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MOLECULAR PHYSICS, 1987, VOL. 61, NO. 6, 1327-1340 

Berry's phase in magnetic resonance 

by DIETER SUTER, GERARD C. CHINGAS,  ROBERT A. HARRIS 
and ALEXANDER PINESf  

University of California, Berkeley, California 94720, U.S.A. 

(Received 18 March 1987; accepted 31 March 1987) 

According to Berry, quantum states of a hamiltonian which varies 
adiabatically through a circuit C in parameter space may acquire geometrical 
phase factors exp (i),(C)) in addition to the normal dynamical phase factors 
exp ((-i/h)S E(t) dr). We present N.M.R. experiments in the rotating frame 
which bear out these predictions for simple conical circuits, and point out that 
they are related to familiar behaviour based on the classical Bloch equations 
and on Haeberlen-Waugh coherent averaging theory. Extensions to coupled 
spins and electric quadrupolar effects are discussed. 

1. Introduction 
A system prepared in an eigenstate of a slowly varying hamiltonian remains in 

an eigenstate of the instantaneous hamiltonian [1]. In 1984, Berry pointed out [2] 
that in a cyclic adiabatic process, that is one in which the slowly time varying 
hamiltonian returns to its original form via a circuit C, a quantum state may 
acquire a 'geometrical '  phase factor exp (i~(C)) in addition to the ' no rmal '  dynami- 
cal phase factor exp ( ( - i /h)  ~ Era(t) dr). In an elegant calculation, Berry showed that 
if the circuit occurs in the vicity of a degeneracy of the hamiltonian in parameter 
space, then the geometrical phase is proportional to the solid angle f~ subtended by 
the circuit at the degeneracy. 

As an illustrative example, Berry considered spins in a magnetic field character- 
ized by slowly varying parameters R as depicted in figure 1. The hamiltonian for 
this system has a degeneracy at R = 0 where B = 0. For  the simplest case of a cone, 
0 constant, the solid angle is f~ = 2~(1 - cos 0). Imagine that such a conical circuit 
is traversed adiabatically, that is with small fi, where fi = 2felT and T is the period 
of the circuit. A spin eigenstate with magnetic quantum number m should accumu- 
late a geometrical phase 7(C) = 2nm(1 - cos 0) in addition to the dynamical phase 
m~1 S B(t) dt, where Yx is the magnetogyric ratio. 

Wilczek and co-workers I-3] and Cina 1,4] have suggested that a manifestation of 
the geometrical phase should be observed in interference between eigenstates, for 
example in the evolution of a coherent superposition of states m and m'. Such a 
superposition corresponds to magnetization or to higher rank tensor coherences [5] 
and the phase changes of such coherences have been observed for states in N.M.R. 
undergoing non-adiabatic circuits I-6]. Upon completion of an adiabatic circuit, a 
coherence should acquire a geometrical phase change or extra rotation, q~g = ~m(C) 
-7 , , (C) ,  in addition to the dynamical precession angle tkd. For  the case of a 

t On sabbatical leave during 1987 at the E.S.P.C.I., Laboratoire Physique Quantique, 10 
Rue Vauquelin, Paris Cedex 05, France. I am grateful to Professors A. P. Le Grand and P. G. 
de Gennes for their invitation and hospitality. 
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1328 D. Suter et al. 
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Figure 1. Berry's experiment for spins in a magnetic field. A field of magnitude B moves 
adiabatically through a circuit of parameters R in the laboratory. The experiments in 
this paper deal with simple conical circuits in the rotating frame for which [BJ and 0 
are constant. The considerations are similar if B is the axis in zero field of a dipolar 
coupled spin-l/2 pair or spin-1 with electric quadrupole coupling. 

magnetic field of constant magnitude [ B I = oga/Yl and constant angle 0 in figure 1 

~d  = (m - -  m')71BT = Amo9 d T, (1) 

~bg = (rn - m')f~ = 2reAm(1 - cos 0). (2) 

