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II. Cubic sequences and time-reversal of spin couplings
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We present a special case of the theory of coherent isotropic averaging in zero-field NMR, given in
part I of this work. In a zero external field, combinations of the magnetic-field pulses restricted to
p/2 rotations along the three coordinate axes can selectively average internal spin Hamiltonians
while preserving the intrinsic invariance of the spectrum with respect to the sample orientation.
Compared with the general case, the limits of the allowed scaling factors of first- and second-rank
interactions are slightly reduced. For instance, time reversal is possible for second-rank tensors with
a 21/5 scaling factor, instead of21/4 in general. Finite pulse compensations are analyzed and
experimental illustrations are given for two optimum time-reversal sequences. The cubic sequences,
though less efficient than the icosahedral sequences, are technically more feasible and may be used
in zero-field experiments such as decoupling~by rank or nuclear species!, time reversal or
multipolar experiments~the zero-field equivalent of multiple-quantum NMR!. © 1995 American
Institute of Physics.
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I. INTRODUCTION

One of the main causes for the broadening of the NM
transitions observed on powdered or amorphous solids is
anisotropy of the local interactions due to the truncation
usually much stronger Zeeman field.1,2The broadening limits
the resolution and can be removed by various coherent a
aging techniques2,3 ~as MAS,4 WHH,5 DAS,6 DOR,7 ...!, or
by observing the spin couplings in a zero external field.8 In
the zero-field NMR technique~ZF-NMR! there is no Zeeman
field to truncate the local interactions so there is no pri
leged orientation of the crystallites of the sample with r
spect to the laboratory frame.

Coherent averaging techniques2 in standard NMR spec-
troscopy~here called ‘‘high-field’’ NMR, or HF-NMR! have
also made possible a wide range of Hamiltonian manipu
tions, and led to the development of new experiments such
time reversal9–11 and multiple-quantum NMR.12 Coherent
averaging schemes in ZF-NMR have so far seldom been
plored, and that was for the purpose of spin decoupl
only.13,14 Following a preliminary communication15 we re-
cently presented a first part of this work,16 which was the
general theory of coherent isotropic scaling in ZF-NMR
This theory may be used to design new investigation me
ods such as the ‘‘multipolar ZF-NMR,’’ a zero-field analo
of multiple-quantum NMR in a high field.17

The general concept of isotropic coherent schemes15,16

was introduced to preserve one of the fundamental proper
of the spin Hamiltonian in ZF-NMR: The energy levels o
the effective Hamiltonian should be independent of the cr
tallite orientation with respect to the laboratory frame. A
though some privileged orientations may exist in the labo
tory frame, along which magnetic field pulses are applie

a!Present address: 5, rue Saint Denis, 92100 Boulogne, France.
b!Present address: Radiospectroscopy Division, Institute of Nuclear Phy
Radzikowskiego 152, 31-342 Krako´w, Poland.
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for example, it is required that the coherent process as a
whole preserves the isotropic behavior of the system. As
shown in the first part of this work,16 the manipulations al-
lowed under this general constraint are scalings of the inter-
actions. The accessible range of scaling factors, dependin
on the rank of the interactions, was deduced from group-
theoretical arguments. In the homonuclear case, the ranges o
scaling factors for first- and second-rank tensors were found
to be limited from21/3 to 1, and from21/4 to 1, respec-
tively. Various combinations of scaling factors can be real-
ized for experiments such as rank-selective decoupling.

In that general theory, no constraints whatsoever were
imposed on the magnetic-field trajectories. However, in order
to obtain all the optimal scaling factors, the simplest se-
quences had to be of icosahedral symmetry15,16with the tech-
nical implementation of these sequences rather demanding
We have now investigated the allowed isotropic scaling
schemes under the circumstances where the magnetic fiel
pulses are constrained to some specific axes and angles, an
specifically, in the more practical case ofp/2 pulses along
three orthogonal axes,X, Y, and Z in the laboratory
frame.13,14This is important, since the simplest experimental
setup to generate magnetic field pulses in any direction con
sists of three orthogonal coils. The aim of this work is thus to
analyze the corresponding set of allowed scaling factors,
both in thed-pulse limit and for finite-length pulses. Two
useful examples, the optimum time reversal for first- and
second-rank interactions, are explicitly examined and corre-
sponding experimental results are shown. Other cases o
scaling can be derived from the principles established in
these examples. All the experiments were carried out on a
modified version of our zero-field spectrometer18 where, as
described in the first part of this work,16 pulse precision and
stability had to be carefully controlled. Indeed, zero-field se-
quences contain more pulses than their analogues in high
field, and must be recycled in order to reduce the effects of
cs,
/95/103(10)/3982/16/$6.00 © 1995 American Institute of Physics
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3983Llor, Olejniczak, and Pines: Coherent isotropic averaging. II
eddy currents, finite pulse lengths, and higher-order corr
tions to the average Hamiltonian.

