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We present theory, simulations and experimental demonstrations of composite 1T pulses for 
population inversion in coupled spin systems such as occur in solid state NMR. The composite 1T 

pulses are phase-shifted rf pulse sequences designed to invert spins over a larger range of dipole or 
quadrupole couplings than a conventional1T pulse, for a given rfpower. We discuss a previously 
proposed theory for constructing composite pulses, in the specific context of solids. Two 
particular sequences 450180909018018090450 and 18001801201800 are examined in detail. Their 
performance in coupled spin systems ofvarlous sizes is evaluated in simulations. Experiments are 
performed on two solid compounds, Ba(CI03h·H20 and C40 4H2. The results reveal markedly 
less spectral distortion after composite pulse inversion than after conventional1T pulse inversion at 
low rf powers. 

I. INTRODUCTION 
A universal problem in pulsed nuclear magnetic reso­

nance (NMR) is that of exciting a system of nuclear spins 
with a broad spectrum of resonant frequencies using only a 
single frequency of radio frequency (rf) radiation. Two types 
of excitation are of particular importance, namely the cre­
ation of coherence between spin states and the creation of a 
population inversion. Both of these can be accomplished 
with single rfpulses, the familiar 1T!2 and 1T pulses, respec­
tively. If the pulse power is such that the resulting Rabi fre­
quency is WI' however, uniform excitation can only be 
achieved with single pulses over a spectral width.Jw satisfy­
ing the condition .Jw<:w\. The precise limits on the inequa­
lity depend on the specific application, but the problem is 
severe enough that much effort has been devoted to improve­
ments on the basic 1T /2 and 1T pulses over the past several 
years. 

The idea of replacing single rf pulses with sequences of 
pulses with phase-shifts between them and with a constant 
amplitude for broadband excitation was first proposed by 
Levitt and Freeman. Such sequences were given the name 
"composite pulses." A pulse sequence designed to replace a 
single 1T pulse is called a composite 1T pulse; one designed to 
replace a single 1T/2 pulse is called a composite 1T/2 pulse. 
Attention was originally directed towards liquid state NMR, 
where the spectral width is primarily the result of chemical 
shifts. Consequently, most of the work on composite pulses 
has been devoted to constructing sequences that can excite 
spins uniformly over a range of chemical shifts.l-4 In addi­
tion, composite pulses have been suggested for uniform exci­
tation in the presence of inhomogeneity in the rf field 
strength. I

- 3,5 A common feature of the chemical shift and 
the rf inhomogeneity problems is that they are both single­
spin problems. They are therefore easily described by the 
Bloch vector model, allowing geometric arguments and in­
tuitions to be used and allowing definitive computer simula­
tions of the pulse sequence to be made. Most of the progress 
in the development of composite pulses for liquid state NMR 
has depended on exactly that combination of geometric pic­
tures and computer simulations. Quite recently, though, al-

temate, and perhaps more sophisticated, routes to the design 
of composite pulses have been explored. One of these is the 
generation of pulse sequences as approximations to continu­
ously phase-modulated pulses with demonstrated broad­
band excitation properties.6

,7 This approach is well suited to 
constructing long sequences that excite spins over a very 
large spectral width. A second recent approach is the use of 
iterative schemes to produce successive improvements on a 
basic sequence unit.8- 1O Again, this approach generates long 
sequences with very large excitation bandwidths. 

A third approach to constructing composite pulses, II 
and the one that is the focus of this paper, is the use of the 
Magnus expansion 12,13 in a manner similar to the coherent 
averaging theory that is of central importance to many tech­
niques in the NMR of solids, liquid crystals, and liquids. 14-16 
The Magnus expansion approach is in principle the most 
general method proposed to date in that it can be applied to 
both composite 1T and composite 1T /2 pulses in a system of an 
arbitrary number of spins in which the spectral width results 
from any type of interaction. It reduces the problem of find­
ing a composite pulse to that of solving a specific set of equa­
tions. This can then be done analytically or numerically, de­
pending on the complexity of the equations. All of this 
generality is achieved at the expense of the appealing geo­
metric pictures that characterize earlier approaches. How­
ever, in a general, coupled many-spin system, such as occurs 
in the NMR of anisotropic materials, the Bloch vector model 
does not apply anyway (the system is not describable by only 
three coordinates). 

Levitt et al. have recently extended some liquid-state 
composite pulse results to solid-state deuterium NMR,17 
where fictitious spin -1!2 formalisms provide a modified vec­
tor model. 18-20 But, as it is presented, that work is limited to 
isolated quadrupolar spin-l nuclei or pairs of dipole coupled 
spin-l!2 nuclei. In Ref. 11, we proposed composite 1T and 
composite 1T/2 pulses for dipolar or quadrupolar spin sys­
tems of any size. It is the purpose of this paper to describe in 
more detail the application of the Magnus expansion ap­
proach to the design of composite pulses for solid state 
NMR. We present simulations and experimental demon-
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strations of the performance of composite 11' pulses on spin 
systems of various sizes. 

The paper is organized as follows: Sec. II contains the 
theory along with details as to how the formalism is put into 
practice. Specific composite 11' pulses are introduced. Advan­
tages of the approach are discussed. Section III contains the 
results of simulations and experiments demonstrating the 
effectiveness of composite 11' pulses on two-spin systems. 
Simulations and experiments on many-spin systems are pre­
sented in Sec. IV. Section V contains conclusions. In an Ap­
pendix, we present a proof regarding the symmetry of the 
response of a coupled spin system to a composite pulse with 
respect to a change in the overall sign of the coupling con­
stants. 