Chiao et al. [-7] have reported a classical optical version of such an experiment 
in which the plane of linearly polarized light (which corresponds to a superposition 
of the rn = _+ 1 photon states) was rotated by a geometrical phase imposed by 
helically wound optical fibers. Tycko [8] has recently performed a nuclear quadru- 
pole resonance experiment in which the geometrical phase of a spin-3/2 was 
observed during rotation of a crystal, thereby moving the quantization axis of the 
electric field gradient in a cone. The geometrical phase is also related to early work 
on fractional quantum numbers [9] in molecules and the classical work on conical 
intersections by Herzberg and Longuet-Higgins [10]. Indeed, Mead and Truhlar 
had earlier used the concept of a geometrical phase in their discussion of conical 
intersections [11]. 

In the present paper we outline N.M.R. experiments that measure the geometri- 
cal phase acquired by a spin-l/2 in a magnetic field of constant magnitude and 
varying direction in the rotating frame [3]. The experiments and corresponding 
treatment cover the range from the adiabatic limit (6 small), which yields Berry's 
geometrical phase, to the non-adiabatic regime characteristic of resonant processes. 
Such circuits are well known in N.M.R. experiments which involve precisely such 
combinations of static and rotating fields. We also relate the adiabatic behaviour to 
well-known coherent averaging phenomena in pulsed and iterative N.M.R. schemes 
which exploit geometrical scaling of resonance frequency differences and spin-spin 
couplings [12, 13]. 
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Berry's phase in magnetic resonance 1329 

2. N.M.R. experiment 

The experiment might be conducted in the laboratory frame using the methods 
of pure N.Q.R. [14] or zero field N.M.R. [15], but we prefer the inherently greater 
sensitivity of high frequency N.M.R. in a high field magnet as suggested by Wilczek 
and co-workers [3]. To recall how the adiabatic circuits of figure 1 can be imple- 
mented in such circumstances, we refer to figure 2. An ensemble of spin-l/2 nuclei ! 
is immersed in a large static magnetic field B o along the z axis so that their Larmor  
frequency is given by ~o o = 7~B o where 7t is the magnetogyric ratio. The spins 
develop an equilibrium magnetic polarization described by the reduced high tem- 
perature density operator [16] 

p(0) = I z , (3) 

where we have omitted, as usual, the unity operator  and all proportionality con- 
stants. 

The spins are irradiated at a frequency ~orf near o~ o with a circularly polarized 
radio-frequency (rf) field of magnitude B1 such that 7tB1 = t,x. The evolving 

(a) 

(b) 

I 
I 
I 
I 

~det = Wrf 

t 
w 1 

V i 

~det corf Wo 

(c) 
L -' k / J  
I ~ '~/ '~~ 

Wde t = Wrf w o 

w 1 

Figure 2. Rotating (detector) frame pictures of spins irradiated at frequency to~f near reson- 
ance (~Oo) with a circularly polarized radio-frequency field of magnitude B1 = ~ol/7~. A 
phase sensitive detector at frequency ~ode t is responsible for recording the transverse 
magnetization. (b) shows that in the detector frame we have implemented, for high 
field N.M.R., a situation equivalent to the laboratory picture (~ode t = 0) of figure 1 for 
simple conical circuits. 
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1330 D. Suter et al. 

magnetization is detected with a phase sensitive detector operating at frequency coder 
such that 

coo -codet = A, (4) 

c o r f  - -  c o d t t  ~ 1~" ( 5 )  

We consider the case of simple conical circuits for which coo and cox are constant 
in time. In figure 2 (a) corf has been set equal to codet SO that 6 = 0, whereas figure 
2 (b) reflects the general situation in which 6 # 0. The frequency coder can be thought 
of as the reference or zero of the frequency scale. A laboratory frame experiment of 
the type in figure 1 with a constant field I B I = cod/~t (here co d denotes the dynamical 
frequency) moving with constant 0 at frequency 6 around z would correspond to 
codet = 0 in Figure 2 (b). 