In the following we shall assume that the reader is f
miliar with the concepts introduced in the first part of th
work,16 but we briefly summarize the main results to be use
The experiment is performed in a zero field by applying
series of dc-magnetic-field pulses$Pi%, which modulate the
full, untruncated spin Hamiltonian of the system. In the firs
order average Hamiltonian theory,2 the coherent averaging
scheme is described by a trajectory of configurations$Ri%,
defined in SO~3!. The rotationsRi are deduced from the
magnetic-field pulsesPi according to

Ri5~Pi•Pi21• ••• •P2•P1!
21 or Pi5Ri

21
•Ri21 ,

~1!

and can be defined by their total rotation anglesvi , and their
rotation axesni . For interactions of rankl , the isotropic con-
straint on the averaging process is fulfilled if and only if

^xl
l ~v i !Ylm~ni !& i50, ~2!

for any l andm, where 1<l<2l and2l<m<l. TheYlm

are the spherical harmonics, thexl
l are the generalized char

acters of the Wigner matrices, and the^ &i brackets stand for
the average overi . Then the scaling factor is given by

kl5^x l~v i !&/~2l11!, ~3!

wherexl is the character of thel th-order Wigner matrix. An
important feature of Eq.~3! is that the scaling factor is inde
pendent of the rotation axes trajectory$ni%, and involves$vi%
only. For first- and second-rank tensors this yields

k15~2^cosv i&11!/3, ~4a!

k25~4^cos2 v i&12^cosv i&21!/5. ~4b!

Isotropic sequences in whichv takes only one value~spheri-
cal sequences! can be generated using an icosahedral dis
bution of $ni%. Then, by combining spherical sequences
differentv values, the set of all the allowed scaling facto
can be constructed.

II. CUBIC d-PULSE SEQUENCES

In the previous problem of general isotropic scaling16 it
was necessary to examine so-called spherical sequences
involve only one value ofv ~which can take any value be
tween 0 andp!. Then the analysis of the allowed scalin
factors for arbitrary isotropic trajectories$Ri% was carried
out on the equivalent schemes that were obtained as com
nations of spherical sequences characterized by the same
tributions ofv values and weights$vi%. Now we are going to
apply the same approach to our present problem, which is
case of sequences involvingp/2 pulses along the three coor
dinate axes. This restricts the set of accessible configurat
to the cubic subgroup of SO~3!, so a trajectory will be a
subset$Ri% of the 24 elements of the cubic group. Her
there are only four discrete values ofv allowed, at 0,p/2,
2p/3 andp, with 1, 6, 8, and 9 elements, respectively. E
J. Chem. Phys., Vol. 103, N
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cept for the special case ofv50, sequences involving just
one of these sets only will not be isotropic, although overa
isotropic behavior may be achieved by combining the co
figurations from different sets.

To analyze the accessible range of scaling factors, it
convenient to introduce the highest symmetry allowed f
the system, namely the cubic symmetry. Let us assume t
$Ri% is an isotropic sequence involving some subset of t
cubic groupO and yielding some combination of scaling
factors (k1 ,k2). Then the symmetrized version given by
$g•Ri•g

21%, whereg spans the entireO group, will also
give the same scaling factors, because the distribution$vi% is
unchanged. We thus obtain all the possible allowed scali
factors bycombining complete classes of cubic configura
tions to build sequences. Such sequences, which are inv
ant under groupO, will therefore be termed cubic.

