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We present a special case of the theory of coherent isotropic averaging in zero-field NMR, given in
part | of this work. In a zero external field, combinations of the magnetic-field pulses restricted to
712 rotations along the three coordinate axes can selectively average internal spin Hamiltonians
while preserving the intrinsic invariance of the spectrum with respect to the sample orientation.
Compared with the general case, the limits of the allowed scaling factors of first- and second-rank
interactions are slightly reduced. For instance, time reversal is possible for second-rank tensors with
a —1/5 scaling factor, instead of1/4 in general. Finite pulse compensations are analyzed and
experimental illustrations are given for two optimum time-reversal sequences. The cubic sequences,
though less efficient than the icosahedral sequences, are technically more feasible and may be used
in zero-field experiments such as decoupliy rank or nuclear specigstime reversal or
multipolar experimentsgthe zero-field equivalent of multiple-quantum NMR® 1995 American
Institute of Physics.

I. INTRODUCTION for example, it is required that the coherent process as a
whole preserves the isotropic behavior of the system. As
One of the main causes for the broadening of the NMRshown in the first part of this work the manipulations al-
transitions observed on powdered or amorphous solids is thewed under this general constraint are scalings of the inter-
anisotropy of the local interactions due to the truncation byactions. The accessible range of scaling factors, depending
Usua”y much Stronger Zeeman fléIaThe broadening limits on the rank of the interactionsl was deduced from group-
the resolution and can be removed by various coherent aveheoretical arguments. In the homonuclear case, the ranges of
aging techniqués’ (as MAS! WHH,® DAS® DOR,’ ..)), of  scaling factors for first- and second-rank tensors were found
by observing the spin couplings in a zero external ffeld. g pe limited from—1/3 to 1, and from—1/4 to 1, respec-
the zero-field NMR techniqu&F-NMR) there is no Zeeman tjyely. Various combinations of scaling factors can be real-
field to truncate the local interactions so there is no privi-jzed for experiments such as rank-selective decoupling.
leged orientation of the crystallites of the sample with re- | that general theory, no constraints whatsoever were

spect to the laboratory frame. 2 imposed on the magnetic-field trajectories. However, in order
Coherent averaging techniqties standard NMR Spec- 1, gptain all the optimal scaling factors, the simplest se-

troscopy(here called “high-field” NMR, or HF-NMR have o ,eces had to be of icosahedral symni&twith the tech-
e_llso made possible a wide range of Ham|lt0n_|an manipulag;c.) implementation of these sequences rather demanding.
tions, and led to the development of new experiments such ag,, have now investigated the allowed isotropic scaling

. 11 . _
time re_verse‘ﬂ’ and_ multiple-quantum NMR' Coherent schemes under the circumstances where the magnetic field
averaging schemes in ZF-NMR have so far seldom been ex- . o

ulses are constrained to some specific axes and angles, and

plored, and that was for the purpose of spin decouplini o . .
only1314 Following a preliminary communicatidhwe re- pecifically, in the more practical case #f2 pulses along
: i : . three orthogonal axesX, Y, and Z in the laboratory
cently presented a first part of this watkwhich was the 130400 . . .
frame:>~"This is important, since the simplest experimental

general theory of coherent isotropic scaling in ZF-NMR. D t i tic field oul ; directi
This theory may be used to design new investigation meth=StUP "0 generate magnetc Tield puises in any direction con-
ods such as the “multipolar ZF-NMR,” a zero-field analog sists of three orthogonal coils. The aim of this work is thus to

of multiple-quantum NMR in a high fielf analyze the corresponding set of allowed scaling factors,

The general concept of isotropic coherent schéfriés both in the &pulse limit a.nd for finite-length pulseg. Two
was introduced to preserve one of the fundamental propertid&Se€ful €xamples, the optimum time reversal for first- and
of the spin Hamiltonian in ZF-NMR: The energy levels of seconq-rank mtgrachons, are explicitly examined and corre-
the effective Hamiltonian should be independent of the crysSPonding experimental results are shown. Other cases of
tallite orientation with respect to the laboratory frame. Al- Scaling can be derived from the principles established in
though some privileged orientations may exist in the laborathese examples. All the experiments were carried out on a

described in the first part of this wolR pulse precision and

_ _ stability had to be carefully controlled. Indeed, zero-field se-
dPresent address: 5, rue Saint Denis, 92100 Boulogne, France.

PPresent address: Radiospectroscopy Division, Institute of Nuclear Physicguences contain more pUIS?S than their analogues in high-
Radzikowskiego 152, 31-342 Krakp Poland. field, and must be recycled in order to reduce the effects of
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eddy currents, finite pulse lengths, and higher-order correazept for the special case @f=0, sequences involving just
tions to the average Hamiltonian. one of these sets only will not be isotropic, although overall
In the following we shall assume that the reader is fa-isotropic behavior may be achieved by combining the con-
miliar with the concepts introduced in the first part of this figurations from different sets.
work,*® but we briefly summarize the main results to be used.  To analyze the accessible range of scaling factors, it is
The experiment is performed in a zero field by applying aconvenient to introduce the highest symmetry allowed for
series of dc-magnetic-field puls¢B;}, which modulate the the system, namely the cubic symmetry. Let us assume that
full, untruncated spin Hamiltonian of the system. In the first-{R;} is an isotropic sequence involving some subset of the
order average Hamiltonian thedhthe coherent averaging cubic groupO and yielding some combination of scaling
scheme is described by a trajectory of configuratifRg,  factors (;,k,). Then the symmetrized version given by
defined in S@B). The rotationsR; are deduced from the {g-R;-g~ !}, whereg spans the entir® group, will also

magnetic-field pulse®; according to give the same scaling factors, because the distribdtignis
unchanged. We thus obtain all the possible allowed scaling
Ri=(P;-Pi_y- -» -P,-P)"1 or Pi=Rfl~Ri71, factors bycombining complete classes of cubic configura-

(0] tions to build sequences. Such sequences, which are invari-
ant under grou®, will therefore be termed cubic.

The analysis of the isotropy constraint for cubic se-
guences based on the general formalism as given byZq.
is not very convenient. Instead of the spherical irreducible
| tensor basis, we shall use the Cartesian tensors, which are
(@)Y (m))i=0, 2) more appropriate for cubic symmetry and have already been

for any A and u, where EA<2l and —\<p=<\. The,,, introduced in previous analyses of zero-field decoupling

are the spherical harmonics, tik are the generalized char- sequences? The Hamiltonian is expanded in terms of the

acters of the Wigner matrices, and thg brackets stand for three spin operator, v, andl for each nucleusi, where
the average overr. Then the scaling factor is given by the directionsX, Y, andZ are the three fixed laboratory axes.

In the presence of residual fiel¢first-rank interactionsand
k|=<X|(wi)>/(2| +1), 3) spin—spin dipolar couplingésecond-rank the Hamiltonian
becomes

and can be defined by their total rotation anglesand their
rotation axesy; . For interactions of rank, the isotropic con-
straint on the averaging process is fulfilled if and only if

wherey is the character of thith-order Wigner matrix. An

important feature of Eq.3) is that the scaling factor is inde-

pendent of the rotation axes trajectdry}, and involvesw;} H= 2 AU+ 2 Bi”ﬁ' g%, (5
only. For first- and second-rank tensors this yields au apu<v

ki=(2(cosw;)+1)/3, (489  wherea andg stand forX, Y, andZ, and the coefficientd!,
andB,; depend on the strengths of the interactions and the
k2=(4<cosz w;)+2(cosw;)—1)/5. (4b) orientations of the principal axes in the laboratory frame.

. _ . ~ Since the dipolar coupling is a second-rank ten&f; is
Isotropic sequences in whiehtakes only one valuéspheri-  symmetrical and traceless with respect#6.*® Thus the bi-

cal sequencesan be generated using an icosahedral distrifinear terms can be expanded over the following second-rank
bution of {n;}. Then, by combining spherical sequences ofcartesian tensors:

different w values, the set of all the allowed scaling factors
can be constructed.

aa=191"—1"1"/3, (63
Il. CUBIC &PULSE SEQUENCES

In the previous problem of general isotropic scatfhig af=lglp+1gl%. (6b)

was necessary to examine so-called spherical sequences that

involve only one value ofv (which can take any value be- Since XX+Y Y+ZZ=0, the threeaa tensors are not inde-
tween 0 andm). Then the analysis of the allowed scaling pendent and the sixa and a3 tensors do span a five dimen-
factors for arbitrary isotropic trajectorig®R;} was carried sional space, as expected for a second-rank representation.
out on the equivalent schemes that were obtained as combive use the shorthand notatiento denotel &.. This notation
nations of spherical sequences characterized by the same ddisplays some ambiguity since the symbXlisY, andZ rep-
tributions ofw values and weight&y;}. Now we are going to  resent both the coordinate axes and the first-rank tensors but
apply the same approach to our present problem, which is theontext should make the distinction clear. In this description
case of sequences involving2 pulses along the three coor- the effects of rotations belonging to the cubic group are con-
dinate axes. This restricts the set of accessible configurationeniently described by permutations within each of the

to the cubic subgroup of S8), so a trajectory will be a aa, andaf sets. In other words, this is a decomposition of
subset{R;} of the 24 elements of the cubic group. Here, the first- and second-rank tensors into irreducible representa-
there are only four discrete values efallowed, at 0,7/2,  tions of the cubic group. A table of all the transformations
273 and, with 1, 6, 8, and 9 elements, respectively. Ex- has already been publishédThe first-rank tensors behave
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TABLE |. Scaling factors of the various terms of spin interactions averagedTABLE Il. Scaling factors of four nontrivial, cubic, isotropic sequences that
over cubic-group classes. The classes are labeled by the total angle rotatiemplore only two cubic classes. The combination of the classes defined by

w and contaimn elements(the two classes ab= are distinguished as
and 7'). First-rank interactiongassociated with the irreducible representa-
tion F,) are always isotropically scaled by factio;. Second-rank interac-
tions can be decomposed over the and a8 type tensors(irreducible
representation& and F,), respectively scaled bl,, andk,z. The & de-