In a frame of reference rotating with the detector [17], we term this the 'detector 
frame', the effective static field along the z axis is B o -  COdtt/D so the effective 
Larmor frequency is A, given by equation (4), and the effective rotation frequency of 
the rf field B x is 6, given by equation (5). The situation in figure 2(b) is thus 
equivalent to a magnetic field of magnitude B = COd/~ moving in a cone of angle 20 
around the z axis at frequency 6. The effective hamiltonian in the detector frame is 
given by 

~ ( t )  = -hcod[COS 015 + sin O(lx cos 6t + Iy sin 601 (6) 

where 

co d = (A 2 + co2) 1/2, (7) 

0 = t an-  1 (coffA), (8) 

and I~ are the spin angular momentum operators. But this is precisely the arrange- 
ment corresponding to figure 1 for the case of constant [BI and 0. Thus figure 2 (b) 
is the high field detector frame equivalent of conical circuits in the laboratory. To 
implement the general circuits of figure 1 in the rotating frame co d and 0 can be 
varied by modulating COo, corf and co x. 

To calculate the evolution of the magnetization in the detector frame of 
figure 2 (b) it is convenient to transform temporarily to a frame rotating at frequency 

with respect to the detector frame [17] as shown in figure 2(c); we imagine 
moving the detector frequency to coa. In the laboratory case coo~, = 0, this corre- 
sponds to a frame rotating at frequency ~ around the laboratory z axis. In this 
rotating frame the total effective magnetic field is static with a magnitude coff~ 
where the effective frequency co t is given by 

co~ = ((A - ~)~ + co~)x/2. (9) 

The adiabatic limit corresponds to 

c~ < coo, (10) 

in which case the quantization axis remains along the direction of co o to first order 
and the magnetization precesses at frequency cot given by expanding equation (9) in 
c~/co o and using equations (7) and (8) to give 

cot ~ coo - ~ cos 0. (11) 
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Berry's phase in magnetic resonance 1331 

\\ 
r 

\ 
\ \  

\ 
\ \  

\ 
\ 

Figure 3. Expansion of figure 2 (c) showing a view of the effective static fields in a frame 
rotating at frequency ~ with respect to the Berry situation in figures 1 and 2 (b). The 
adiabatic limit corresponds to taking the projection of 6 onto co d . 

Details  of  the relevant  geomet ry  and the adiabat ic  project ion of  6 on to  o9 d are 
shown in figure 3. 

The  phase  q~' accumula ted  after one adiabat ic  circuit, 6 T  = 2n, in the ro ta t ing  
frame of figure 2 (c) is given according to equa t ion  (11) by 

~b' = ~o e T ~ o9 d T - 2n cos 0, (12) 

which cor responds  in the original detector  f rame of figure 2 (b) to an accumula ted  
phase ~b of 

~b = ~b' + 2re = q~d + ~bg = o9 d T + 2rr(1 - cos 0), (13) 

with ~b d and q~g corresponding to the dynamica l  and  geometr ical  phases of  equat ions  
(1) and (2) with Am = 1. Thus  it is possible to determine Berry 's  geometr ical  phase, 
cor responding  to ' s t r o b o s c o p i c '  observat ions  (once per  circuit), by measur ing  coe 
and 6. 

The  exact expression for the evolving density ope ra to r  in the detector  frame, 
beginning with initial condi t ion equat ion  (3), is given by the wel l -known transient  
solution to the Bloch equat ions  1-17] neglecting relaxat ion:  

p(t) = sin 0Ix[cos 0(1 -- cos o~ t) cos 6t + sin o9~ t sin 6t] 

+ sin 0Iy[-cos 0(1 -- cos co, t) sin fit -- sin o~ t cos fit] 