11. THEORY 

A. Formalism 

The essential points of the theory have been presented 
in Ref. II. In this section, we concentrate on the particular 
problem of constructing a pulse sequence for excitation over 
a spectrum that results from quadrupole or dipole couplings. 

We begin by considering the Hamiltonian for the spin 
system in the rotating frame during rf irradiation to be the 
sum of two parts: 

K= Krf + V, (1) 

Krf =wl[Ix cos¢(t) +Iy sin¢(t)]. (2) 

K rf is the interaction of the spin system, with total angular 
momentum vector operator I, with the rf field of constant 
magnitude WI (rad/s) and varying phase ¢ (t). In the rotating 
frame, the carrier frequency oscillations do not appear, so 
that ¢ (t) during a pulse sequence is a piecewise-constant 
function of time. If the sequence consists of N pulses, then 
¢ (t) has the value of ¢n during the nth pulse, with I..;n..;N. 
The nth pulse has a duration Tn' The pulse sequence is then 
completely specified by the N phases ¢n and the N pulse 
lengths Tn . However, as a result of the usual high-field condi­
tion [V, I z ] = 0, the bandwidth of excitation of the se­
quence will not be changed by adding a constant to all 
phases. Therefore, we can take ¢ I = 0, leaving 2N - 1 varia­
bles to characterize the sequence. 

The operator V in Eq. (1) is the quadrupole or dipole 
coupling term, which we will call VQ or VD : 

VQ = wQ(I; - jI2), (3) 

(4) 

WQ is the quadrupole coupling constant. dij is the dipole cou­
pling constant between spins i andj; the sum in Eq. (4) is over 
all pairs of coupled spins in the system. 

The Hamiltonian of Eq. (1) brings about an evolution of 
the spin system given by the propagator U (t ), which is conve­
niently written using the Dyson time-ordering operator T as 

U(t) = Texp - if dt' K(t'). (5) 

An exact separation of U(t) can be made as follows: 

U(t) = Urf(t) Uv(t), (6) 

Urf(t) = Texp - i L dt' Krf(t'), 

Uv(t) = Texp - i L dt' V(t'), 

Viti = Urf(t)-I VUrr(t). 

(7) 

(8) 

(9) 

v (t ) is the complete Hamiltonian in the interaction represen­
tation defined by K rf(t ). In the "delta-function pulse" limit 
commonly encountered in coherent averaging theory in sol­
id-state NMR, the interaction representation would be the 
"toggling frame". Here we are explicitly dealing with weak 
pulses, so that the situation is the same as the one that occurs 
in the windowless pulse sequences for line narrowing pro­
posed by Burum eta/. 21 

Urf is the propagator for the interaction of the individ­
ual spins with the applied radiation alone. Since K rf(t) is 
piecewise-constant, Eq. (7) can be written: 

Urf(t) =exp[ - iW I I,p)t -Tn_I - ••• -1'I)J 

... exp[ -iWJ,p21'2J exp[ -iWI I,p,1'd, 

1'1 + ... + 1'n_1 ..;t";1'1 + ... + Tn' (10) 

(11) 

Each of the exponential operators in Eq. (10) is simply a 
rotation in the spin vector space by an angle WIT; about an 
axis in the xy plane making an angle ¢; with the x axis. U rf( t ) 
is then a product of rotations, which is itself always a rota­
tion. 

If the couplings in Eqs. (3) or (4) were negligibly small 
compared to WI' the total propagator U would be equal to 
Urf' i.e., a pure rotation. Assuming the usual equilibrium 
initial condition for the spin system describable by a density 
operator proportional to I z , the creation of a population in­
version corresponds to a rotation of the density operator to 
- I z ' in other words to a rotation by an angle 11' about any 
axis in thexy plane. A condition that must be satisfied by any 
composite 11' pulse of total length l' is therefore: 

Urr (1')Iz Urf(1')-1 = -Iz • (12) 

The problem that we are trying to solve, though, is one 
in which the couplings are not negligible. Still, if we could 
make U v (1') in Eq. (8) approximately the identity operator for 
some range of couplings by choosing the proper pulse se­
quence, and simultaneously satisfy Eq. (12), then we would 
achieve uniform population inversion over that range of cou­
plings. A straightforward way to accomplish this is to make 
a Magnus expansion l2,13 of U v (1'): 

U v (1') = exp[ - i(V(O) + V(I) + ... ) 1'], (13) 

V W) = 1.- r dt V(t), 
l' Jo 

'iT Lt

, 
(I) - I --

V = -- dt l dtz [ V(tl)' V(tz)]. 
21' 0 0 

(14) 

(15) 

Discussions of the Magnus expansion and of its applica­
tions in NMR have been given elsewhere. 14-16 The nth term 
in the Magnus expansion, vln + 1), is a sum ofn + I-fold inte­
grals of n-fold commutators of V (i) with itself, evaluated at 
different times. Thus, if the size of V is characterized by a 
parameter likewQ in Eq. (3), the Magnus expansion is a pow-
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er series in that parameter. We call a pulse sequence for 
which v(n) = 0 for O<n <M an M th-order composite pulse. 
As M increases, the range of couplings for which uniform 
excitation is achieved also increases. II 

The procedure for finding an M th order composite 
pulse is as follows. As explained earlier, a sequence of N 
pulses is described by 2N - I variables. Through Eqs. (9)­
(11) and (14) and (15), v(n)is a function of those variables. The 
pulse sequence must satisfy Eq. (12) in addition to the M + 1 
equations v(n) = O. Therefore, we choose a value of N large 
enough that a simultaneous solution to the required equa­
tions exist. Each equation is an operator equation, and there­
fore has more than one component. In addition, the equa­
tions are nonlinear so that there is no obvious relationship 
between the number of equations and the number of varia­
bles needed for a simultaneous solution to exist. Experience 
shows, however, that a solution can usually be found when 
the number of variables approximately equals the number of 
component equations. Often the solutions correspond to 
composite pulses with experimentally favorable pulse 
lengths and phases, as well. 