, andw, with weights\; and\, give isotropic scalings of first and second-
rank interactions given by, andk,, respectively. The points representing
the sequences in the ,k, plane are shown in Fig. 1. Thd is the total
number of explored configurations in the sequences.

scribes the isotropy imbalance with respeckio the isotropic contribution Point

of the classes to the second-rank scaling factor. wy M w, A N ky k, (Fig. 1

© n Ky K, Kap K, 5 2 35 203 25 14 15  -1/5 D
273 8/11 T 3/11 11 -1/11 -1/11 E

0 1 1 1 1 1 0 - 1/5 ' 4/5 9 -1/3 1/5 c

72 6 1/3 0 -1/3 -1/5 +1/5 2 1/2 P 1/2 12 0 0 F

273 8 0 -1/2 0 -1/5 -3/10

T 3 -1/3 1 -1/3 1/5 +4/5

7' 6 -1/3 0 1/3 1/5 -1/5

as anF, representation, and the second-rank tensors are de-

composed intoE and F, representations fora and af,
respectively®

difference between thea or af scalings with respect th,
provides thdsotropy imbalancehat has to be compensated.
The isotropy imbalance, defined as

o= kaa_kz (9)

is given in Table I, together witky, K,,, andk,z. To gen-

The analysis of an arbitrary cubic sequence is now sim€rate an isotropic cubic sequence, it will thus be necessary to
plified: The effect of a pulse on the Hamiltonian is given by combine different classes, arvalues, in such a way that
a linear transformation which i_s a cubic representation (8(w)),=0. (10)
D(R)), and the first-order averaging is performed over the

complete classes defined by the. In the following deriva-
tion, we shall use notatioR,; , wherew labels the class of
the configuration, whereas indéxs now restricted to label
R, inside classw. The first-order average Hamiltonian can
then be written

(H)=2 AUDRIIGNT 2 BuxDRuIIR),
@)

and for each irreducible representation, for instanceaifige
this yields

(D(Ry)aa)i,=(D(R,))wiaa=((D(R,i))),ax

=<kaa(w)|d>waa=<kaa(w)>waa1 (8)

whereld is the identity matrix. The fact that class averages

induce scalings of each of thés, aa’s, or aB's is a conse-
quence of Schur’'s Lemm&[indeed(D(R,,;)); commutes

with any D(R) in the groug. In consequence, because of

different scaling factors for the twaa and B representa-

tions, the second-rank tensors are not isotropically scale
whereas the first-rank ones always are. We recall that und
icosahedral symmetry the scaling for both first- and second:

rank tensors was always isotropfcFor each of the five

d

Once the conditiort10) is fulfilled, the differencek,z—k; is
automatically compensated; it is always proportionaléto
and of the opposite sign, since the isotropic scaling factor is
given by the trace ob:k,=(2k,,+3k,z)/5.

Starting with one class, the simplest way to compen-
sate for the imbalancé(w) is to add another class whose
imbalance has an opposite sign. The weights associated with
such combinations may not be equal, but since they are al-
ways positive, the combined classes should have opposite
signs of 4. Inspecting Table I, we find four possible combi-
nations only(excluding the trivial identity clagswhich are
listed in Table Il. Except for the full decoupling sequence
which combines ther/2 and#’ classes, these sequences are
optimal, since each displays the smallest spamand is
thus the closest to the general theoretical liffitdny other
isotropic cubic sequence will be built from a combination of
such sequences, so the allowed scaling factor combinations
are obtained as the convex envelope of the discrete optimum
values in the K ,k,) plane. This is illustrated by the shaded
area in Fig. 1. The reduction of the accessible scaling factors
due to the cubic constraint is not excessive compared to the
limits of general isotropic schemé&$in the important cases

drf rank-selective decoupling and time reversal, the restric-

$lons with respect to the general case are as foll@ses Fig.

1):

cubic classes Table | summarizes the various scaling factor§l) Range of scaling factors fdr=1 tensors while decou-

which can be computed explicitly from the table of cartesian

tensor transformatio$ or from the character table of the
cubic groupt®
The scaling differences between the and af repre-

sentations account for the anisotropy of cubic sequences for

pling =2 interactions:k;=—1/6 to 1/3, instead of
—(y5—1)/6 to ({5+1)/6;
(2) Range of scaling factors fdr=2 tensors while decou-
pling | =1 interactionsk,=—1/8 to 2/5, instead of-1/5
to 2/5;

second-rank tensors. The general theory of isotropic scalin@) No change at all for the optimum time reversallefl

provides a useful guide for combining different classes in an

isotropic manner. The contribution of eaehvalue to the
isotropic scalingk, is actually given by Eq(4b), so the

tensors, withk;=—1/3, andk,=1/5;
(4) Optimum time reversal of=2 tensors withk,=—1/5,
instead of—1/4 (while k;=1/5, instead of 1/8
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FIG. 2. Schematic network characteristics of the 24 configurations of the
cubic group(regrouped into five cubic clasgaesith the /2 pulses connect-

ing them. Large circles stand for the cubic configuratiish their number

in parenthesgswhile small circles indicate the number @f2 paths con-
necting two classes. The number of paths per configuration is also shown by
the class circles. This diagram allows us to design effective trajectories
exploring the desired configurations and/or paths according to the cubic
symmetry.

FIG. 1. Allowed combinations of isotropic scaling factors for firdt=1)
and second¢l =2) rank interactionsk, andk,, are restricted to the shaded
region of the kq,k,) plane for cubicé-pulse sequences. Various useful
combinations of scaling factors are allowéd) decoupling ofl =2 interac-
tions, with scaling off =1 tensors by—1/6 to 1/3;(B) decoupling ofl =1 irreducible representations in the space of second-rank ten-
interactions, with scaling df=2 tensors by-1/8 to 2/5;(C) optimal time- sors(E. . E_. andF) and. accordinaly. with three different
reversal scaling foF=1 interactions withk,=—1/3, andk,=1/5; (D) opti- .( | - I'i ! f ) . ,ld' g.y’d d imbal

mal time-reversal scaling fdr=2 interactions withk,=1/5, andk,=—1/5; partial scaling factors yielding tWO_ n e.pen ent imbalance
(E) optimal time-reversal scaling for both=1 and| =2 interactions with ~ parameters. In general, three configurations are then needed
k;=k,=—1/11. (F) decoupling of bothi=1 and|=2 interactions with  to restore the isotropy and, as expected, the optimum se-

k1:k2:O:The isotropic scaling comblnatloqs associated withstfzand quences are eventually found to coincide with the cubic
2m/3 configurations that belong to the cubic group are also shown. For

comparison, the set of allowed combinations for unconstrained isotropiSCh€mes explored above.
schemes is shown in light grey. As explained in Sec. Il and listed in Table I,

the D, E, and F points are obtained as the weighed averages af2hend
27/3, the 27/3 andr, and then/2 and#’ configurations, respectively. lll. FINITE PULSE COMPENSATION OF CUBIC

SEQUENCES

As discussed in part’f the pulse compensation of iso-
tropic schemes refers to the elimination of any anisotropic
effects that might be introduced by the finite length of the

Explicit cubic sequences can be obtained after choosingulses. Compared with thé&pulse limit, the scaling factors
a path to explore the various configurations. For #gulse  may be somewhat affected by the compensation for the finite
sequences, the order is usually irrelevant and since all thgulse lengths, but the isotropic behavior has to be preserved.
configurations are connected by a network 02 pulses, As already illustrated® a continuous line of configura-
there is a wide range of possibilities. Some examples fotions inside S@B) is explored during a pulse of finite length,
decoupling and time reversal were previously givernn  and the average of the Hamiltonian over this path has to be
practical situations, where the finite pulse lengths have to bincluded into the global average, as in E(®.and(3). Now,
taken into account, the path has to be chosen more carefullif. a s-pulse sequence exhibits a cubic symmetry, i.e. if the
We present some explicit pulse sequences in the discussiafiscrete set of explored configurations is a union of complete
of experimental examples in Secs. IV and V. cubic classes, the version obtained by introducit®) pulses