+ Iz[cos 2 0 -- sin 2 0 cos a~e t], (14) 

f rom which the adiabat ic  and non-ad iaba t ic  regimes can be inferred. Exper imenta l ly  
a linearly polar ized rf field was used, invoking the ro ta t ing  wave approx imat ion .  
The  phase  sensitive detector  measures  ( lx ) ,  ( I y )  and, upon  Four ier  t r ans format ion  
of the signal, co e can be determined.  Exper iments  were per formed on the p ro ton  
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Figure 4. Fourier transform spectra of  the detected transverse magnet izat ion signal in an 
experiment of  the type shown in f igure2(b)  with 0 = 6 2 - 1  ~ c o a / 2 n =  l ' 3 1 k H z ,  
6/2n=--0"33kHz. Adiabatic  and exact s imulations are shown as well as the 
complex  experimental  signal. Deviat ions  from adiabatic behaviour are visible since 

~ 0 - 2 5  co  a . 

3.0 

20  

10 

N 00 '1= 

(a) 0 = 621 ~ 

I i I i i I i I I i I 
- 1 0  0 . 0  1 .0  

30 - I  ~ ~ I r I ~ r r r / , ~ /  

20 

1,0 

/ ~  Exact 
0,0 / ~Adlabahc 

~ I J I i J I i I 
-1  0 O0 10 

- = / k H z  

Figure 5. Experimental  measurements of  co e + 5 versus 6 for two values of  0. According to 
equation (15), in the adiabatic regime (5 ~ COd) the data should conform to m e + ~ ~ 
co d + 5(1 - cos 0), which is shown as the straight lines. The adiabatic behaviour holds 
quite well for 6 < 0.2 co a . 
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Berry's phase in magnetic resonance 1333 

4~r l I 

.~ 3~ 

(5 

o 
0 7r 27r 37r 4~ 

Solid angle (s = 27r (1 -cosO))  
Figure 6. Plot of experimental geometrical phase (extra rotation angle of the magnetization 

per circuit) extracted from least squares linear fits to the adiabatic (& < 0-2c%) data of 
figure 5 versus solid angle. The straight line with slope 1 corresponds to Berry's geo- 
metrical phase. 

spins of a water/acetone sample in a superconducting magnet with O9o/2rc = 
500MHz, o91/2n = l ' 16kHz  and various values of 0 and 6. An example of the 
Fourier transform of the detector signal is shown in figure 4 together with exact and 
adiabatic simulations for 0 = 62.1 ~ O~d/2n = l ' 31kHz  and 3/2rc = - 0 . 3 3 k H z .  In 
figure 5 we plot co e + 3, as determined from spectra such as the one shown in 
figure 4, as a function of 3 for two values of 0, using calibrated oscillators to vary 3. 
According to equation (11), in the adiabatic limit this should be given by 

~e + 3 z co o + 6(1 - cos/9). (15) 

Indeed, for small values of & the data are linear, and the geometrical phase ~bg is 
determined by the slope of the adiabatic straight line in figure 5 multiplied by 
T = 2~/6 and is plotted versus the solid angle 2n(1 - cos 0) in figure 6. The behav- 
iour is similar to that observed in the optical rotation [7] and N.Q.R. [8] experi- 
ments. 

In these experiments the geometrical phase is present as a small factor in the 
presence of the large dynamical phase. The effects of the dynamical phase may be 
removed either by stroboscopic observation commensurate with the dynamical 
period, or by periodically (for example once in the middle of the circuit, or just prior 
to repeating the circuit) reversing the direction of B. In the latter case the dynamical 
phase is refocused as an echo [17(b)] at the end of the circuit leaving only the pure 
geometrical phase. 

The cos 0 factor which derived from the projection of the small vector 3 onto the 
large co d is familiar in N.M.R. [5]. It corresponds to the secular approximation or 
average hamiltonian [11, 12]. What we have done in going from the laboratory or 
detector frame to the rotating frame is to transform a large slowly time varying 
hamiltonian into a large time independent hamiltonian plus a small additional term 
which is treated by perturbation theory. This is explained in more detail in the next 
section. We have used a time independent perturbation 31= as the generator of the 
adiabatic circuit whereas Cina [4] used a time dependent generator orthogonal to 
the field o9 o at all times to express the problem as one of parallel transport [2]. 
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1334 D. Suter et al. 