The analysis of the isotropy constraint for cubic se
quences based on the general formalism as given by Eq.~2!
is not very convenient. Instead of the spherical irreducib
tensor basis, we shall use the Cartesian tensors, which
more appropriate for cubic symmetry and have already be
introduced in previous analyses of zero-field decouplin
sequences.13 The Hamiltonian is expanded in terms of the
three spin operatorsI X

u , I Y
u , andI Z

u for each nucleusu, where
the directionsX, Y, andZ are the three fixed laboratory axes
In the presence of residual fields~first-rank interactions! and
spin–spin dipolar couplings~second-rank!, the Hamiltonian
becomes

H5(
a,u

Aa
uI a

u1 (
ab,u,v

Bab
uv I a

uI b
v , ~5!

wherea andb stand forX, Y, andZ, and the coefficientsAa
u

andBab
uv depend on the strengths of the interactions and t

orientations of the principal axes in the laboratory fram
Since the dipolar coupling is a second-rank tensor,Bab

uv is
symmetrical and traceless with respect toab.13 Thus the bi-
linear terms can be expanded over the following second-ra
Cartesian tensors:

aa5I a
uI a

v2IuI v/3, ~6a!

ab5I a
uI b

v1I b
uI a

v . ~6b!

SinceXX1YY1ZZ50, the threeaa tensors are not inde-
pendent and the sixaa andab tensors do span a five dimen-
sional space, as expected for a second-rank representa
We use the shorthand notationa to denoteI a

u . This notation
displays some ambiguity since the symbolsX, Y, andZ rep-
resent both the coordinate axes and the first-rank tensors
context should make the distinction clear. In this descriptio
the effects of rotations belonging to the cubic group are co
veniently described by permutations within each of thea,
aa, andab sets. In other words, this is a decomposition o
the first- and second-rank tensors into irreducible represen
tions of the cubic group. A table of all the transformation
has already been published:13 The first-rank tensors behave
o. 10, 8 September 1995
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3984 Llor, Olejniczak, and Pines: Coherent isotropic averaging. II
as anF1 representation, and the second-rank tensors are
composed intoE and F2 representations foraa and ab,
respectively.19

The analysis of an arbitrary cubic sequence is now sim
plified: The effect of a pulse on the Hamiltonian is given b
a linear transformation which is a cubic representatio
D(Ri), and the first-order averaging is performed over th
complete classes defined by thevi . In the following deriva-
tion, we shall use notationRv i , wherev labels the class of
the configuration, whereas indexi is now restricted to label
Rv inside classv. The first-order average Hamiltonian can
then be written

^H&5(
a,u

Aa
u^D~Rv i !I a

u&1 (
ab,u,v

Bab
uv ^D~Rv i !I a

uI b
v &,

~7!

and for each irreducible representation, for instance theaa,
this yields

^D~Rv i !aa& iv5^D~Rv i !&v iaa5^^D~Rv i !& i&vaa

5^kaa~v!Id&vaa5^kaa~v!&vaa, ~8!

whereId is the identity matrix. The fact that class average
induce scalings of each of thea’s, aa’s, or ab’s is a conse-
quence of Schur’s Lemma19 @indeed ^D(Rv i)& i commutes
with any D(R) in the group#. In consequence, because o
different scaling factors for the twoaa andab representa-
tions, the second-rank tensors are not isotropically scal
whereas the first-rank ones always are. We recall that un
icosahedral symmetry the scaling for both first- and secon
rank tensors was always isotropic.16 For each of the five
cubic classes Table I summarizes the various scaling facto
which can be computed explicitly from the table of cartesia
tensor transformations13 or from the character table of the
cubic group.19

The scaling differences between theaa andab repre-
sentations account for the anisotropy of cubic sequences
second-rank tensors. The general theory of isotropic scal
provides a useful guide for combining different classes in a
isotropic manner. The contribution of eachv value to the
isotropic scalingk2 is actually given by Eq.~4b!, so the

TABLE I. Scaling factors of the various terms of spin interactions averag
over cubic-group classes. The classes are labeled by the total angle rota
v and containn elements~the two classes atv5p are distinguished asp
andp8!. First-rank interactions~associated with the irreducible representa
tion F1! are always isotropically scaled by factork1. Second-rank interac-
tions can be decomposed over theaa and ab type tensors~irreducible
representationsE andF2!, respectively scaled bykaa and kab . The d de-
scribes the isotropy imbalance with respect tok2, the isotropic contribution
of the classes to the second-rank scaling factor.