Within the framework of orthogonat/2 pulses only, one  of finite length may no longer exhibit this symmetry. For the
may wonder if the constraint of cubic symmetry of the tra-cubic symmetry to be fulfilled, the set of configurations in
jectory is mandatory, i.e., if the configurations have to beSQ(3) has to be invariant under any cubic rotatign
explored by whole cubic classes. If not, simpler sequences _
coEId be ogtained using, for instance, subgroSps of tﬂe cubic {R}—{g-Ri-g™"}. (1)
group. Of course, the symmetry arguments presented aboviéhis means that if anyr/2 path between two cubic configu-
would not allow any improvement of the performance of therations is used in a sequence, then all the ot paths
sequences as far as scaling factors are concerned, but shortennecting the classes of those configurations have to be
sequences could be expected. However, with smaller symmesed as well, the same number of times with the same mo-
try groups the number of irreducible representations in theion profile (i.e., the same pulse shapes have to be used in the
subspace of second-rank tensors increases. It follows froriree X, Y, and Z coils). For instance, the optimum time-
the general principle of anisotropy compensation by combireversal sequence for second-rank tenggralding a—1/5
nation of classes that more than two valueswoivould be  scaling, see Table )lican be obtained by combining the six
necessary in order to fulfill the isotropic condition. For in- /2 and eight /3 configurations into a 14-pulse sequence.
stance, while using the tetrahedral group, we deal with thre&low, as shown in Fig. 2, the/2 and 27/3 classes are con-

(5) Time-reversal scaling for both=1 and 2 tensors with
ki=k,=—1/11,instead of—1/9.
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nected by 24 differentr/2 paths, corresponding to the maxi- According to Eq.(13), the decomposition o8 in irre-

mum number of elements under cubic symmetry. A cubicducible representations is given by the coupling between the

symmetric path in this case would thus require at least 24epresentation® andD'. By introducing the expansion of

pulses(this case is explored more extensively in Seg. V. D into irreducible representations, we can decompose the
In general the shape of a real magnetic-field pulse is notoupled representation in the following way:

rectangular, so the motion profile along the pulse path may

not be linear(nonsquare shape pujsaffecting the corre- _ r s

sponding average. Instead of assuming a specific pulse D(g)~DT(g)—[Z D' )][ES D' )T]

shape, we derive the compensation equations and the al-

lowed scgling factors for the general case. Within this frame- => p".p® =3 (rstip®, (14)

work, deliberately modulated pulses are also allowed, which rs

yields wider ranges of scaling factors. Instead of using the

712 pulses, a sequence consisting of split puléasinstance  Where (st) are the Clebsch—Gordan coefficiefitsf the

two 7/4 pulse$ could be implemented, while still keeping cubic group(which couple the irreducible representations of

the configuration trajectory on the network of cubi¢2  the cubic group A well known property of the Clebsch—

paths. The set of allowed configurations is therefore exGordan expansion is that the coupBd’- D' contains the

tended from the four discrete values of the cubic group, to invariant representatiotonce only if r=s.** For instance,

a continuous range ab along then/2 paths. The network of for first-rank tensors, there is only orfg cubic irreducible
configurations is summarized in Fig. 2. representation iD, and therefore only one invariant repre-

Depending on the choice of a particular pulse, a giversentation. Just as for discrete sequences, this shows that first-

configuration along this path will be symmetrized by therank tensors are isotropically scaled by the cubic symmetry.
cubic group into 6, 12 or 24 other configurations. As in Eq.In the space of second-rank tensors, Bis are expanded
(8), the averaging is performed in two steps, first over theénto E andF; representations and, because they are different,
cubic group transformatior(equivment to the class average there will be onIy two invariant representations Correspond-
and next over the configuration types. Lit(R) be the ing to the E-E and F,-F;, couplings. Thus the average
transformation matrix, in the Cartesian tensor basis, assoctM(R)), performs the scalings of thea and a3 type ten-
ated with a given configuratioR along a path. The transfor- SOrs, but not necessarily with the same factors. For both first-
mation corresponding to the cubic average is given by and second-rank tensors the situation is similar to that with
pulses and we shall characterize the anisotropic contribution
(M(R))o=(M(g-R-g"Y)gc0 of a given configuration by the same parameteiefined by
—(D(g)- M(R)'DT(9)>geo, (12) Eq. (9).. Thi; is due to the fac_:t that all the irreducible repre-
sentations in the spaces of first- and second-rank tensors ap-
whereD(g) is the representation of the cubic group in the pear only once at the most. We will not attempt to derive the
space of first- or second-rank tensors. The adjoint transforcorresponding arguments for higher-rank tensors.
mation, as given in Eq11), acts on any matrid according The imbalanceXR) for the various possible paths is
to obtained by taking the partial tracéhe invariant represen-
_ + tationg of the transformation matridM (R) over the sub-
N=S(N)=D(h)-N-D7(h). (13 spacesxa and ¢, as given in Appendix A. The results are
This is a representation of the cubic group in the space afummarized in Table IIl, and by th&vs » diagram in Fig. 3.
linear transformationN, and since it leave$M(R))g in-  As in the &pulse limit [Eq. (10)], isotropic schemes must
variant, the{M (R))q belongs to the space of invariant irre- explore configurations and paths in such a way that the av-
ducible representations. We must stress at this point that, byrage of§(R) vanishes. If, as mentioned above, we use split
expanding the free Hamiltoniad over an irreducible tensor /2 pulses, the sequences whergakes only one value, i.e.,
basis, theM (R) can be written as a Wigner matiiwhich is  spherical trajectories, can be generated fowalhlues above
an irreducible representation of &)]; however, the trans- wy=arcco§(,10—4)/6]~98.03°. Below that value, as shown
formations involved in Eq(13) belong to thecubic group O  in Fig. 3, all the configurations of cubie/2 paths have posi-
and thusM(R), even in the Wigner matrix form, will be tive isotropy imbalances, and to compensate for them, some
decomposed into irreducible representation©of configurations withw above 98.03° have to be used. The set

rst

TABLE llI. Isotropy imbalance for second-rank tensors of the configurations belonging to various typs of
paths in the cubic group. To simplify the analytical expressions ther2 and #/2—, as well as the
w/2—2m/3 and 27/3— 7’ pulses have been regrouped to form singleulses. The configurations are desig-
nated by the total angle along these paths ar@stands for cos (see also Fig. B

Path a cosw Ky k, S

O—1r ay c (2c+1)/3 (4c?+2c—1)/5 (c—1)%5
wl2—x w25+ ay (c—1)/2 c/3 (c®2—c—1)/5 (3c?+2c—3)/10
T ot ay -1 -1/3 1/5 c?-1/5
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0.6 4
0.4 4

0.2 4

O
COS ®
-0.24

.0.44+

0.75 4

0.5 1

0.25 4

cos ® |1 1/2‘ 0 BT _1’ FIG. 4. Allowed combinations of isotropic scaling factors for firdt=1)
0.25L and second{l =2) rank interactionsk; and k,, are limited to the dark-
shaded region of thek( ,k,) plane for sequences with pulses of unrestricted
shape but of the axes alory Y, or Z and of the total angler/2 (cubic
pulses$. For comparison, the set of allowed combinations for completely
FIG. 3. Isotropy imbalance of second-rank interactionglefined in the  unconstrained isotropic schemes is also shown in light grey. Spherical se-
text) for schemes containing/2 pulses only along the fixed, Y, andZ guencedi.e., those that involve one value af only) cannot be generated
axes plotted as a function of cas wherew is the total rotation angle of a for w values beloww,=arcco$(y10—4)/6], corresponding to point A. This
configuration. By selecting a path which averagesdwe can generate an causes a reduction of about 13% in the first-rank scaling factor for the
isotropic scaling sequence. The interval between successive black dots caecond-rank decoupling, as in point B & (k,) =(,/2/3,0. With the supple-
responds to 6° increases in the pulse angle between the cubic configurationsentary constraint of rectangular shape for tH2 pulses, the area of al-
indicated by the larger empty circl¢see Sec. I)l. The corresponding plots  lowed scaling factors is further limited to the concave side of the polygonal
of the first- and second-rank isotropic scaling factkysand k, are also line C (whose corner points are given in Tablg.\he limit for &pulse
shown below. An example of second-rank isotropic sequence, combining theequences D, already marked in Fig. 1, is also shown.
213 and#/2 configurations, is shown by dashed lines.

at the borderline of the allowed area. As expected, the area of

of allowed scaling factors in this region is determined inallowed scaling factors in this case falls between the two
Appendix B and plotted in Fig. 4. Compared to the generalimits found above for thes pulses and for unrestricted cubic
isotropic limit defined by Eqs(4), there is only a small re- pulses.
duction of the area of allowed scaling factor combinations:  The limit for rectangular pulses appears more realistic
In the region of second-rank decoupling the maximum isothan that for the cubic pulses of unrestricted shape consid-
tropic first-rank scaling is reduced by about 13%. ered previously. As a matter of fact, the constraints imposed