The scaling of chemical shifts by cos 0, for example 1/~/3 at the 'magic angle' 
[18], is related to the frequency differences predicted by Wilczek and co-workers [3] 
and observed in this work. Dipolar couplings between spins and other higher rank 
interactions are correspondingly scaled by higher order Legendre polynomials as 
predicted by the coherent averaging theory of Haeberlen and Waugh [12]. The 
treatment and experiments in this paper are of course applicable to spins greater 
than 1/2 or to any multilevel quantum system which can be cast in the framework of 
a fictitious spin [5, 19]. Finally, we note that the effects measured in this work can 
be interpreted classically and are equivalent to the accumulation of phase due to 
Coriolis forces in accelerated frames of reference [20]. They would occur for an 
inclined top spinning on a slowing rotating platform. Quantum mechanical effects 
due to non-integral m values of the spin could be observed in adiabatic versions of 
the N.M.R. interference experiments [6]. 

3. General circuits and coherent averaging 
In this section we discuss the relationship between the adiabatic theorem and 

well-known coherent averaging effects in N.M.R. Consider a 'large' hamiltonian 
o~(t) with a slow time dependence characterized by a small parameter 6. We assume 
that o~(0 is cyclic and that it goes through one cycle or circuit: 

a~(T) = ~r (16) 

Such cyclic hamiltonians are familiar in pulsed N.M.R. When the time depen- 
dence is rapid then coherent averaging theory [12] is directly applicable, but here 
we are interested in adiabatic processes for which a change of picture may be 
appropriate. An eigenstate I 0) of ~(0)  will evolve by the end of the circuit to 

I T)  = t.7(T) 10), (17) 

where the circuit propagator iT(T) is given by 

fo {7(T) = 9"- exp ( - i /h)  :,~~ dt (18) 

and ~o r is a time ordering operator [21]. If the change is adiabatic then 

[ T) = exp {i(7, + 7(C))} [0) (19) 

where 7a and 7(C) are the dynamical and geometrical phases [2] respectively. Taking 
only the dynamical phase 7a is tantamount to assuming that the eigenvalues of the 
average hamiltonian ~ [12] are the same as the average eigenvalues of o~(t), 
namely (01o~10) = ( t l ~ l t ) .  The circuit propagator U(T) in equation (18) can 
be factored [22] 

O(T) = R*a(T)U(T), (20) 

where 

Ro(t) = ~- exp (- i /h)  o~~ ') dt', 

U(T) = J exp ( - i /h)  Ir(oaC~ + o~a(t)) dr, 
30 

(21) 

(22) 
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Berry's phase in magnetic resonance 1335 

and 
~ ( t )  = R~(t)~,~(t)g~(t). (23) 

The hamiltonian ~ ( t )  in equation (21) can be regarded as the generator of an 
interaction picture [1] in which the effective hamiltonian is A~(t) + ~F~(t) and the 
effective circuit propagator is U(T)  in equation (22). In such an interaction picture 

Ra(T) l T)  = U(TI0) .  (24) 

Now, the objective is to find a ' small '  ~r and thus an Ra(t) such that ~ ( t )  in 
equation (23) is time independent or commutes with itself at different times. If JC~(t) 
is time independent (this is easily generalized to a commuting hamiltonian), namely 

Yr(t) = X G (25) 

where ~ d  is a large ' local '  hamiltonian giving rise to normal dynamical evolution 
of the eigenstates with a characteristic frequency 

co d = 2felt d , (26) 

then equation (22) can be written 

fo U(T) = ~" exp (--i/h) ( ~ ,  + . ,~(t)  dt). (27) 