v n k1 kaa kab k2 d

0 1 1 1 1 1 0
p/2 6 1/3 0 21/3 21/5 11/5
2p/3 8 0 21/2 0 21/5 23/10
p 3 21/3 1 21/3 1/5 14/5
p8 6 21/3 0 1/3 1/5 21/5
J. Chem. Phys., Vol. 103, N
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difference between theaa or ab scalings with respect tok2
provides theisotropy imbalancethat has to be compensated
The isotropy imbalance, defined as

d5kaa2k2 ~9!

is given in Table I, together withk1, kaa , andkab . To gen-
erate an isotropic cubic sequence, it will thus be necessary
combine different classes, orv values, in such a way that

^d~v!&v50. ~10!

Once the condition~10! is fulfilled, the differencekab2k2 is
automatically compensated; it is always proportional tod
and of the opposite sign, since the isotropic scaling factor
given by the trace ofD:k25(2kaa13kab)/5.

Starting with one classv, the simplest way to compen-
sate for the imbalanced~v! is to add another class whose
imbalance has an opposite sign. The weights associated w
such combinations may not be equal, but since they are
ways positive, the combined classes should have oppo
signs ofd. Inspecting Table I, we find four possible combi
nations only~excluding the trivial identity class!, which are
listed in Table II. Except for the full decoupling sequenc
which combines thep/2 andp8 classes, these sequences a
optimal, since each displays the smallest span ofv and is
thus the closest to the general theoretical limits.16 Any other
isotropic cubic sequence will be built from a combination o
such sequences, so the allowed scaling factor combinati
are obtained as the convex envelope of the discrete optim
values in the (k1 ,k2) plane. This is illustrated by the shaded
area in Fig. 1. The reduction of the accessible scaling fact
due to the cubic constraint is not excessive compared to
limits of general isotropic schemes.16 In the important cases
of rank-selective decoupling and time reversal, the restr
tions with respect to the general case are as follows~see Fig.
1!:

~1! Range of scaling factors forl51 tensors while decou-
pling l52 interactions:k1521/6 to 1/3, instead of
2~A521!/6 to ~A511!/6;

~2! Range of scaling factors forl52 tensors while decou-
pling l51 interactions:k2521/8 to 2/5, instead of21/5
to 2/5;

~3! No change at all for the optimum time reversal ofl51
tensors, withk1521/3, andk251/5;

~4! Optimum time reversal ofl52 tensors withk2521/5,
instead of21/4 ~while k151/5, instead of 1/6!;

d
tion
TABLE II. Scaling factors of four nontrivial, cubic, isotropic sequences tha
explore only two cubic classes. The combination of the classes defined
v1 andv2 with weightsl1 andl2 give isotropic scalings of first and second-
rank interactions given byk1 andk2, respectively. The points representing
the sequences in thek1 ,k2 plane are shown in Fig. 1. TheN is the total
number of explored configurations in the sequences.

v1 l1 v2 l2 N k1 k2

Point
~Fig. 1!

p/2 3/5 2p/3 2/5 14 1/5 21/5 D
2p/3 8/11 p 3/11 11 21/11 21/11 E
p 1/5 p8 4/5 9 21/3 1/5 C
p/2 1/2 p8 1/2 12 0 0 F
o. 10, 8 September 1995
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3985Llor, Olejniczak, and Pines: Coherent isotropic averaging. II
~5! Time-reversal scaling for bothl51 and 2 tensors with
k15k2521/11, instead of21/9.

Explicit cubic sequences can be obtained after choos
a path to explore the various configurations. For thed-pulse
sequences, the order is usually irrelevant and since all
configurations are connected by a network ofp/2 pulses,
there is a wide range of possibilities. Some examples
decoupling and time reversal were previously given.15 In
practical situations, where the finite pulse lengths have to
taken into account, the path has to be chosen more care
We present some explicit pulse sequences in the discus
of experimental examples in Secs. IV and V.