Composite pulses are often most easily found by solving 
the desired equations numerically. A computer program is 
written that evaluates Urf{r) /z Urf(1r I and the required 
V(n1• Criteria are established for the precision to which the 
equations are to be solved. A search for solutions is then 
conducted over a set of possible pulse length and phase com­
binations. Typically, more than one solution is found. In 
such cases, simulations of the performance of the composite 
pulses on model spin systems are used to select the best com­
posite pulse. Differences in the performance of composite 
pulses of the same order may be attributed to properties of 
higher terms in the Magnus expansion that are not set to 
zero. 

There is another factor that is often important in the 
design of composite pulses, namely symmetry. For example, 
in composite 17' pulses designed to produce population inver­
sion over a range of chemical shifts, it can be shown that the 
extent of inversion is independent of the sign of the chemical 
shift if the rf phase is an even function of time with respect to 
the middle of the pulse sequence.5 Such symmetries can be 
incorporated into our procedure as restrictions on the al­
lowed pulse length and phase combinations. 

In the case of a spin system with quadrupole or dipole 
coupling, symmetry with respect to the sign of the couplings 
in the response of the spins to an rf pulse sequence is a conse­
quence of the form of the coupling Hamiltonians themselves. 
We prove this fact in the Appendix. As a result, symmetry 
restrictions are not required in the composite pulses dis­
cussed below. 

B. Zeroth order composite pulses 

Zeroth order composite pulses are characterized by 
V(Ol = 0 in Eq. (14). To evaluate V (01 , it is necessary to calcu­
late V(t). For quadrupole and dipole couplings, this is most 
conveniently done using a basis of second-rank irreducible 
tensor operators, symbolized by Tzm with - 2<m<2. The 
T zm form a closed set under rotations. Their definition and 

properties are discussed in many places.22,23 The coupling 
Hamiltonians ofEqs. (3) and (4) both have the transforma­
tion properties of a Tzo. Therefore,V(t) is always a linear 
combination of Tzm operators, since it is related to Vby the 
rotation U rf I(t): 

z 
V(t)= L Cm(t) Tzm · (16) 

m= -2 

Additionally, V(t) must be Hermitian, since Vis Hermitian 
and Urf(t) is unitary. This requires that 

(17) 

The coefficients C m (t ) for an arbitrary pulse sequence, in oth­
er words an arbitrary sequence of rotations, are readily cal­
culated using the Wigner rotation matriceszz or the tables in 
Ref. 23. 

What we need to evaluate VIOl are the integrals of the 
C m (t ) over the pulse sequence, which we denote by the com­
plex numbers am + ibm. Because of Eq. (17), there are five 
independent quantities required to specify VIOl, which we 
write as the five-dimensional vector g = (ao, aI' b l , az, b2). 
Thus, the operator equation VIOl = 0 consists of five compo­
nent equations. 

Throughout the remainder of this paper, we will use the 
standard notation (WI rl)¢,(lUl r Z)¢2"·(lU l rN)¢N to describe a 
composite pulse, with all angles in degrees. The quantities 
lU I r n are the flip angles of individual pulses. In Ref. 11, we 
proposed the sequence 4501809(j9018018090450 as a composite 
17' pulse for coupled spin systems. For this sequence, 
g = (0,0,0,0,0) exactly. Equation (12) is also exactly satisfied. 

A slight variation of the theory is possible when the 
composite pulse acts on an initial state with a density opera­
tor proportional to /z. In that case, an alternative to requir­
ing that VIOl = 0 is to require that [V(Ol, /z] = O. Then the 
following relationship will hold for some range of couplings: 

U(r) /z U -I(r):::: Urf(r) exp( - iV(Ol r) /z 

Xexp(iV(O) r) Urf(r)-I, (17) 

U(r)/z U-I(r)::::Urf(r)Iz Urf(r)-I. (18) 

The lowest order effects of the couplings disappear. The con­
dition [ VIOl, /z] = 0 is equivalent to the condition V (0) a: Tzo. 
A composite 17' pulse satisfying this condition is the sequence 
18001801201800, with g = (317'/4,0,0,0,0). 

c. Higher order composite pulses 

Higher order composite pulses involve complications 
that do not appear in the zeroth order composite pulses. In 
constructing zeroth order composite pulses, no mention 
need be made of the size of the spin system. This is because 
the coupling Hamiltonians in Eqs. (3) and (4) have Tzo sym­
metry regardless of the number of coupled spins or the total 
spin angular momentum quantum number of each individ­
ual spin. The T20 symmetry is all that is needed to determine 
zeroth order composite pulses. Higher order composite 
pulses must satisfy equations like v(n) = 0 with n > O. The 
term v(n) in the Magnus expansion involves an n-fold com­
mutator of V (t ). It therefore may contain irreducible tensor 
components up to rank n + 2 in the most general case. How-
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ever, the size ofthe spin system places a limit on the rank of 
the tensor components that may appear in Vlnl. For example, 
a system of m coupled spin-l/2 nuclei will have Magnus 
expansion terms with irreducible tensor components of rank 
no greater than m. Similarly, an isolated quadrupolar nu­
cleus with total angular momentum quantum number / will 
have irreducible tensors of rank no greater than 2I in the 
Magnus expansion. As a result, the number of component 
equations in the operator equation V1nl = 0, and hence the 
number of pulses required in the higher order sequence, de­
pends on the size of the spin system. Of course, an upper 
bound on the number of component equations is set by the 
above-mentioned fact that V1nl contains components ofrank 
n + 2 or less. 