Of course the choices of R~ and o~ a are not unique and it is the different pictures 
and local hamiltonians which give rise to the choice of dynamical phases and 
fractional quantum numbers. Now, since o ~  is small, II ~ II ~ II ~ d  II, we use 
coherent averaging theory [12], retaining only the zero order average hamiltonian 
o ~  in the Magnus expansion [23], that is the part of o~(t) which is secular or 
commutes with o~ a . This is given by 

lforfo~ = -- exp ( ( -  i/h)ts~ct~ ') exp ((i/h)tg,~d) dt dt'. (28) 
td 

~f~ is a generalization of the vector projection proportional to - 6  cos 0 of the 
previous section where the hamiltonians ~ d  and ~ correspond to magnetic field 
vectors. Corrections to ~/~ which correspond to non-adiabatic deviations are pro- 
vided by the correction terms ~ ( k )  [12, 23]. 

The adiabatic circuit propagator t.7(T) in equation (20) is thus given by combin- 
ing equations (20), (21), (27) and (28): 

U(T)  = R~(T)Ra(T) exp ( ( - i /h )T~a) ,  (29) 

where 

/~a(T) = exp ((--i/h)T3~a). (30) 

The dynamical and geometrical phase factors in equation (19) can now be recog- 
nized as 

exp ( ( - i / h ) T ~ d ) l O )  = exp (iTd) 10), (31) 

R~(T)Ra(T)IO) = exp (i7(C))10). (32) 

Parallel transport corresponds to a choice of ~a(t)  orthogonal to Je~d so that 
~ = 0 and / ~ ( T ) =  1. The geometrical phase is then given entirely by R~(T) in 
equation (32) acting on 10). This relates the adiabatic behaviour to the general case 
of parallel transported circuits due to Aharonov and Anandan [24]. 
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1336 D. Suter et al. 

Figure 7. 

(a) Dipole-dipole coupling 
z 

Ouadrupolar coupling 

z 

I 

Adiabatic rotation of a sample can generate a geometrical phase for (a) dipole- 
coupled spins or (b) spins I = 1 subject to electric quadrupole coupling. 

Equation (29) makes clear the contributions to the phase factor in a circuit. The 
dynamical phase of equation (31) derives from the static hamiltonian ~ d  which 
corresponds in the magnetic field case to a static magnetic field or ~o d in figure 2. 
Any mystery in the geometrical phase is a consequence of the seductive intuition 
that in the transformed picture, or local coordinates, the evolution, boundary condi- 
tions and quantization should be the same as if ~ d  were originally static. The terms 
/~(T) and R~(T) in equation (32) give rise respectively in the magnetic field case to 
the - 2 ~  cos 0 term of equation (12) and the 2n term of equation (13). The case 
0 = 0 in w 2 corresponds here to R~(T)R,(T) = 1 which can be achieved for example 
(not necessarily) if 

[Jf~d, ~ ]  = 0. (33) 

In this case equation (27) can be factored exactly and the adiabatic approx- 
imation is not necessary. The magnetic case 0 = n/2 corresponds to /~(T) = 1 in 
which case R~(T) is responsible for the geometrical phase and gives rise to the 
familiar spinor sign changes under 2n rotations [2, 6]. Such considerations also 
apply to the case of molecules with coupled rotors [9]. 

Interesting versions of the geometrical phase occur for coupled spins or for spins 
greater than �89 Suppose two spins 1 and 2 are coupled by magnetic dipolar inter- 
actions in the absence of a static external field. In the principal axis system (x', y', z') 
of the dipolar tensor, the coupling hamiltonian is 

M~d = ~h~ I 2 z "  - -  11 �9 I2) + r l ( I l x "  I 2 x "  - -  l ly '  I2y')]. (34) 

Similarly, for a spin I = 1 in the principal axis system of the electric field gradient 
tensor 

~ d  1 2 = ~h~Od[(3iz ' _ i2) 4_ r/(ix 2. _ /2 , ) ] .  (35) 

