF) field, which is band selective for the 
central transition, the effective magnitude of  the RF 
field is increased by a factor of  I +  1 / 2  [15]. One 
important consequence of  this effect is that the Berry 
phases acquired by the I +  1 / 2 )  states after one 
complete rotation are +2~r ,  but observable phase 
shifts can be detected as a result of  fractional rota- 
tions. 

In optically detected NQR, magnetization is cre- 
ated along some axis, allowed to evolve under a 
Hamiltonian, and then the magnetization remaining 
along the original axis is observed. This axis may be 
chosen at will by the experimenter, but for the 
present case a particularly simple choice is to ob- 
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Fig. 3. Calculated spectra from ~3*Xe nuclei in a toroidai con- 
tainer. A static nucleus gives a simple three line spectrum (a). A 
nucleus moving round the container at a constant rate co R (or, 
equivalently, a static nucleus in a container rotated at a rate o R ) 
gives a five line spectrum (b), as the quadrupolar lines are split. 
Adiabatic diffusion of xenon atoms around the toms corresponds 
to an incoherent distribution of rotation rates, and so gives line 
broadenings (c) rather than splittings. 
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only on the average rotation rate, ~ R '  over  that time, 
even for the non-Abelian case of degenerate states, 
as discussed by Zee [16]. Hence the signal from an 
individual nucleus depends on the total winding, 
w = ~R t achieved by the nucleus; in general we can 
write w = 2arn + ~b, where ~b is the additional frac- 
tional rotation. Consequently Eq. (4) and its generali- 
sation may be simplified to give 

s(t) = 2 + 3 cos(EtOQt)cos(w). (5) 

The cos(w) term arises from interference between 
signals from the two different quadrupolar transi- 
tions, which acquire equal and opposite phase shifts 
of +w. 

In a gas sample different nuclei will move at 
different velocities, and so will acquire different 
windings. The motion of the atoms can be modelled 
as one dimensional diffusion, with a probability den- 
sity function 

~ ( w )  = (2rrdt) -1/2 e x p ( - w E / 2 d t ) ,  (6) 

where d is the one dimensional diffusion coefficent 
measured in rad 2 s - i .  Multiplying Eqs. (5) and (6) 
and integrating over all possible windings gives the 
total observable signal 

S(t) = 2 + 3 cos(2 tOQt)exp(-  ½dt), (7) 

showing that signal from the quadrupolar transitions 
decays exponentially with a time constant of 2/d 
(the central line, which was not split by the fictitious 
field, remains unbroadened). The decay occurs not 
because nuclei acquire large winding numbers, but 
simply because at long times the distribution of 
fractional windings becomes fiat. 

The one dimensional diffusion coefficent, d, is 
related to the conventional three dimensional diffu- 
sion constant, D, by d =  D/3R 2, where R is the 
radius of the torus (see Fig. 1). For xenon at standard 
temperature and pressure D = 5 × 10 -6 m 2 s-  t [17], 
so a torus with a radius of three millimetres will 
have a Berry dephasing time constant of about eleven 
seconds, shorter than that from other relaxation 
mechanisms. In such a torus the typical rotation rate 
is about 0.03 Hz, much smaller than the typical 
quadrupolar coupling (0.5 Hz), and so the adiabatic 
approximation is reasonable. Small deviations from 
adiabaticity should only result in a slightly faster loss 

of signal, but at very high rotation rates (to R >> O)Q) 
the signal should once again become sharp, as pre- 
dicted by average Hamiltonian theory [18]. 

The coherence dephasing can also be calculated 
by a different method, involving average Liouvillian 
propagators [19], which is more reminiscent of con- 
ventional treatments of relaxation. Consider a short 
time T during which it may be assumed that any 
xenon atom has a fixed angular velocity around the 
torus, and so experiences a constant fictitious field. 
The evolution of the nuclear spin state during this 
period may be conveniently described by a Liouvil- 
lian propagator, p(~-)=2(~-)p(0),  where 

..~('r) = exp[ - i,,~( tOR)'r ] . (8) 