D. Characteristics and advantages of the Magnus 
expansion approach 

There are several aspects of the Magnus expansion ap­
proach to constructing composite pulses that are a conse­
quence of the formalism and that distinguish it from other 
possible approaches. One is that the most uniform excitation 
is expected to occur in a range of couplings around zero. This 
results from the power series nature of the Magnus expan­
sion. Approaches that rely heavily on computer simulations 
may lead to composite pulses that give, for example, better 
population inversion at large couplings than at small cou­
plings. 

The Magnus expansion approach treats the composite 
pulse in its entirety, rather than requiring a detailed pulse­
by-pulse analysis. Pulse-by-pulse analyses, along with com­
puter simulations, have produced important results in the 
NMR of isotropic liquids. However, it is difficult to see how 
such an approach would proceed for a coupled spin system 
of arbitrary size. 

The Magnus expansion approach produces composite 
pulses that are equivalent to constant, pure rotations over a 
range of couplings. The design of the composite pulse is not 
geared towards the behavior of a particular initial condition 
of the spin system. This is an important and unique feature, 
since the composite pulses may then be suitable for use in 
various decoupling, line narrowing, echo, multiple quan­
tum, and two-dimensional NMR experiments. In such ex­
periments, rf pulses act on a spin system far from equilibri­
um. Their function is to produce well-defined rotations in 
the spin angular momentum vector space. 

To clarify the last point, suppose a composite 1T pulse is 
constructed with the only requirement being that it convert 
an initial condition of /z to a final condition of - /z for some 
desired range of couplings. This may be done, for example, 
by relying on computer simulations of the population inver­
sion properties alone. The resulting composite pulse then 
must have an overall propagator given approximately by 

U(r) = e - i1Tlx A, (19) 

where [A, /z] = 0, but where A may be a function of the 
coupling strength. An arbitrary initial condition will not be 
transformed in a constant way. In general, this results in 
nonuniform excitation and spectral phase distortions. In fa-

vorable cases, phase distortions may be overcome with mul­
tiple composite pulses.3

,24 

On the other hand, an M th order composite 1T pulse 
constructed using the Magnus expansion with the require­
ment V1nl = 0 for n<.M has an overall propagator approxi­
mately equal to U rf(r), i.e., a constant rotation, over its effec­
tive range of couplings. The transformation of an arbitrary 
initial condition will be independent of the coupling 
strength. 

III. APPLICATION TO TWO-SPIN SYSTEMS 

A. Simulations 

In Fig. 1, we show computer simulations of the inver­
sion performance as a function of dipolar coupling strength 
in a system composed of a pair of equivalent spin-l/2 nuclei 
for the composite 1T pulses presented in Sec. II B. For refer­
ence, the inversion performance of a normal, single 1T pulse is 
depicted as well. The inversion W is defined by 

W= -Tr[/z U(r)/z U(r)-I] 

Tr[I;] . 
(20) 

W is therefore the negative of the final z component of spin 
angular momentum after applying the composite pulse to a 
spin system with an initial z component of + 1. 

It is apparent from Fig. 1 that both the sequence 
450180909018018090450 and the sequence 18001801201800 
provide substantial improvements in inversion performance 
over a single 1T pulse. Good inversion is accomplished with 
couplings that are as large as 2tu 1• These results apply identi­
cally to the inversion of a quadrupolar spin-l nucleus, substi­
tuting 2tuQ flUl for d flU 1 on the abscissa of Fig. 1. 

An interesting feature of Fig. 1 is that 18001801201800' 
derived by the variant of the Magnus expansion approach 
discussed in Sec. II B, gives slightly better inversion for 
small couplings than 450180909018018090450' It is possible 
that the presence of a nonzero ViOl term in Eq. (13), with the 
requirement [ViOl, /z] = 0, truncates the higher order terms 
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FIG. I. Simulation of inversion for a system of two dipole coupled spin-I /2 
nuclei as a function of the ratio of the coupling constant d to the applied rf 
amplitUde CJ),. Inversion is defined by Eq. (20) of the text as the final projec­
tion of spin angular momentum onto the - z axis. Initially, the spin angular 
momentum is aligned with the + z axis and has unit length. Results are 
shown for a single 1Tpulse (dotted line), a 4501809090'8018090450 composite 
1T pulse (solid line), and a 1800180'201800 composite 1T pulse (dashed line). 
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FIG. 2. Schematic representation of the pulse sequences used in the simula­
tions of Fig. 3 and the experiments of Figs. 4,5, and 9. (a) Spins are inverted 
by a 1/' pulse. Single quantum and higher coherences, which are created at 
low rf amplitudes, dephase during a delay of length T. The FID signal after 
the final 1/'/2 pulse is digitized and Fourier transformed to give a spectrum 
that reflects the inversion efficiency of the initial1/' pulse. (b) Same as (a), but 
with a 4501809090'8018090450 composite 1/' pulse in place of the single 1/' 
pulse. A 1800180'201800 composite 1/'pulse may be used as well. 

