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Recently, novel double- resonance techniques have been 
developed for high sensitivity and high resolution NMR of 
dilute spins in solids. 1-5 The basis of one set of these 
experiments is the transfer of nuclear magnetic polar­
ization from one nuclear species (I), normally protons, 
to a dilute species (8) such as 13C, under study, and the 
application of high power spin decoupling. 6-8 A prime 
candidate for application of the techniques is the deter­
mination of full 13C chemical shielding tensors in organic 
single crystals. 9- 11 An important consideration in the 
design and efficiency of such experiments is that of the 
dynamics of the polarization transfer from the I to the 
8 systems since this ultimately determines the sensi­
tivity enhancement, the time scale accessible, and thus 
the range of possible systems that can be studied. In 
this communication we present preliminary results on a 
study of cross-polarization dynamics by direct observa­
tion of the dilute nuclear spins, and an approach to "total 
cross-polarization" . 

To make the problem more concrete, Fig. 1 shows a 
schematic of the general approach. Two extreme cases 
may be considered: "multiple cross-polarization" and 
"total cross-polarization". In the first, a small amount 
of I polarization is transferred to the 8 spins and the 
cycle is repeated many times as indicated, with the 8 
signal being accumulated. In the second, all or a sub­
stantial amount of the I polarization is transferred "in 
one shot"4 and the experiment and observation of the 8 
spins are performed once per I repolarization. It is not 
clear that the second approach is advantageous, since 
the dynamics of the cross-polarization may render the 
process slow and technically difficult. However, for 
experiments that require long observation times of the 
8 spins, such as long-lived spin echoes or very high res­
olution spectroscopy, the multiple cross-polarization is 
clearly not possible, since it requires the expenditure 
of rf power and the maintenance of I spin order for un­
realistically long times. Thus it is clear that a quanti­
tative understanding of the process is a mandatory pre­
requisite for the development of these experiments. 

The present experiments were performed on a small 
sample of solid polycrystalline adamantane. Cross-po­
larization occurs from a proton system demagnetized in 
the rotating frame. 12 This approach is selected since 
the analysis is simple and the technical requirements 
for total cross-polarization are not too stringent. The 
mechanism for the cross-polarization derives from 
fluctuations in the 1-8 magnetic dipolar coupling due to 
mutual spin flips amongst the I spins. 13 If the 8 field is 
turned on adiabatically in the cross-polarization step, 

the maximal 8 polarization aChievable is given by 

M~ax = (Yr jys) (Nr /NS)1/2 M~O) , (1) 

where Y and N are magnetogyric ratios and numbers of 
spins, and M~O) is the normal 8 polarization when the 8 
spin system is in equilibrium with the lattice. We found 
a maximal polarization of X15 due to the proton dipolar 
spin-lattice relaxation at 23°C. 

The cross-polarization times were obtained by observ­
ing the intensity of 13C signals, for various 13C irradia­
tion times T after adiabatic demagnetization of the pro­
ton system in the rotating frame. Both the magnitude of 
the polarization and the cross-polarization times depend 
on the magnitude of the 13C rotating HI field and on fre­
quency. The combined effects of loss of proton spin or­
der in the demagnetized state due to dipolar spin-lattice 
relaxation and cross-polarization can be accounted for 
theoretically yielding cross-polarization times at var­
ious 13CH1 fields. A plot of Ti~ vs HI is shown in Fig. 
2 and is exponential over the whole range: Ti~ 
o:expi- YH1 T c), in agreement with the 43Ca_19F work of 
McArthur et al., 13 showing that the Lorentzian correla­
tion function for the dipolar fluctuations is probably a 
common one. 14 The correlation time Tc is -140 IJ.sec. 
Details will be published separately. 

The magnitudes of the total cross-polarization times 
(- secs) and the polarization achievable indicate that this 
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FIG. 1. General schematic of cross-polarization experiment. 
(a) shows the abundant I and dilute S nuclear species coupled to 
each other and to the lattice with characteristic times TIS 
(cross-polarization times) and Tn. TIS (spin-lattice relaxation 
times). (b) shows the general approach. 
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FIG. 2. Dependence of inverse cross-polarization time Tts 
on rotating 13C HI field at resonance, in solid polycrystalline 
adamantane. 

should be a powerful way of effecting sensitivity enhance­
ment for NMR of dilute spins, and should permit serious 
savings in the expenditure of rf power. The experiments 
were performed on a homebuilt double-resonance spec­
trometer to be described in detail elsewhere. The pro­
ton frequency was 106 MHz and adiabatic demagnetiza­
tion times from HI fields of several gauss ranged from 

1-10 msec. We are grateful to Professor J. S. Waugh 
for valuable discussions and for communicating to US 

preliminary results of his recent work. 
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