Different atoms possess different velocities, and so 
their nuclei will evolve under different propagators. 
Nevertheless, it is possible to calculate an average 
Liouvillian propagator, under which the whole sys- 
tem evolves. The angular velocities will be dis- 
tributed with a one-dimensional Maxwell distribu- 
tion, 

,~(tOR) = (2"I1"C2) -1/2 e x p ( -  to2 /2c  2) (9) 

(where the root mean square velocity is c), and the 
average propagator, _oc~(~-), can be calculated by 
integrating Eq. (8) over this distribution. If c << ~OQ, 
most of the nuclei will evolve adiabatically, and the 
approximate adiabatic Hamiltonian can be used in 
Eq. (8); this greatly simplifies the calculation of 
_oc~(¥), and this approximation is used throughout the 
following sections. 

Now suppose that at the end of a time period T all 
the atomic velocities instantly change, so that the 
velocity distribution retains the form of Eq. (9) but 
the velocities before and after the change are com- 
pletely uncorrelated. In this case the same average 
propagator can be used during the two time periods. 
Hence 

p ( 2 r )  = . f f ' ( ' r ) .~ ( ' r )  p(O) =.ff '2( ' r )p(O),  (10) 

or, more succinctly, 2 ( m r ) = [ . . ~ ( r ) ] " ,  for any 
integer m. For the approximate adiabatic Hamilto- 
nian, the average propagator is sufficiently simple 
that the matrix power can be calculated analytically, 
allowing us to write an analytic formula for the 



J.A. Jones, A. Pines/Chemical Physics Letters 247 (1995) 215-220 219 

I (d) 

> 
time 

Fig. 4. Berry dephasing due to diffusion of xenon atoms around a 
toms causes the signal to decay exponentially to zero (a). The 
signal from a tube bent into a toms, but without the ends joined, 
decays more slowly but eventually reaches zero (b). If the tube is 
bent around an angle of 180 °, forming a half toms, the signal 
decays to a constant value (c). If the tube is not bent at all, no 
decay due to Berry dephasing should be observed (d). 

signal at time mr .  For the experiment described 
previously, 

s( mr ) = 2 + 3 cos( 2 toomr ) exp( -- ½mr2 c2 ). 
(11) 

This can be simplified by writing t = m~-, to give 

s(t)  = 2 + 3 cos (2 tOQt )exp ( - -  ½rrc2), (12) 

which may be compared with Eq. (7). Clearly the 
equations have the same form, and equating terms 
gives d = ~-c 2, compatible with a random-walk dif- 
fusion model. 

A related problem concerns the signal from xenon 
atoms diffusing in a tubular container which is bent 
around a circular arc, but whose ends are not joined 
to form a torus; this is most conveniently solved 
using the diffusion model for which problem can be 
solved numerically (Fig. 4). A simple equation may 
be obtained for the limiting signal at infinite time (as 
usual, neglecting other sources of  relaxation). For 
this case the distribution of final angular positions is 
flat, as is that for initial positions. The distribution of 
acquired windings is not, however,  flat, as the range 
of windings which may be acquired depends on the 
initial position. Integrating over all initial positions 
gives 

~ ( w ) = ( 1 - 1 w l / O ) / O ,  -O<~ w<~ O, (13) 

where 0 is the arc subtended by the container (so 
that for a container wrapped into a torus, but with the 

ends not joined, 0 =  2'rr, while for a true toms 
0 = ~). Multiplying Eqs. (5) and (13) and integrating 
over all possible windings gives the total signal at 
long times, 

S(t)  = 2 + 3 cos(2 tOQ t) sinc2(½ 0) ,  (14) 
t . - -¢  ~c 

where s i n c ( x ) =  sin(x)/x.  Of course, other relax- 
ation mechanisms will become significant at long 
times, and so the signal will eventually decay to 
zero. 

The loss of  signal coherence as a result of  ran- 
domly acquired Berry phases is a novel spin relax- 
ation mechanism which may also be relevant in other 
NMR and NQR experiments. In particular, the slow 
rotational diffusion of particles could be an impor- 
tant source of relaxation in conventional NQR stud- 
ies of  colloids. In this case it is necessary to consider 
the slow diffusion of the quadrupolar axis around the 
surface of a sphere, rather than around the edge of a 
circle. 
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