in the expansion. For example, if V<O) is much larger than VOl, 
then only those components of V(1) that commute with V<O) 
will significantly affect the inversion. Such an effect is remi­
niscent of the "second averaging" technique commonly em­
ployed in multiple pulse line-narrowing experiments in solid 
state NMR. 15,25 

Figure 2 illustrates pulse sequences used to experimen­
tally contrast the inversion performance of composite 'IT 

pulses against that of a single 'IT pulse. Spins initially at equi­
librium are (partially) inverted by a 'IT [2(a)] or composite 'IT 

[2(b)] pulse, During a delay T, coherences other than zero 
quantum dephase, leaving the spin system in a state describ­
able by a density operator that commutes with I z • The free 
induction decay (FlO) signal is then collected following a 'lT1 
2 pulse and Fourier transformed to give the spectrum. Spec­
tral distortions at low rf power reflect imperfect inversion. 
The sequence of Fig. 2(a) is commonly used to study spin 
lattice relaxation.26 Figure 2(b) represents the analogous ex­
periment employing a composite 'IT pulse. 

In Fig. 3, we show simulations of powder pattern spec­
tra resulting from the sequence of Fig. 2(a) applied to an 
isotropic orientational distribution of pairs of spin-l/2 nu­
clei. The usual Pake pattern results from the 3 cos2 

() - 1 
dependence of the dipolar coupling constant on the angle 
between the constant, applied magnetic field and the inter­
nuclear displacement vector. Here the maximum coupling is 
taken to be d /2'IT = 80 kHz. Clearly, the characteristic spec­
tral features are lost as the rf amplitude is reduced. 

In Fig. 3, we also show simulated spectra resulting from 
the sequence of Fig. 2(b). We have merely substituted a com­
posite'IT pulse for the normal 'IT pulse. The spectral distortion 
is dramatically reduced at low rf amplitudes. Using the com­
posite 'IT pulse 1800 1801201800 gives essentially the same re­
sults. 

The slight asymmetry in the spectrum in Fig. 3(f) result­
ing from the composite 'IT pulse requires some explanation, 
since it is generally assumed that the spectrum of a quadru­
polar or dipolar spin system must be symmetric.27 Suppose 
we start with a coupled spin system described by a density 

a b 

II, = 10 MHz II, = 32 kHz 

Single 11'/2 Pulse 

c d 

II, = 32 kHz 

e 

--~~~-­
II, = 20 kHz 

Single 11' Pulse 

'DO kHz 

II, = 32 kHz 

II, = 20 kHz 

Composite 11' Pulse 

FIG. 3. Simulated NMR spectra of an isotropic orientational distribution of 
pairs of dipole-coupled, spin-1/2 nuclei. The maximum coupling is dmax /21/' 
= 80 kHz. 1 kHz line-broadening is added. (a) Spectrum after a single 1/'/2 

pulse, with w,/21/' = V, = 10 000 kHz. Since w,>dmax ' the spectrum is un­
distorted. (b) Spectrum after a single 1/'/2 pulse, with v, = 32 kHz, illustrat­
ing the distortion resulting from a 1/'/2 pulse alone at low rf amplitudes. (c) 
Spectrum resulting from sequence a of Fig. 2 with v, = 32 kHz. (d) Spec­
trum resulting from sequence b of Fig. 2 with v, = 32 kHz. (e) Spectrum 
from sequence a with v, = 20 kHz. (I) Spectrum from sequence b with 
v, = 20 kHz. The characteristic features of the spectrum, which are lost by 
a single 1/' pulse at low rf amplitudes, are preserved by a composite 1T pulse. 

operator I z • When a weak pulse sequence is applied to the 
spin system, the presence of the couplings interferes with the 
action of the applied rf in such a way that the magnitude of 
the expectation value of the spin angular momentum actual­
ly changes. In other words, the magnetization shrinks. The 
density operator evolves into not only a linear combination 
of Ix, I y , and I z, but also into multiple quantum coherence, 
zero quantum coherence (including dipolar order), and non­
observable single quantum coherence. Therefore, the den­
sity operator for the spin system immediately before the final 
weak 900 pulse contains a component of dipolar order.28 It is 
this dipolar order which produces the asymmetry in the 
spectrum in Fig. 3(f). 

The asymmetry is absent in the spectra resulting from a 
single 'IT pulse. We can understand this by proving that there 
can be no dipolar order produced by a 1800 pulse, regardless 
of the rf amplitude. Dipolar order implies that the density 
operator contains a component proportional to V D in Eq. (4). 
The amount of dipolar order is proportional to D, where 

D = Tr[ VD U(T) I z U(T)-l]. (21) 

U (T) is the propagator for the pulse resulting from the Hamil­
tonian ofEqs. (1), (2), and (4), with tP (t) = 0 in Eq. (2). Since 
the trace is invariant to a unitary transformation, we can 

J. Chern. Phys., Vol. 81, No.2, 15 July 1984 



Tycko, Schneider, and Pines: Population inversion in solid state NMR 685 

rotate all the operators on the right side of Eq. (21) by an 
angle 1T' about the x axis without changing the validity of that 
equation. Since that rotation changes /z to - /z and leaves 
all the other operators unchanged we have D = - D, or 
D = O. The proof may be extended to show that no dipolar 
order is created by any pulse sequence in which the rf phase 
only takes on the values 4J and 4J + 1T'. 