So far we have not introduced any constraint on theon the pulses are not sufficient, because, although the shape
pulses. In real experiments, however, the local interactionfias to be rectangular, the relative amplitudes between differ-
are not negligible compared with the strengths of the availent pulse sets have not been specified and the topological
able magnetic field pulses. The optimum pulse shape is recfeatures of the network of/2 paths have been overlooked.
angular in this case and, even if split pulses are used, theor instance, if all pulses have to be of the same amplitude,
contribution of the pulses to the total isotropy imbalance andncommensurate weighing factors between differeri
the scaling factors must be integrated over complet2  pulse setgas in Table ¥ may be difficult to obtain in simple
paths. The averages @& k;, andk, over the five possible sequences. As shown in the examples of the next sections,
7r/2 paths can be deduced from the expressions in Table IIl.
They are listed in Table 1V. The integrated pulse contribu-
tions can be considered as forming five discrete configuraTA‘?LE IV. Isotropy imbalance fo_r second-ra}nk teqsors gveraged over the
tions that have to be combined with each other or with any/2710Us types ofr2 paths connecting the cubic configuraigsguare pulse

. . . . . shape is assumgdThese values are obtained by integrating the expressions
cubic set of configurations in such a way ti#&avanishes. given in Table Ill overa=0 to #/2 anda=1/2 to 7. TheN is the number of

If we now exclude split pulse&so any single pulse is a different w2 paths of a given type and has to be taken into account when
completen/2), then only the five original discrete cubic con- combining the pulses and configurations to generate an isotropic sequence.
figurations can be combined with the five possible pulses:
From this set of ten trajectory parts, five have positive, and
four negatived, giving a total of twenty possible isotropic 0—m/2 6 (m+ABm  (m+4)/57 (3m—8)/10m

Path N ks ks s

combinations. The set of allowed scaling factors, shown irf72—7 6 (m-4)Bw  (n-4)i57 (37+8)/10m
Fig. 4, will be given again by the convex envelope of the 2. 2™3 24 20a ~(mtHA0m - ~(3m—8)/20m
g- 4 g g y p 23—’ 24 —2/3m —(m-#)10m  —(3m+8)/20m

scaling-factor combinations. Table V lists the optimum __ 12 -1/3 15 3/10
schemes, i.e., schemes yielding scaling-factor combinations
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TABLE V. Optimum isotropic cubic trajectories involving/2 pulses of square shape. Starting from a giwvéhpulse-type the combinations with other pulses

and cubic configurations are designed to average out the isotropy imbalance obtained from Tables (seedHilgs. 2 and)3Out of the twenty possible
combinations excluding identity ak{,k,)=(0,0), only eight are optimali.e., they belong to the convex envelope of scaling factor combinations as shown

in Fig. 4). Out of those eight, the one which combines discrete cubic configurationsuadl 27/3 has already been listed in Table Il. For the seven others a

set of 7/2 pulses is combined with discrete cubic configuratifne casepor other#/2 paths(two casesas listed in the table. The weighing factors are
associated with the whole sets of either pulses or configurations, and effective sequences have thus to take into account the number of elements in each set
(given byN in Tables | and IIJ.

Config./Path Weight Config./Path Weight ky k,
O0—ml2 37 273 37m—8 T+ 4 2
67—8 67—8 67—8 37m—4
O0—ml2 1 7l2—27I3 2 T+8 0
3 3 9w
72 378 72—27I3 41 T T
7m—8 7Tm—8 7m—8 T 778
72— 37—8 7/2—27/3 67+16 372—8m7+64 8
97+8 9m7+8 37(97+8) 9m7+8
l2—r 37 273 37+8 —7+4 2
67+8 67+8 67+8 37+4
T 3 273 8 1 1
11 11 11 11
T 37+8 2m/3— ' 167 37+40 —7+8
197+8 197+8 577+2 197+8
T 2 ' 3 1 1
5 5 3 5

each experimental case requires a specific analysis. Howevelifferent configurations, compared to 12 and 6 for the icosa-
the area of allowed scaling factor combinations that has beelmedral solutions.
calculated above with the rectangular-pulse assumption gives

a reasonable estimate for the performance of real sequenc?\s/. GENERATING REAL SEQUENCES: TIME

Although the natural symm_etry tq build |sot_ro_p|c REVERSAL EOR FIRST-RANK COUPLINGS
schemes for second-rank tensors in($0s icosahedral, it is

interesting to note that the cubic symmetry can do almost As in high-field NMR? pulse sequences in zero field
equally well. The smaller areas of allowed scaling factors inhave to be compensated for various error sources: finite pulse
Figs. 1 and 4 should not be seen as coming from the symengths, effects of higher-order terms in the average Hamil-
metry but from the stringent condition of orthogonal2  tonian, as well as pulse errors and inhomogeneities. The fi-
pulses in the sequences. This restricts the allowed configuraite width of the pulses is compensated using the general
tions near the origin tgositive values of imbalance only principles of the previous sections. The second-order correc-
They could be actually compensated by using configurationsons due to the finite duration of the sequence are eliminated
at the samew values but with opposite imbalance, for in- by time-symmetrized sequenéeand this also compensates
stance along the magic directions. The symmetry of the arfor the residual rotation after one cycle due to the pulse er-
rangement would still be cubic and spherical sequencesors (provided that opposite pulses are properly balanced,
would then be available for any value of In the formalism and even if they are inhomogeneous or poorly calibrated
of irreducible tensors used in the first part of this wbtkhis ~ However, pulse errors and inhomogeneities affect also the
means that the cubic symmetry can average out up to fourtraverage Hamiltonian by generating configuration paths that
rank spherical harmonics. Although the general group-do not follow the ideal trajectory. Although this last problem
theoretical arguments show that one fourth-rank sphericatas been addressed in a high-field N¥IRe shall not at-
harmonic is not averaged out by the cubic grélthere are  tempt to devise the corresponding schemes in a zero field.
specific point distributions of this symmetry that do average In all the sequences used in the experiments shown be-
out this remaining ternfand even remaining terms of higher low, one cycle{Ri}o<i<, iS compensated by the next cycle
rank9.?! Such distributions are already well known for {R,_;}o=i=n, Where the configurations are explored in the
spherical quadraturés but, for second-rank tensors, the cu- reverse order. It follows from Eql) that the pulses in the
bic sequences will in terms of number of points always besymmetric cycle are opposite and applied in the reverse order
less efficient than the corresponding icosahedral sequencesompared to the pulses iR;}o<i<,. In contrast with the
Examples are provided by the two naturally spherical cubidigh-field situation where opposite pulses are just related
sets of configurations, found ay=arcco$(,10—4)/6] and at  through a phase shift of, opposite dc pulses are obtained
w=m (see Fig. 3 They contain, respectively, 24 and 12 by applying physically opposite currents in the pulse coils.
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This has another significant advantage: the reduction of eddsank tensors is not required, the general principles of isotro-
currents effects. Ideally, the coils that generate the dc pulsgic scaling show that configuration distributions of
in ZF-NMR should have no metallic parts in their vicinity to tetrahedral symmetry are sufficient. Such schemes were al-
avoid the generation of eddy curredfs® but few experi- ready given for decouplintf*®and for thes-pulse versions
mental setups can perfectly comply to this condition. Thenpf time reversat>'® They are simple illustrations of the gen-
for a given pulse sequence, the time average of the magnetieral cubic formalism introduced in the previous sections,
field pulses has to vanish in order to avoid the build up ofsince the tetrahedral group is a subgroup of the cubic
steady residual magnetic fields from the eddy currents. ThigroupO.
is automatically ensured by the symmetrization for the  Optimum time reversal of=1 tensors is obtained with
second-order compensation. configurations on thev=7 sphere of S(8).° A tetrahe-

When using time-symmetrized cycles to compensate fodrally symmetric set of points necessarily contains 1, 4, 6, or
the second-order effects, it is possible to get rid of two pulsed2 elements, so in general the minimum number of configu-
between the two time-symmetric subcycles. This is extenrations for isotropic tetrahedral sequences is 4. However, as
sively used in high-field sequencésuch as WHI4®) to re-  already pointed ouf the folded structure of S@) allows us
duce somewhat the average irradiation power and to elimito reduce these numbers in the case ofdler sphere. The
nate any rotations around the magnetic-field a&iX andY  simplest case, as shown in Fig. 5, consists of the three
rotations are obtained with single rf pulses wherga®ta-  configurations of the cubic group. In th&pulse limit the
tions require composite transverse pulses, or dc pulses alorsgquence contains threepulse$®!®
Z). In contrast, the elimination of two pulses in zero-field
sequences is not very useful: All the pulse directions are
equivalent and, because of the higher number of pulses pa&vhere, as explained in the Appendix of the first part of this
cycle, the reduction of the average power is negligible. Furwork,® the pulses have been computed according to(Bg.
thermore, for symmetry arguments, the compensation for thassuming that they correspondadotive, right-handed rota-
finite length of the pulses is achieved more efficiently whentions of the spin magnetizatiowe shall use this definition in
preserving all the pulses of a subcycle. All the second-ordeall the sequences listed below. After symmetrization for
compensated sequences will thus consist of complete sulsecond-order corrections, the three-pulse building block
cycles containing their total number of pulses as given in theields a six-pulse cycle with two sampling points
noncompensated versions. (2= Ty T Ty T Ty T