In the case of axial symmetry (r /= 0), a component of magnetization perpendicular 
to the symmetry (z') axis oscillates linearly at the dynamical frequency co d [15] so 
the total magnetization evolves in a plane, the polarization plane. A superposition 
of the m = __+ 1 eigenstates, corresponding to double quantum coherence, would 
remain constant in time [5]. Imagine that the symmetry axis (z') is now rotated 
adiabatically in a cone at frequency 5, for example by physically rotating a solid 
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Berry's phase in magnetic resonance 1337 

Figure 8. 

m = 0  

+1 

Static Adiabatic 

2h ~ cos O 

The degeneracy of the m = _+ 1 levels is lifted by sample rotation. 

sample around an axis tilted at an angle 0 with respect to z', as shown in figure 7. 
The evolution of the spin system can then be described in a frame rotating at 6 with 
the crystal or spin pair by a time independent hamiltonian (equation (34) or (35)) with 
an additional term h6[cos 0(I1~, + I2z') d- sin O(Ilx, + 12x')] or h~[cos OI z, + sin OIx, ]. 
The term ~ of equation (28) is given by the projection of this term onto the 
symmetry axis, i.e. h6 cos 0(I1~, + I2z') for the dipolar case, and h6 cos 0I~, for 
the quadrupolar case (see figure 8), again violating the intuitive notion that if we 
'run around' with the pair of spins then the local dynamics should look the same as 
they would for a static pair in the laboratory. This is identical to the consideration 
of w 2 and so the phase at the end of the circuit is given precisely by equation (13). 
Thus the polarization plane of the magnetization is now rotated by the geometrical 
phase and the orientation of the _+ 1 superposition by twice the geometrical phase 
when the crystal is rotated adiabatically. This is analogous to the rotation of the 
optical polarization plane in the experiments of Chiao and co-workers [7] and will 
give rise to effective Zeeman splittings in the N.M.R. experiments or powder pat- 
terns in the zero field spectra [15]. Similar considerations hold for a spin-1 with an 
axially symmetric electric quadrupole coupling or for spin-3/2 [8]. If the coupling 
for spin-1 is not axially symmetric q r 0, and 6 ~ qco d , then we find ~ = 0 and the 
geometrical phase is 2~m. This corresponds to the situation in which the effective 
rotation in parameter space occurs in a plane containing the degeneracy. 

If the dipolar coupled spin pair described by equation (34) is in the presence of a 
large magnetic field it is known that the dynamical phase due to the secular dipolar 
coupling 3~'~ can be eliminated by rotating the sample adiabatically in circuits 
around an axis inclined at the magic angle (0m = cos-1 (1/x/3)) relative to the mag- 
netic field [18]. Dynamical phases due to quadrupolar couplings and anisotropic 
chemical shifts are similarly removed. Since ~ commutes with itself at different 
times, the geometrical phase is also zero so that only isotropic Zeeman couplings or 
chemical shifts remain. Instead of moving the sample relative to the field, similar 
effects can be achieved by rotating the field in a cone of angle 20 m with the sample 
fixed [25]. In this latter case, however, there will be frequency shifts due to the 
geometrical phase factors given by equation (2). These will add to the isotropic shifts 
of the magic angle spectra. 

Finally, by combining dipolar or quadrupolar couplings together with magnetic 
fields, for example spin I = 1 with 

~ h O ~ d [ ( 3 I  z ,  - -  12) + 3Iz,], (36) ~ d  ~ I 2 
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1338 D. Suter et  al. 

where, again, the z' axis is moved in a circuit, the non-abelian case of Wilczek and 
Zee [3] can be investigated [26]. In fact, such a possibility also exists for the + �89 
manifold of the spin - 2  ~ N.Q.R. [8], but, for the case of conical circuits, could be 
treated by Tycko as adiabatic Berry phases on diagonal states. 