B. Experimental results 

In Fig. 4, we show proton NMR spectra of Ba­
(CI03h·H20 powder obtained with the sequences of Fig. 2 
applied at two different rf amplitudes. The delay T in Fig. 2 is 
here taken to be 5 ms. As predicted by the simulations, the 
spectral distortion with weak rfis quite obviously reduced by 
the use of a composite 1T' pulse. 

The spectrum of Ba(CI03h·H20 reflects the fact that 
individual H20 molecules are essentially isolated from one 
another, giving a Pake pattern characteristic of pairs of pro­
tons. The experimental pattern is somewhat distorted from 
the ideal pattern assumed in the simulations by two factors. 
The first of these is the presence of couplings between H20 
molecules. Such intennolecular couplings have the effect of 
broadening each individual transition, as reviewed in Ref. 
29. The second factor is the presence of chemical shift anisot­
ropy. The proton chemical shift anisotropy for H20 in ice 
has been measured to be about 34 ppm.30 We attribute the 

a b 

VI = 63 kHz VI = 33 kHz 

Single ."./2 Pulse 

c 

VI = 33 kHz VI = 33 kHz 

VI = 20 kHz VI = 20 kHz 

Single .". Pulse CompOSite .". Pulse 

100 kHz 

FIG. 4. Experimental proton NMR spectra of Ba(Cl03h·H20 powder. All 
spectra are the averages of 60 scans, with a recycle delay of 30 s. (a) Spec­
trum after a single 11'/2 pulse with v, = 63 kHz. (b) Spectrum after a single 
11'/2 pulse with v, = 33 kHz. (c) Spectrum from sequence a of Fig. 2 with 
v, = 33 kHz. (d) Spectrum from sequence a of Fig. 2 with v, = 33 kHz. (d) 
Spectrum from sequence b of Fig. 2 with v, = 33 kHz. (e) Spectrum from 
sequence a with v, = 20 kHz. (f) Spectrum from sequence b with v, = 20 
kHz. The principal features of the simulations of Fig. 3 are reproduced. 

sharp peak in the center of the Ba(CI03h·H20 spectra to 
residual protons and to H20 molecules that are free to reor­
ient rapidly and isotropically. 

The delay T of 5 ms was chosen to be long compared to 
the dephasing time of transverse magnetization (T2 ) but 
short compared to the spin-lattice relaxation time (Til. TJ in 
Ba(CI03h·H20 at room temperature is approximately 10 s. 
Measurements of Tid' the relaxation time for dipolar order, 
using the Jeener-Broekaert technique,28 indicate that Tid is 
about equal to T I • Hence, we expect to see a slight asymme­
tric distortion in the composite 1T' pulse spectra in Fig. 4 at 
low rf amplitudes, as discussed in Sec. III A. This is ob­
served. 

Similar experimental results to those in Fig. 4 were ob­
tained using the 18001801201800 sequence. All experiments 
were performed on a homebuilt NMR spectrometer operat­
ing at a proton frequency of 362 MHz. 31 The spectrometer is 
capable of giving rf pulses with four adjustable phases. Pulse 
gating and phase generation occur at an IF frequency of 30 
MHz. Phase adjustments were done with a HP8405A vector 
voltmeter. No elaborate tune-up procedures were used to 
refine the phase or amplitude settings of the four pulse chan­
nels. Pulse lengths were calibrated by searching for a null in 
the FID signal from a small H20(/) sample following a train 
off our equal pulses. This technique allows pulse lengths cor­
responding to flip angles of any multiple of 1T'/4 to be set. 

C. Compensation for rf inhomogeneity 

Unless we use a sample that is much smaller than the 
excitation coil of the NMR probe, the sample sees a spatial 
distribution of rf amplitUdes. In addition, the technique for 
setting pulse lengths described above involves changing 
from one sample to another. For both reasons, it is difficult 
to set the lengths for the individual pulses in a composite 
pulse accurately; it is important that the composite pulse be 
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FIG. 5. Inversion for an isolated nucleus as a function of the ratio of the 
actual rf amplitude llJ, to its nominal value llJ~. This illustrates the principal 
effect of rf inhomogeneity or of misca1ibrated pulse lengths on the perfor­
mance of composite 1I'pulses. Results are shown for 4501 809090'80450 (simu­
lations in solid line, experiments in circles) and for 18001801201800 (simula­
tions in dashed line, experiments in triangles). Experimental data was taken 
using sequence b of Fig. 2, with the pulse lengths in the composite 11' pulse 
deliberately misset to mimic rf inhomogeneity. A small H 20,/) sample was 
used. Inversion was measured from the peak height in the NMR spectrum. 
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insensitive to pulse length errors, or equivalently to rf in­
homogeneity. 

We have previously reported that the sequence 
18001801201800 compensates for rf inhomogeneity to zeroth 
order, in addition to its performance as a composite 1T pulse 
in coupled spin systems. 11 The 450180909018018090450 se­
quence also proves to be insensitive to rf inhomogeneity, par­
ticularly when the rf amplitude is less than its nominal value. 
Experimental data for the inversion performance of the two 
sequences as a function of the ratio of actual pulse lengths to 
nominal pulse lengths are presented in Fig. 5. 