Isotropic sequences for first-rank interactions were ex-'2 < YT TTTzT TTAXTTTA-X
amined in the first part of this work.If isotropy for second- —T—T_—T—T_y—12)— 7. (16)

7~ (72— my—T— T~ T T~ TI2)— 7. (15

For pulses of finite length, the tetrahedral symmetrization of
the trajectory yields six differenir paths(see Fig. 5. Each
vertex is connected to the others by an even numbes of
paths which makes it possible to explore all the paths just
once with a six-pulse sequence. Starting from the simple
three-pulse sequenddb), there are two possible ways of
generating such a trajectory

Ty (TI2—Ty—T— Ty— T— Wy — T— WY

—T—mz— T my— 72),— Ty, (173
T (TI2—y—T— Ty~ T T~ T—T_y

— T _ =TT _x—T2)y—T77. (A7b

An interesting feature of the first version is that thg, my,
andr, configurations are explored in the reverse order in the
second half of the cycle, so second-order effects are partly
compensatedthey are not for the pulses themselvdsow-

ever, this is not achieved with the usual method of opposite
FIG. 5. Configuration trajectories in the &) sphere for isotropic time pulses in reverse order, and thus eddy currents are not com-
reversal of first-rank interactions. In thipulse version only the three  pensated. By contrast, in the second version, the eddy cur-

configurations of the cubic group are needgdints 1, 2, and 3, along th¢, rents are compensated whereas the second-order effects are
Y, andZ axes and they are connected by threepulses[sequencd15)].
This path(heavy ling can be compensated for the finite length of the pulses T . .

by adding three pulses to obtain a path of cubic symmetry, as shown by the Since none of the S'X'pUIse sequences for time reversal

medium heavy lindsequence€17b)]. Note that opposite configurations on allows us to compensate for all the major error sources si-
the 7 sphere represent identical elements ofl§0so the seemingly open multaneously, some more complex versions had to be used in

path is actually closed. These trajectories can be made isotropic for th ; s hf dlse _
second-rank tensors as well by stopping at #ieconfigurations, as shown the experiments. As for hlgh field Sequene y were gen

by empty dots along ther paths, according to the relative weights given in e!"’_ited with a building-block gpproach, where the most sig-
Tables Il and V. nificant effects were treated first. In the present experiment
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B (Time Reversal)

——a—_¢

FIG. 6. Isotropic spin echoes for first-rank interactiof#s} The magnetiza-

4 6
Time (milliseconds)

sated for the effect on first-rank interactions of the finite
length of the pulses. For second-rank tensors, the isotropic
imbalance of the pulses has also to be corrected. According
to Table V, the substitutio19) becomes

mi— 7= (7/2)i=(27/3+37") = (w/2);=7/3, (20

where7 is the duration of ther/2 pulses.

The 24-pulse sequendd8) was tested on the proton
NMR of a water sample in our zero-field spectrometer,
where the zero-field shimming coils were deliberately set far
from their optimal values. The residual field was a superpo-
sition of a constant 0:210 * T along theY direction, and of
a gradient along, of 0.4x10~* T over the sample height. In
this way the residual field varied in both the magnit@@em
about 0.4107* T to 0.3x10°* T) and the orientatior{by
about 907 over the sample. In order to avoid the “locking”

tion of the protons in a sample of water decays in the low residual magnetif the magnetization in th¥ Z plane initial and final pulses

field (which varies both in direction and in magnitude over the sajriple
the zero-field NMR spectrometei) The isotropic time-reversal sequence

were added to follow the evolution by monitoring the polar-

(5) is applied after 1.2 ms of free evolution, and generates an echo 3.6 m&ation glongX. The time-reversgl eﬁeCt was observed by
later, because the scaling factori4/3; (C) Free evolution is resumed at 8.4 generating an echo, as shown in Fig. 6. The decay of the
ms, resulting in a second echo at 9.6 ms. The 24-pulse sequence was cogfgnal was monitored under free evolution in the inhomoge-

pensated for the second-order effects and finite pulse lefigglesSec. 1V.
The signal was sampled at every 3-pulse subcycle ofidand them-pulse
duration was 2us.

the pulses were much stronger than the local interaction, so
the first effects to be compensated for were a second-order
term in the average Hamiltonian and eddy currents. Accord-
ingly, we used the following 24-pulse sequence:

T7—(TI2—TIN—T— = T— T~ T— T _x—T— T_7—T
— T = T~ Ty~ T— T 7= T— T _x— T~ Tx— T
Tz TN T T T Ty~ T T_7— T T_x— T
— T~ T— Tz T— Ty—T— Ty~ T— Tz— T— Tx— T
— T~ T~ T_7—T—T_y—T2),— 75, (18

where the sampling periods appear every three pulses. The
6-pulse blocks compensate for the second-order effects and
eddy currents, the 12-pulse subcycles include finite pulse-
length corrections, and finally the 24-pulse total cycle can-

cels the second-order terms arising from the configurations
explored during the pulses, which are not taken into account
otherwise.

All these sequences are isotropic for first-rank tensors
only. They can be made isotropic for second-rank interac-
tions according to the general principles given in the previ-
ous sections. For thé-pulse sequences, the isotropy imbal-
ance of ther configurations has to be compensated bysthe

ConﬁgurationS, as given in Table Il. Since there are ,six FIG. 7. Configuration trajectories in the &) sphere for isotropic time

configurations, they can be included in the trajectory of se

reversal of second-rank interactions. In #gulse version, as in sequence
(21), 16 w/2-pulses are needed to explore 14 cubic configurations=at/2

quence(16) by replacing all ther pulses with successive2  and 23 [points labeled 1 to 16 along the path shown by the heavy line in

pulses according to

(@]. This path has &, symmetry along th& axis and, in order to com-

pensate for the finite pulse lengths in a cubic-symmetric way, it is repeated

= 1—(ml2);— 2713~ (7/2);— 73, (19

after 2m7/3 rotations along the magid11) direction, as in sequend@3). To

. . . . facilitate the derivation of sequencé®l) to (25), the pulses joining the
yielding 12-pulse sequences. As in HA.7b), this scheme yerices of the trajectory are shown (), as calculated from the/2 to the

reduces the influence of eddy currents and is also compen+/3 configurations according to E¢L).
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neous field, up to a timg when the sequence was applied, where the time spent at the various configurations is weighed
so at time 4 the echo was recovered from the depolarizedaccording to Table 1. It is noticeable that, except for the
sample, showing the time-reversal effect with a scaling facinitial and final /2 pulses, this sequence contains pulses
tor equal to 1/3. A secondary echo was also obtained byjong X andY only. It is an isotropic, zero-field analog, of
further application of the sequence followed by a free evoyye “magic sandwich” in a high field!

Iut|_qn. The dampmg of the echoes IS due to the inhomoge- At this stage it is desirable to compensate for the second-
neities and errors in the pulses coming from eddy currents

o . g order contributions to the average Hamiltonian by time-

contributions and, in a smaller degree, to pulse imperfec- L . )

tions. symmetrization of the cycle in E¢21). Just as in HF-NMR
sequence$,this is done prior to the compensation for the
finite length of the pulses, because the cycle time has to be
made as long as possiblleut smaller than the characteristic

time scale of the local interactionsn order to reduce the

The previous section illustrated the methods to generati#fluence of pulse errors. Let us denote the main time period
isotropic cubic sequences. This example was fairly simpleof the interaction, the subcycle duration, and the total dura-
three configurations and an even number of paths connectirtgpn of the pulses in the subcycle By T, andT;, respec-
each of them to its neighbors. We shall now treat the case dfvely, and letA be the average relative magnitude of the
time reversal for second-rank interactions. It is more comanisotropic contributions due to the finite length of the
plex but has also a broader range of applications, for inpy|ses. After one cycle, in the second order, the magnitudes

stance, in the “multipolar zero-field NMR”" experiments . ihe gifferent terms in the average interaction are
which are analogous to the multiple-quantum NMR tech-