Within the framework of orthogonalp/2 pulses only, one
may wonder if the constraint of cubic symmetry of the tr
jectory is mandatory, i.e., if the configurations have to
explored by whole cubic classes. If not, simpler sequen
could be obtained using, for instance, subgroups of the c
group. Of course, the symmetry arguments presented a
would not allow any improvement of the performance of t
sequences as far as scaling factors are concerned, but sh
sequences could be expected. However, with smaller sym
try groups the number of irreducible representations in
subspace of second-rank tensors increases. It follows f
the general principle of anisotropy compensation by com
nation of classes that more than two values ofv would be
necessary in order to fulfill the isotropic condition. For i
stance, while using the tetrahedral group, we deal with th

FIG. 1. Allowed combinations of isotropic scaling factors for first-~l51!
and second-~l52! rank interactions,k1 andk2, are restricted to the shade
region of the (k1 ,k2) plane for cubicd-pulse sequences. Various usef
combinations of scaling factors are allowed:~A! decoupling ofl52 interac-
tions, with scaling ofl51 tensors by21/6 to 1/3;~B! decoupling ofl51
interactions, with scaling ofl52 tensors by21/8 to 2/5;~C! optimal time-
reversal scaling forl51 interactions withk1521/3, andk251/5; ~D! opti-
mal time-reversal scaling forl52 interactions withk151/5, andk2521/5;
~E! optimal time-reversal scaling for bothl51 and l52 interactions with
k15k2521/11. ~F! decoupling of bothl51 and l52 interactions with
k15k250. The isotropic scaling combinations associated with thep/2 and
2p/3 configurations that belong to the cubic group are also shown.
comparison, the set of allowed combinations for unconstrained isotr
schemes is shown in light grey. As explained in Sec. II and listed in Tabl
the D, E, and F points are obtained as the weighed averages of thep/2 and
2p/3, the 2p/3 andp, and thep/2 andp8 configurations, respectively.
J. Chem. Phys., Vol. 103, N
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irreducible representations in the space of second-rank te
sors~E1 , E2 , andF! and, accordingly, with three different
partial scaling factors yielding two independent imbalanc
parameters. In general, three configurations are then nee
to restore the isotropy and, as expected, the optimum s
quences are eventually found to coincide with the cub
schemes explored above.

III. FINITE PULSE COMPENSATION OF CUBIC
SEQUENCES

As discussed in part I,16 the pulse compensation of iso-
tropic schemes refers to the elimination of any anisotrop
effects that might be introduced by the finite length of th
pulses. Compared with thed-pulse limit, the scaling factors
may be somewhat affected by the compensation for the fin
pulse lengths, but the isotropic behavior has to be preserv

As already illustrated,16 a continuous line of configura-
tions inside SO~3! is explored during a pulse of finite length,
and the average of the Hamiltonian over this path has to
included into the global average, as in Eqs.~2! and~3!. Now,
if a d-pulse sequence exhibits a cubic symmetry, i.e. if th
discrete set of explored configurations is a union of comple
cubic classes, the version obtained by introducingp/2 pulses
of finite length may no longer exhibit this symmetry. For the
cubic symmetry to be fulfilled, the set of configurations in
SO~3! has to be invariant under any cubic rotationg

$Ri%→$g•Ri•g
21%. ~11!

This means that if anyp/2 path between two cubic configu-
rations is used in a sequence, then all the otherp/2 paths
connecting the classes of those configurations have to
used as well, the same number of times with the same m
tion profile~i.e., the same pulse shapes have to be used in t
threeX, Y, andZ coils!. For instance, the optimum time-
reversal sequence for second-rank tensors~yielding a21/5
scaling, see Table II! can be obtained by combining the six
p/2 and eight 2p/3 configurations into a 14-pulse sequence
Now, as shown in Fig. 2, thep/2 and 2p/3 classes are con-

l

or
pic
II,

FIG. 2. Schematic network characteristics of the 24 configurations of th
cubic group~regrouped into five cubic classes! with thep/2 pulses connect-
ing them. Large circles stand for the cubic configurations~with their number
in parentheses!, while small circles indicate the number ofp/2 paths con-
necting two classes. The number of paths per configuration is also shown
the class circles. This diagram allows us to design effective trajectori
exploring the desired configurations and/or paths according to the cub
symmetry.
o. 10, 8 September 1995
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3986 Llor, Olejniczak, and Pines: Coherent isotropic averaging. II
nected by 24 differentp/2 paths, corresponding to the max
mum number of elements under cubic symmetry. A cu
symmetric path in this case would thus require at least
pulses~this case is explored more extensively in Sec. V!.