The data in Fig. 5 were obtained with a H20(l) sample, 
i.e., with nO couplings. Thus, we see the effect of rf inhomo­
geneity alone on the inversion performance. The interaction 
of rf inhomogeneity with couplings is a higher order effect 
which we do not consider here. 

IV. APPLICATION TO MANY-SPIN SYSTEMS 

A. Simulations 

The results of Sec. III indicate that zeroth order com­
posite 1T pulses can produce 1T rotations over a much larger 
range of couplings than a single 1T pulse in two-spin systems. 
This is important because, even in a many-spin system, the 
strongest couplings may be arranged in pairs, for example as 
methylene groups in an organic solid. The fact that the two-
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FIG. 6. Simulations of inversion as a function of the ratio of the nearest­
neighbor dipole coupling constant d to the rf amplitude lU, for three possible 
systems of coupled spin-1I2 nuclei. Results are shown for a single 1T pulse 
(dotted lines), a 4501809090'8018090450 composite 1Tpulse (solid lines), and a 
1800180'201800 composite 1Tpulse (dashed lines). (a) Three spins in an equi­
lateral triangle. (b) Four spins in a square. (c) Six spins in a row. Coupling 
constants are taken to be proportional to Tij- 3, where Tij is the distance 

between nuclei i andj. 

spin results apply identically to quadrupolar spin-l nuclei 
makes the composite 1T pulses of obvious importance in deu­
terium and 14N NMR as well. 

Coupled spins occur in other configurations, however. 
For composite 1T pulses to be of general use in solid state 
NMR, they should provide an advantage over a single 1T 

pulse in an arbitrary coupled system. Therefore, we investi­
gate the inversion performance of composite 1T pulses in sys­
tems of more than two coupled spin-l/2 nuclei. 

In Fig. 6, we present the results of computer simula­
tions of the inversion performance of the 
450180909018018090450 and 18001801201800 composite 1T 

pulses, as well as that of a single 1T pulse, in three different 
spin systems. The spin system of Fig. 6(a) consists of three 
spin-l/2 nuclei arranged in an equilateral triangle perpen­
dicular to the applied constant magnetic field so that all di­
pole coupling constants are equal. Figure 6(b) represents a 
system of four spin-l/2 nuclei in a square, again perpendicu­
lar to the applied field. The coupling constants are taken to 
be proportional to rij 3, where rij is the distance between 
nucleus i and nucleus j. The spin system of Fig. 6(c) is a 
straight row of six, equally spaced spin-l/2 nuclei. Again, 
the coupling constants are proportional to r ij 3. 

In all cases considered, both composite 1T pulses give 
better inversion than a single 1T pulse over some range of 
couplings. Generally speaking, the 450180909018018090450 
sequence is the more effective of the two. Note that the range 
of nearest-neighbor couplings over which good inversion is 
achieved is substantially smaller than in the two-spin case, 
for the single 1T as well as the composite 1T pulses. 

B. Experimental results 

Experimental spectra resulting from the sequences of 
Fig. 2 applied to a single crystal squaric acid (C40 4H 2) sam­
ple are shown in Fig. 7. In the crystal, squaric acid molecules 
are arranged in planes in such a way that the hydrogen nu­
clei, or protons, form chains perpendicular to the molecular 
planes. The spacing between adjacent protons in a chain is 
known to be 2.636 A.32 Squaric acid has been the subject of 
NMR 33,34 and other studies,35 in partiCUlar due to the obser­
vation of a structural phase transition at 370 K which exhib­
its critical behavior suggestive of a two-dimensional system. 
We chose squaric acid for demonstration purposes because it 
is a true many-spin solid, yet there is resolved structure in its 
proton NMR spectrum. 

As shown in Fig. 7, spectra resulting from the sequence 
of Fig. 2(b) have greater overall intensity at low rf amplitUdes 
than those resulting from the sequence of Fig. 2(a). This sup­
ports the conclusion of Sec. IV A that the 
45018°909018018090450 sequence produces betterinversion in 
a many-spin, coupled system than a single 1T pulse. 

We emphasize that the spectra in Fig. 7 are from a sin­
gle crystal, although they superficially resemble a powder 
pattern. In a powder pattern, as in Fig. 4, the features of the 
spectrum furthest from the center result from spins with the 
largest couplings. Therefore, those features are lost first due 
to poor inversion at low rf aamplitudes. The squaric acid 
spectrum, on the other hand, is the product of an essentially 
infinite network of coupled spins, with the strongest cou-
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a b 

II, = 63 kHz II, = 20 kHz 

Single 7T/2 Pulse 

c d 

_fWl_ 
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II, = 20 kHz II, = 20 kHz 

II, = 15 kHz 

Sing Ie 7T Pulse 

'00 kHz 

II, = 15 kHz 

Composite 7T Pulse 

FIG. 7. Experimental proton NMR spectra of a squaric acid crystal. All 
spectra are the averages of 20 scans, with a recycle delay of 30 s. The narrow 
peak to the right of center of each spectrum results from residual protons. 
Its displacement from the center is due to the large chemical shift of squaric 
acid, approximately 20 ppm with respect to TMS at this orientation. (a) 
Spectrum after a single rr/2 pulse with VI = 63 kHz. (b) Spectrum after a 
single rr/2 pulse with VI = 20 kHz. Low rf amplitude results in a loss of 
intensity from the center of the spectrum. (c) Spectrum from sequence a of 
Fig. 2 with VI = 20 kHz. (d) Spectrum from sequence b of Fig. 2 with 
VI = 20 kHz. (e) Spectrum from sequence a with VI = 15 kHz. (f) Spectrum 
from sequence b with VI = 15 kHz. Use of the composite rr pulse results in 
greater overall intensity, reflecting a more complete inversion. 

plings occurring along chains. Each of the individual, unre­
solved transitions that make up the spectrum is a transition 
of the spin system as a whole, so that it should not be expect­
ed that the outer spectral features would be attenuated at low 
rf amplitudes. 