V. TIME REVERSAL OF SECOND-RANK COUPLINGS

niques.
As listed in Table Il, second-rank time reversal is
achieved with a—1/5 scaling factor by combining the six 1/(5T), A(Tp/T)/T, Tcl/(2T?) (22)

and eight configurations at/2 and 27/3, respectively. The

configurations, together with the 242 paths that join them,

are shown in Fig. 7 embedded in the @Dsphere represen-

tation. Although there is a total of 14 configurations, 16for the scaled interaction, the anisotropic scaled parts of the
pulses of#/2 are required to explore all of them: indeed, interaction, and the second-order average Hamiltonian, re-
there are 8 configurations atmZB to be explored at least spectively. The ratio between the last two terms is thus
once, by following=/2 paths that never directly connect two A(TITS)(Tp/Te). Usually (T/T¢) is chosen around 5 to 10,
such vertices. Since all the/2 paths connect@3 to w2 \yhjle in practice Tp/Tc) is always below 1 and seldom
configurations, ther/2 vertices will be explored eight imes a5y 1/2. The ratio between the two leading corrections is
also, although there are only six of them. Thus, in the sim-thus determined by, which, as will be shown below, can

plest version of the cycle, there are two of th& configu- : . . .
. . . . vary considerably, depending on the adjustments of the vari-
rations that must be explored twice. These configurations can™ ° ) ! .
us time intervals. In more refined versions thecan be

be chosen to be opposite in sign, as in Fig. 7, to preserve tHe ,
highest symmetry possible. Many topologically different "éduced from about 1/8 in E¢21) to as low as 1/100. We
paths can now be used, but again, in order to achieve high&é@n thus say that the leading correction term is the second-
symmetry, we shall select a trajectory invariant unﬂgr(a order average Hamiltonian and that time symmetrization of
subgroup of the cubic grou). the elementary cycle in Eq21) has to be carried out before
At this point there are still two unequivalent ways of any other compensation.
exploring the path of Fig. 7. In order to reduce the effect of  The last step consists in compensating for the finite
eddy currents we shall retain the path involving an equalength of the pulses in Eq21), or its second-order symme-
number of positive and negative pulses in each of the coilgized version. There are 24 differemf2 paths connecting
[this was not possible in one cycle for the first-rank timehe /2 and 273 configurations and, as shown in Fig. 7,

revgrsal in Eq.(15]. In t_he &pulse I|m_|t, we can t.hus each 2r/3 vertex is connected by three such paths. As al-
achieve the second-rank time reversal with the following se-

uence: ready mentioned in Sec. lll, it is thus impossible to explore
q ' all of the 24 paths just once with a continuous trajectory. The
(m12) 7= (72— (72) _x— 7= (7I2)y— 27— (7/2)y— T compensation for the finite length of the pulses in this case

involves necessarily a trajectory containing eaef2 path
—(ml2)x—7—(ml2)_y— 17— (w2)x— 27— (w2)x— T twice, yielding a 48-pulse sequence. Since &aulse cycle

(21) contains 16 pulses, it is natural to combine three such
~(ml2)ym 1= (wl2)x =1 (72) y=27 cycles. The trajectory in Fig. 7 is symmetrized by applying
—(wl2)_y—1—(7l2) _x— 17— (7W2)y— T 27/3 rotations along thé111) direction, but then the cycles

have to start at a3 configuration that is invariant under
~(ml2) x=27=(ml2) x= 7= (72) y=1/2)y the C; rotations along(111), for instance at the 23y,
—(ml2)5, (21)  According to the pulse definitions of Fig. 7, we thus find
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(12) _ 5= (12) _y—[(712— (7/2)y— (27+ K7 )= (m12)y— 7= (m/2)x— T— (7/2) _y— 7— (7/2)x— (27+KT")
—(@2)x— 7= (wl2)y— 71— (I2) = 7— (7] 2) _y— (27+KT") = (7]2) _y— 7= (1I2) _y— 7— (7l2)y— T
—(m2)_y— (274 K7 )= (w]2) _y— 7= (/2) _y— 7— (m/2)_y— 712)— (16-pulse cycle withX—Y andY—Z)

—(16-pulse cycle withX—2Z and Y—X)],— (7/2)x—(7/2)5, (23

with three sampling points per cycle. Additional time delays at#f# configurationsk7’ have been inserted to compensate

for the isotropy imbalance introduced by the pulses of durationUsing the result listed in Table V, one can find that
k=3—-8/m~0.454, becauskr’ is inserted at four out of six/2 configurations. The time delays are inserted in the first cycle
according to thed, symmetry(instead of the usual cubic symmelttin order to compensate for the isotropy imbalances for
each of the 16-pulse subcycles as much as possible. Indeed, Fig. 7 shows that the trajectory is more “dense”Alaxig,the

and in order to improve the isotropy imbalance of one subcycle it is reasonable to add “more” configurations in the equatorial
plane, although the 223 cycling along the(111) axis eventually restores the full cubic symmetry in the global 48-pulse
sequenceg?23). A rigorous proof of this intuitive point is given in Appendix C, together with the derivation of the least
anisotropic version

(m12) 5= (m12) _x—[((712+ k' 7') = (7]2)y— (27+ KT ) = (7 2)y— (7+K'7') = (7] 2)x— 7— (712) _y— (74K 7")
—(m12)x— (27+ K" ) = (7 2)x— (7+K'7') = (m12)y— 7— (7] 2)x— (7+K' 7' ) = (/2) _y— (274K ) — (7/2) _y
— (14K 7)) = (712) = 7= (7] 2)y— (7K' 7') = (7]2) _x— (27+K7") = (7]2) _x— (7+K'7') = (7/2) _y— 7
—(ml2) _x—1/2)—(16-pulse cycle withX—Y andY—Z)—(16-pulse cycle withX—Z and Y—X)],

wherek=1/7+3/4~1.07 andk’=3/7—3/4~0.205. An average magnitude of the residual anisotropy inCthesymmetric
subcycles can be determined: Considering the Hamiltonian partially averaged over the(wiitsélseir compensating time
delays, the sequence®3) and (24), respectively, leave about 5% and 1% of the free interactions, compared to the 20%
isotropic scaling factor. In situations where the pulse length is not negligible, seq(®hés thus preferable. Both E¢23)
and Eq.(24) are valid in the “windowless” limit, i.e., wher=0, and can be adapted with time-symmetrized subcycles to yield
96-pulse sequences as
(m12) ;= (7l2) _x—[((7/12+K' 7)== (7/2)y— 27+ k7" )= (7w/2)y— (7+ K 7") = (7/2)x— 7— (7/2) _y— (7+K'7T")

—(m2)x— 27+ k7)) = (7 2)x— (7+K' 7") = (7/2)y—7— (7 2)x— (7+K'7") = (7/2) ~y— 27+ k7" )—(7/2) _y

—(7+kK' 7)== (7l2) _y— 17— (72)y— (7+K' 7") = (72) _x— (27+ k7" )= (7/2) _y— (7+K'7')—(7l2) _yv— 7

—(m/2) _x— 7/2)— (time-symmetric 16-pulse cydle (16-pulse cycle withX—Y and Y—2Z)

— (time-symmetric 16-pulse cycle witlk—Y and Y—Z)—(16-pulse cycle withX—Z and Y—X)

— (time-symmetric 16-pulse cycle witk—Z and Y—X)],—(7/2)x—(7/2)5. (25

Atime-reversal experiment on the zero-field dipolar cou-not found to give any noticeable effects, due to the presence
plings of protons in a polycrystalline sample of adamantanef many other error sources. The damping of the echo am-
was performed with sequen¢25), simplified by usingc’=0  plitude comes from five main imperfections: nonideal pulse
andk~0.5 as in sequend@3). An echo was generated after profiles, imbalances between pulse edges in the three cails,
a free induction decay, as shown in Fig. 8. The observe@ddy currents, insufficient time delays between pulses, and
scaling factor was close to the theoretical value—df/5. A higher-order terms in the average Hamiltonian. The actual
secondary echo was also obtained by further application gbulses in the spectrometer deviated from the ideal “square”
the sequence followed by a free evolution. Compared to seshapes assumed in the compensation schemes presented so
guence(25) with ideal values ok andk’, the larger residual far. Furthermore, although the inductances of the tb¢g¥,
imbalance of the 16-pulse subcycles in the experiment waandZ coils were similar, their volumes and efficiencies dif-
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FIG. 9. Schematic representation of configurations of the five cubic classes
connected byr/2 pulses. The transformations of the three Cartesian tensors
X, Y, andZ are shown for the configurations along the paths designated by
the pulse anglev.
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FIG. 8. Isotropic spin echoes for zero-field second-rank interactighs:
The magnetization of the protons in polycrystalline adamantane decays due

to the local isotropic dipole—dipole coupling®) After 74 us, the isotropic

time-reversal sequend@) is applied and the magnetization is retrieved 380 per cycle with a total angle ofr and is recycled twice for
us later for an observed scaling factor of 19.5%, which is close to thepu|se compensation.

expected theoretical scaling factor of 204%/5; (C) Free evolution in the
zero field is resumed at time 8Qis, resulting in a second echo at 886.
The 96-pulse sequend@5) was compensated for second-order effects and
finite pulse lengthgsee Sec. ¥ The signal was sampled at every 16-pulse
subcycle of 36.4us, and then/2-pulse duration was Ls.