4. Conclusions 

When two systems are coupled together, the eigenstates of the total hamiltonian 
do not in general exhibit statistical independence in the separate systems. That is, 
the probability amplitudes are not the product of probability amplitudes for each 
system. Often the states may be exactly, or approximately, separated into states 
which are functions of variables involving both systems. It is often the case that one 
or more of the degrees of freedom describing one of the systems goes through a 
sequence of values, for example, an angle. Although the overall wave function must 
be single valued when the hamiltonian repeats itself, there is no reason for the 
individual amplitudes which make up the products above to be single valued. This 
partial multivaluedness was pointed out and analysed in the early treatments of the 
coupling of internal rotations to overall rotations [9] showing that fractional 
quantum numbers were a natural consequence of multivaluedness. 

An extreme example of strong coupling is the Born-Oppenheimer approx- 
imation. In the electronic wave functions, the nuclear coordinates are parameters. 
An overall wave function is the product of the electronic wave function times the 
nuclear wave function. Again there is no a priori  reason for the electronic wave 
function and the nuclear wave function to be separately single valued in the nuclear 
coordinates. Herzberg and Longuet-Higgins [10] pointed out that near a conical 
intersection of a triatomic molecule the electronic wave function would be multi- 
valued. Thus fractional quantum numbers could be expected in certain vibration 
states of triatomic species such as (Na)a, and indeed appear to have been observed 
[27]. In the later 1970s and early 1980s, Mead and Truhlar [11] pointed out that 
the partial multivaluedness could be removed by multiplying both nuclear and 
electronic amplitudes by a phase which countered the multivalued real amplitudes. 
Thus, in the nuclear Schr6dinger equation one restored single-valuedness at the cost 
of introducing a 'vector potential'. Mead and Truhlar dubbed this construct the 
molecular 'Bohm-Aharonov' [28] effect and proceeded to relate the form of the 
vector potential to certain circulation integrals over the nuclear potential energies. A 
related approach was discussed recently by Wilczek and co-workers [3]. 

The papers of Berry and Simon [2] are in essence a complete analysis of the 
time dependent adiabatic theorem. When the adiabatic eigenstates are complex and 
single valued, the diagonal phase factors, usually discarded [1], must be retained. 
Not surprisingly, the amplitudes may be multivalued. Also not surprisingly, the 
phase is identical to that derived by Mead and Truhlar. In fact, the additional phase 
required to restore the single valuedness of the eigenstates is the geometrical phase 
of Berry. Thus there may be observable effects in the dynamics. In particular, Berry 
suggested a series of experiments including one involving the polarization of light 
and the one investigated in the present paper involving adiabatic rotation of the 
spatial degrees of freedom of a magnetic system. 

Although Berry used quantum mechanical arguments to obtain his phase, it is 
clear that the dynamical manifestation of this phase is classical in nature since the 
magnetization or the polarization of any fictitious spin satisfies the Bloch equations 
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Berry's phase in magnetic resonance 1339 

[17], and, in fact, Cina [4] obtained the Berry phase from classical arguments. Thus 
for spins and other systems which undergo rotation, Berry's effect is entirely analo- 
gous to evolution under Coriolis forces in an accelerating non-planar reference 
frame 1-20]. Since the polarization of light may be described in terms of the Stokes 
parameters, the experiments of Chiao and co-workers I-7] is another manifestation 
of this idea. 

In this paper we have related the effects for spin-l/2 to well-known behaviour in 
N.M.R. involving continuous irradiation of spins near resonance. The experiments 
were carried out for conical circuits over a range of parameters which include both 
adiabatic and non-adiabatic effects. In addition we have invoked the known solu- 
tions to the Bloch equations for the evolution of magnetization with arbitrary 
values of the parameters, and hence were able to compare the exact results both 
with the experiment and with the general adiabatic theory. Finally, the relationship 
between geometrical phase in general adiabatic circuits and the average hamiltonian 
in an interaction picture was outlined. Such an approach to adiabatic N.M.R. 
experiments is useful because it lends to the processes a deeply geometrical view 
[2] in the spirit of the topological arguments of Berry and Simon. 
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cating their work prior to publication and to Professors W. H. Miller, C. A. Mead, 
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Energy Sciences, Materials Sciences Division of the U.S. Department of Energy 
under Contract No. DE-ACO3-76SF00098. 
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