For the squaric acid experiments, we used a 'T of 5 ms. 
The crystal was doped with chromium to reduce the proton 
TI to approximately lOs. The crystal was oriented with the b 
axis31 parallel to the static magnetic field. In this orientation, 
the proton chains are parallel to the field, giving the stron­
gest possible couplings. 

V. CONCLUSION 

We have demonstrated that the Magnus expansion pro­
vides a useful means for constructing composite pulses for 
solid state NMR. The 450180909018018090450 and 
18001801201800 composite 11" pulses both yield significantly 
better population inversion at low rf amplitudes than a single 
11" pulse in two-spin systems; the 450180909018018090450 se­
quence also provides an advantage in many-spin systems. 

An obviously important application of the composite 11" 

pulses presented above is in inversion-recovery measure-

ments of spin-lattice relaxation. 1,26 Complete population in­
version is crucial, particularly if the relaxation time is ex­
tracted with the null point method. Techniques for obtaining 
two-dimensional, dipolar-chemical shift spectra in so­
lids27,36,37 may profit from composite 11" pulses as well. Com­
posite 11" pulses may also be applied to the generation of indir­
ectly induced spin echoes,38 or as refocussing pulses in solid 
state multiple quantum NMR experiments.39 

We have given examples of zeroth order composite 
pulses only. As presented in Sec. II C, the derivation of high­
er order composite pulses for solids is a large computational 
problem which will require more sophisticated numerical 
methods than we have yet employed. It is possible that sym­
metry conditions can be found that cause some of the com­
ponent equations to be satisfied identically, reducing the size 
of the problem. 

The approach discussed in this paper may be used to 
construct composite 1T/2 pulses for solid state NMR as well. 
Composite 11"/2 pulses and their applications are currently 
being investigated. 
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APPENDIX 

In this Appendix, we discuss the symmetry of the re­
sponse of a coupled spin system to a pulse sequence with 
respect to the overall sign of the coupling constants. We 
make use of the time reversal operator K whose properties 
are extensively discussed in many texts.40 K is an example of 
an antilinear, unitary operator. The properties of K that are 
of relevance here are 

KiK- 1 = -i, 

Klj K -I = - ~, j = x, y, z, 

(nl(K 1m») = [(nIK)lm) ]*. 

(AI) 

(A2) 

(A3) 

Note that Eq. (A3) implies that the parentheses in the inner 
product can not be disregarded, as they can for a linear oper­
ator. 

The significance of K in the problem of symmetry is 
apparent from a consideration of the following equation: 

KU(t)K- 1 = Texp-i f dt'(~rf - V), (A4) 

where U (t ) is the propagator in Eq. (5) of Sec. II. Here we rely 
on the fact that ~ rf is a linear function of angular momen­
tum operators, while the coupling Hamiltonian Vis bilinear. 
Thus, the time reversal transformation has the effect of 
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changing the sign of all coupling constants without changing 
the applied radiation. 

The response of a spin system may be calculated in the 
form of traces of products of linear operators. It is well 
known that the trace of a linear operator is unchanged by a 
linear, unitary transformation. For antilinear, unitary trans­
formations such as K, the trace is converted to its complex 
conjugate. We prove this by writing the trace of a trans­
formed linear operator A in the following way: 

(A5) 
n 

The summation on the right-hand side ofEq. (A5) is over any 
complete, orthonormal basis of states In). Using the com­
pleteness of that basis and Eq. (A3) we get 

n,m,p 

Tr(KAK -I) = L [(nIK)lm)(ml A I p)(pl(K -lln»)]*. 

(A6) 

Rearranging the order of the factors, and again using Eq. 
(A3) and the orthonormality and completeness of the basis, 
the right-hand side of Eq. (A6) becomes 

L [(mIA Ip)8m • p ]*= [Tr(A)]*. (A7) 
m.p 

This is the desired result. 
We are specifically concerned with expressions for ex­

pectation values of the form 

Tr[Bp(t)] = Tr[BU(t)p(O) U(t)-I], (AS) 

where B is a Hermitian operator. p(O) is the initial density 
operator, describing the spin system before the pulse se­
quence contained in U (t) is applied. Sincep(t) is also Hermi­
tian, the trace in Eq. (AS) is a real number. Then 

Tr[Bp(t)] = Tr![KBK-I][KU(t)K-I] 

X [Kp(O)K-I][KU(t)-1 K-I]j. (A9) 

This equation contains the symmetry information. In the 
most common case, p(O) = /z. Equation (A9) then states that 
the expectation value of any spin angular momentum com­
ponent after any applied pulse sequence is unchanged by a 
change of the overall sign of the spin couplings, as a result of 
Eqs. (A2) and (A4). Similarly, the expectation value of any 
bilinear function of angular momentum components does 
change sign when the overall sign of the couplings is 
changed. No special symmetry restrictions need be placed 
on the applied pulse sequence. 

Obviously, the foregoing discussion applies to an arbi-

trary sequence of rf pulses and delays, not merely to compos­
ite pulses. The only requirement is a bilinear internal Hamil­
tonian. 
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