VI. CONCLUSION

We have shown the feasibility of practical pulse-
irradiation schemes to isotropically scale the various spin
couplings in zero-field NMR. Group-theoretical consider-
fered by up to a factor of three, so the corresponding risingitions make it possible to generate such sequences using
and falling edges were different for various pulses and thé@nly 7/2 pulses along the three orthogonal coordinate axes.
global cubic symmetry of the pulses was not strictly ob-This approach provides also error compensation methods
served. These two effects are certainly not negligible, sincésecond-order averaging terms, finite pulse lengths, eddy cur-
in our spectrometer the duration of eagl? pulse wasr=1  rents generation, efc.Although theoretically less efficient
us, while the rising and falling times where estimated in partthan the optimal icosahedral sequences reported in the first
16 to be of similar duratior(using measured pulse profiles, Part of this work!® these cubic sequences yield, within 20%,
lower-symmetries schemes might be designed to compensa@d of the theoretically allowed scaling factors with consider-
for these effects Furthermore, the time interval between the ably easier experimental constraints.
pulsesr=0.9 us was barely longer than the pulse transients ~Two experimental examples of cubic-symmetric se-
and some interference between successive pulses could thgigences were shown for time reversal of first- and second-
be expected_ Fina”y’ higher-order terms in the averagéank interactions. As already said in the first part of this
Hamiltonian were non negligible, since the 16-pulse subWork,'® time-reversal opens new interesting opportunities al-
cycle duration(36.4 us) was comparable to the typical pe- lowing, for example, a zero-field analog of the high-field
riod of the local interactions in adamantafvehere the free Multiple-quantum NMR technique. This method, which we
induction decay in a zero field lasts about 5§). shall call “multipolar zero-field NMR,” yields simpler spec-

Despite all those error sources however, the cubic setra for many-spin systems by reducing the number of transi-
quences are more efficient than the icosahedral sequencé@ns, while preserving the isotropy of spectra, in contrast
previously describef The total power requirements of the With multiple-quantum HF-NMR. This could provide a new
pu|se-|ength Compensated schemes are similar, they do ntﬁO' for structural investigations of solid-state Samples, even
induce any “orientation-transient” errorglue to the differ-  if they are polycrystalline or amorphous.
ent behavior of the coils when generating pulses of random

axeg, and they are much simpler to calibrate. For exampleAPPENDIX A: CALCULATION OF THE ISOTROPY

the optimal icosahedral time-reversal scheme of Second'rar]KABALANCE FOR /2 PULSES OF FINITE LENGTH
interactions at com=—1/4 involves 12 pulses per sampling

cycle for a total angle of about 7&r,'® compared to 16 As explained in Sec. lll, the average over the cubic
pulses and a total 87 angle for the equivalent cubic se- group of a transformation of second-rank tensors can be ob-
guence2l), but it needs to be recycled five times, instead oftained by computing the partial traces over e and a8

three in the cubic case to achieve the compensation for thgets of second-rank Cartesian tensors. We shall thus compute
finite pulse lengths. It should be noticed that in any casehis trace over some chosen simple paths, as in Fig. 9. The
these values are about an order of magnitude above the ransformations of first-rank Cartesian tensors are the same
guirements for the corresponding high-field experiments; thes those of usual three dimensional vectors as given in Fig. 9.
optimal time-reversal scheme of second-rank interaction&long the 0 path, the second-rank tensors transform ac-
(which can be derived from WHblinvolves only two pulses cording to
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XX=YY=(cX+sY)?—(cY=5X)?=c3(XX—=YY)+S2(—XX+YY)+:-=
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(2= (XX=YY)+---

z7— zz
YZ—(cY—sX)Z= cYZ+ -
ZX—Z(CX+sY)= CZX4 -
XY—(cX+sY)(cY—sX)= (C2=s?)XY+---, (A1)

where c=cosa, s=sina. We used the XX—-YY,ZZ) basis for theE representationfwith XX+YY+ZZ=0). Only the
diagonal terms are retained in E@\1), since all others are irrelevant to calculate the traces. It is thus found

K= C2,

Kap=(2¢%+2c—1)/3.

(A2a)
(A2b)

The isotropic scaling is related t@ by Eq. (4b), and for this patha=w. This allows us to calculaté and after some
elementary transformations the expressions of the first line in Table Il are found.
In a similar way, along ther/2— =" path, the second-rank tensors transform according to

XX=YY=YY—(—cX+52)2=YY—C?XX++--= —(L+cA)(XX=YY)/2+:--
27— (CZ+sX)?=C?ZZ+ XX+ -+ = (c?—s%12)2Z+ -+

YZ—(—cX+sZ)(cZ+sX)= 0+---

ZX—(cZ+sX)Y= O+---

XY—=Y(—cX+s2)= — XY+, (A3)
which yields

Koa=(c2—1)/2, (Ada)

Kqp=—cCl3. (Adb)

The isotropic scaling of a configuration atcan be obtained configurations in this range, it is necessary to combine them
by calculating the relationship betwearand w, or by using  with configurations at co® belowc,. The range of allowed
the total trace of Eq(A3). Instead of applying the general scaling factors will be given by the convex envelope of the
formula for the composition of rotations, we can easily de-isotropic combinations involving only two values of ces
rive an expression fow as a function ofae by using the There are two such regimes of compensations, depend-
first-rank isotropic scaling. It is obtained from the trace oning on whether the configuration at ces-c, is on the G-
the first-rank basis and along the—=' path we get or the w/2— 7' paths. We shall denote the values of aom
(A5) the sequence by, andc,, with weights\ and 1-\. Accord-

ing to Egs.(A6), the isotropic conditions are
Hence the formulas in the second line of Table Ill. The last

2 coOsw+1=cosa.

and simplest line is calculated in a similar way. )\(cl—l)2/5+(1—)\)(605+ 8c,+1)/5=0, (Bla
The §vs w curves shown in Fig. 3 are obtained by elimi-

nating a in the expressions of Table Ill. It is found for the )\(60§+ 8c,+ 1)/5+(1—)x)(60§+ 8c,+1)/5=0,

two O— and w/2— ' paths (B1b)

5=(cosw—1)%/5, (A6a)

5=(6 cog w+8 cosw+1)/5, (A6b)

This last expression has a zero at eoscy=(,/10—4)/6
~—0.14. It is remarkable that we hav&k;=—Kk,
=(y10—1)/9~0.24 forthis point.

depending on whether the, point belongs to the -84 or
the w/2— =’ paths. The scaling factors are given by
ki=A(2c;+1)/3+(1—N\)(2c,+1)/3, (B2a
ko=N(4c+2c,—1)/5+(1—\)(4ca+2c,—1)/5.
(B2b)

APPENDIX B: ALLOWED SCALING-FACTOR

COMBINATIONS FOR /2 PULSES OF EINITE LENGTH For each value o€, there will be a continuous set of com-

bined\ andc, values that can give isotropic schemes. This
For cosw abovec,=(/10—4)/6, all then/2 paths of the defines a curve of associatek (k,) combinations. The ac-
cubic group display a positive isotropy imbalanée as  cessible scaling factors will now be limited by the envelope
shown in Fig. 3. To obtain isotropic trajectories containingof all these curves for varying,. This family of curves can
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be parametrized in various ways and we shall perform dhe limit found in Eq.(B3) is obviously inside the concave
trigonometrical change of the variableg, c,, and\ to sim-  area limited by Eq(B7). Thus the area of allowed scaling
plify further calculations. factors, as shown in Fig. 4, is limited by E@7) above
First we examine the case of compensation by configuk,=(y10—1)/9, and by the general boundary as given by

rations belonging to ther/2— =’ paths, as defined in Eq. Egs.(4) below thatk;. The intercept with thé,=0 axis is
(B1b). Multiplying Eq. (B1b) by 2/3 and subtracting from found at k;=,2/3~0.47, which is about 13% below the
Eq. (B2h), we simplify the second-rank scaling factor to the maximum theoretical value df/5+1)/6~0.54. In canonical
following form: form, Eq. (B7) reads

ko=—N(2¢;+1)/3—(1=N)(2¢c,+1)/3=—k;. (B3) (x/a)?+(y/b)?=1, (B8)

This result holds whenever anisotropies are compensated bghere:
tween two configurations belonging to thé2— 7" path. In-

deed, this was already observed for the isotropic combina- X) :(C —S) .(kl) L4 ( s? ) (893
tions of the /2 configuration with either 2/3 or «’, as y S C/'lky "3{-C3
listed in Table Il, and also for the configurationat wy, as 12 12

a=2(2/3)128, b=2(2/3)%2C, (B9b)

shown in Appendix A. The envelope of the scaling-factor
curves in this case is trivially given by,= —k; . Vs =

The case of compensation by configurations belonging C= , S= )
to the G- paths, as defined in E§B1a), is less trivial. To 2 2
take advantage of the fact that=@<1 and thatc, andc,

behave symmetrically in Eq$B2), we introduce the three APPENDIX C: ISOTROPY IMBALANCE OF A
parametersy, r, and 3 such that D,-SYMMETRIC SEQUENCE FOR TIME REVERSAL

OF SECOND-RANK COUPLINGS

(B9¢)

cosa=\"2, (B4a)

We shall analyze the anisotropy properties of the first-
r cospB=c; CoS«, (B4b)  order average of a second-rank interaction over the path of
r sin =c, sin a, (B4o) 712 pulses withD , symmetry defined by sequen(&l). The

) analysis will be similar to that for the cubic group given in
In this way we preserve the symmetry betwegmndc, and  gec 1)1, The pulses are assumed to be of finite length and
obtain the simple relationshipsi=cos @, 1-A=sir?a, rectangular shape.

2 2_ .2 —
)\c%+(1—)\)c%—r2, Aci+(1-N)c=r coda—p), The five second-rank Cartesian tensors now span four
Aei—(1—-MN)ca=r"cod2p), and A1 —(1=MN)C2  different irreducible representations Bf,,'° designated as
=rcoda+ ). EquationgB2) and Eq.(B1&) can be rewritten A,, By, By, andE, for ZZ, XX=YY, XY, and{YZZX},
as respectively(E is two-dimensional After theD, symmetri-
k,=(2r cofa—B)+1)/3, (B5g)  zation of a given configuration, the associated averaged
5 transformation matrix scales each tensor representation. Thus
ko= (4r°+2r coga—pB)—-1)/5, (B5b)  there are four scaling factors which may be different. This
(712)r2—(5/2)r2 cog28) + 3r cog a— B) holds bec_ause, just as in the case of the cubic symmetry
explored in Sec. lll, the Cartesian tensors are decomposed
—5r coga+pB)+1=0. (B50) into nonidentical irreducible representations. To calculate the

representation scaling factors, we shall use a procedure simi-
lar to that in Appendix A Eq. (A3)], where a configuration
along a=n/2 path is designated by the angldrom the initial

In contrast to Eqs(B2), the scaling factors are now given as
functions of just two independent parametarsand «—pg,
whereas the constraifiB5c¢) involves 8 as well. By elimi- ; - )
natingr and a—g, an implicit relationship betweek,, k,, 72 configuration(see Fig. 9. _ _

and B can be found, and its partial derivative with respect to ~ Starting from them/2; configuration, a rotation by
8 must vanish along the envelope curve. The derivative ofl®Ng Y yields the transformation given in EGA3) from
Eq. (B50) with respect tog, keepingr and a—@3 constant, which the four scaling factors can be deduced

yields a supplementary condition k,»=(3c?—1)/2, (Cla
r sin(2B)+2 sina+B)=0. (B6) Ky yy= — (€24 1)/2, (C1b

An implicit relationship betweet; andk, on the envelope

curve can thus be obtained by eliminatinga—g8, and 3, kxy=—c, (Clg

between Eqs(B5) and(B6). After some lengthy but straight-

forward algebra it is found that
2 2 _ where c=cosa. For c=1 we obtain the scalings for the
3kz— Bkik,+ 9Ky — 4k, —2=0. ®7) w2, configurations, while the average over0 to /2
This equation defines an ellipse in the (k,) plane that, yields the pulse scalings. For isotropic sequences we shall try
as expected, contains the poin¢,1) and ((y10—-1)/9, to reduce the differences between the scaling factors, and
—(y10—-1)/9) (the latter is the scaling combination obtained therefore we introduce the foynonindependeitimbalance
for the cubic configurations ad,, as shown in Appendix A factors §;=k; -k,

Kyzzx=0, (Clo
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TABLE VI. Scaling factor imbalances of various second-rank cartesian terislassified according to the
irreducible representations of th&, group corresponding to the full pulse path and different typesmi#
configurations in Fig. 1see Appendix € Inspection of the signs of thie factors clearly shows the higher
efficiency of pulse-length compensations #2. y .y configurations alone.

Configuration 8z Sx—yy Sxy Syz,07%
/2 Pulses (—7+16)/(40m) —(117+16)/(40m) —(—m+6)/(10m) (m—1)/(10m)
2., 6/5 —4/5 —4/5 1/5
2. -y -3/10 7/10 1/5 -3/10
5,7=(13c%+2¢c—3)/10, (C2a cubic-symmetric values. I\ and 1-\ represent these
) weights and if bolds's are used for the four-dimensional
Oxx-yy=—(7¢"=2¢c+3)/10, (C2D  yectors of scaling imbalancésshose components are given
Syy=—(C2+4c—1)/5, (C20) in Table V!), the global imbalance of a compensation scheme
) can be written as
S =—(c“—c—1)/5, (C20
Yaex _ o Sschemé\) = (47)/ (77— 8) Spuisest (3 —8)/(7Tm—8)
obtained from Eqs(C1) using the isotropic scaling factor
listed in Table III. X[NBsx +y+(1=N)6.7], (CH

Similarly, starting with am/2y configuration for instance, ysing the global weights given in Table V. Although there is
we shall get the scaling factors for the configurations on thg,o \ which could cancebs.meand give an isotropic behav-
vertical faces of the trajectorsee Fig. 7. The correspond- jor, it is still possible to minimize its magnitude. In this way
ing transformation can be deduced from EA3) by circu-  the mean anisotropic part of the averaged second-rank ten-
larly permutingX, Y, andZ (which is a 2/3 rotation along  sors will reach a minimum. The mean square imbalance over

(11D). It is then found that the five-dimensional space of second-rank tensors will be
8,7=—(2¢2—2¢+3)/10, (C3g  9given by
Syx_yy=(8c2+2c—3)/10, (C3b) 1812= (87 7+ S3x— vyt %y 2832 2%)/5, (C5)
(2 where the factor 2 accounts for the fact that Ehneepresen-
Oxy=—(e—c—1)Is, (C39 tation is two-dimensional. Inserting EC4) into Eg. (C5)
Oyzzx="— (2¢?+3c—2)/10, (C3d) with the scaling factors from Table V, after some elementary

where the scalings at/2. y .y are obtained foc=1, while algebra one finds

for the pulses the average ovelis needed. 5(77—8)% SscheméM)|I?
Now we are interested in analyzing the isotropy imbal- _ ) >
ance of the 16-pulse cycl@1) where all the pulses are sup- =(617°—272m+304)— (817"~ 396m+480)\
posed to be of the same duration, whether they connect the +(54m2— 2887+ 384)\2. (C6)
72,5 or w2 .y configurations. We shall thus average the o ) ) ) )
scaling imbalances obtained from Ed€2) and (C3) over The ml_nlmlzatlor_] of this expression as a functiomofives
the whole group of sixteen pulses. The results are listed if'€ OPtimum weight
Table VI with the imbalances of the two types af2 con- Nop= (97 —20)/(127—32)~1.452, (ox))
figurations. Ideally, the differences between the four scaling

factors of the pulses should be canceled by combination¥Nich is greater than one. Thus=1 is the closest to the
with the #/2.., and 7/2. ..y configurations. However, this optimum and incidentally it corresponds to the sequence

cannot be done rigorously, since we are faced with threé23)' The average anisotropic contribution during the com-
equations with two parameters only. It must be noticed thaPensated pulses can then be found as
in this compensation the23 configurations cannot be used | schemé | =(y7/y10)(4— )/ (77— 8)~5.13%.
not only because their scaling factors are linear combinations (C8
of those ofn/2,, and 7/2. .y (we know a linear combi-
nation of these configurations to be isotropic, see Table Il
but also because the cubic symmetric analysis in Sec. Il
shows that the pulse paths have to be combined with
configurations only(see Table V.

The analysis of cubic-symmetric pulse compensation in || Sschemé2/3)]| = (1//30)(37%+16)Y/%/(77—8)
Sec. lll gave the relative weights between th&—27/3 ~8.81% (c9)
pulses andr/2 configurationgsee Table V. We shall thus ' '
introduce the same global weighing factors in our present Although Eq.(C7) yields an apparently unrealistic nega-
D ,-symmetric analysis, but the relative weights of 2.,  tive weight for then/2.., configurations, this result can still
and m/2.y .y configurations may now depart from the be used. By further adding the standard cubic-symmetric

This value is not negligible when compared to the isotropic
caling of —20%, but it is still much smaller than that ob-
ained atA=2/3 when all then/2 configurations are evenly

weighed
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combination of#/2 and 27/3 configurations(as given in  *A. Abragam,Principles of Nuclear MagnetisiiClarendon, Oxford, 1961
Table 1), it is possible to cancel the weight of the negative C:P- SlichterPrinciples of Magnetic Resonanc@rd ed.(Springer, Berlin,
77/2_:2 configurations. In this way the most efficient _compe_n- 2M. Mehring, Principles of High Resolution NMR in SolidSpringer-
sation scheme can be generated. The corresponding weightSeriag, Berlin, 1983 U. HaeberlenAdvances in Magnetic Resonance

for this scheme are found as Suppl. 1(Academic, New York, 1976 2nd ed.
3R. R. Ernst, G. Bodenhausen, and A. WokaBrinciples of NMR in One
N puise= 1677/(13774- 28)%0.730, (ClOe) and Two Dimension&Oxford Scientific, Oxford, 1987 C. A. Fyfe, Solid

State NMR for Chemist€.F.C., Guelph, 1983
4E. R. Andrew, A. Bradbury, and R. G. Eades, Nat(lrendon) 182, 1659
Noj2 iXtY:(377-_5_4)/(:1_377-.4_ 28)~0.195, (ClOb (1958; I. J. Lowe, Phys. Rev. LetR, 285(1959.
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_ "A. Samoson, E. Lippmaa, and A. Pines, Mol. Pr§5. 1013(1989.
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