In general the shape of a real magnetic-field pulse is
rectangular, so the motion profile along the pulse path m
not be linear~nonsquare shape pulse!, affecting the corre-
sponding average. Instead of assuming a specific p
shape, we derive the compensation equations and the
lowed scaling factors for the general case. Within this fram
work, deliberately modulated pulses are also allowed, wh
yields wider ranges of scaling factors. Instead of using
p/2 pulses, a sequence consisting of split pulses~for instance
two p/4 pulses! could be implemented, while still keepin
the configuration trajectory on the network of cubicp/2
paths. The set of allowed configurations is therefore
tended from the four discretev values of the cubic group, to
a continuous range ofv along thep/2 paths. The network o
configurations is summarized in Fig. 2.

Depending on the choice of a particular pulse, a giv
configuration along this path will be symmetrized by t
cubic group into 6, 12 or 24 other configurations. As in E
~8!, the averaging is performed in two steps, first over
cubic group transformations~equivalent to the class averag!
and next over the configuration types. LetM (R) be the
transformation matrix, in the Cartesian tensor basis, ass
ated with a given configurationR along a path. The transfor
mation corresponding to the cubic average is given by

^M ~R!&O5^M ~g•R•g21!&gPO

5^D~g!•M ~R!•D†~g!&gPO , ~12!

whereD(g) is the representation of the cubic group in t
space of first- or second-rank tensors. The adjoint trans
mation, as given in Eq.~11!, acts on any matrixN according
to

N→Sh~N!5D~h!•N•D†~h!. ~13!

This is a representation of the cubic group in the space
linear transformationsN, and since it leaveŝM (R)&O in-
variant, thê M (R)&O belongs to the space of invariant irre
ducible representations. We must stress at this point tha
expanding the free HamiltonianH over an irreducible tenso
basis, theM (R) can be written as a Wigner matrix@which is
an irreducible representation of SO~3!#; however, the trans-
formations involved in Eq.~13! belong to thecubic group O
and thusM (R), even in the Wigner matrix form, will be
decomposed into irreducible representations ofO.
J. Chem. Phys., Vol. 103, N
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According to Eq.~13!, the decomposition ofS in irre-
ducible representations is given by the coupling between
representationsD andD†. By introducing the expansion of
D into irreducible representations, we can decompose
coupled representation in the following way:

D~g!•D†~g!5H(
r
D ~r !J H(

s
D ~s!†J

5(
rs

D ~r !
•D ~s!†5(

rst
~rst!D ~ t !, ~14!

where (rst) are the Clebsch–Gordan coefficients19 of the
cubic group~which couple the irreducible representations o
the cubic group!. A well known property of the Clebsch–
Gordan expansion is that the coupledD (r )

•D (s)† contains the
invariant representation~once! only if r5s.19 For instance,
for first-rank tensors, there is only oneF1 cubic irreducible
representation inD, and therefore only one invariant repre
sentation. Just as for discrete sequences, this shows that fi
rank tensors are isotropically scaled by the cubic symmet
In the space of second-rank tensors, theD ’s are expanded
into E andF2 representations and, because they are differe
there will be only two invariant representations correspon
ing to the E•E and F2•F2 couplings. Thus the average
^M (R)&o performs the scalings of theaa andab type ten-
sors, but not necessarily with the same factors. For both fir
and second-rank tensors the situation is similar to that withd
pulses and we shall characterize the anisotropic contribut
of a given configuration by the same parameterd defined by
Eq. ~9!. This is due to the fact that all the irreducible repre
sentations in the spaces of first- and second-rank tensors
pear only once at the most. We will not attempt to derive th
corresponding arguments for higher-rank tensors.

The imbalanced(R) for the various possible paths is
obtained by taking the partial traces~the invariant represen-
tations! of the transformation matrixM (R) over the sub-
spacesaa andab, as given in Appendix A. The results are
summarized in Table III, and by thed vsv diagram in Fig. 3.
As in the d-pulse limit @Eq. ~10!#, isotropic schemes must
explore configurations and paths in such a way that the a
erage ofd(R) vanishes. If, as mentioned above, we use sp
p/2 pulses, the sequences wherev takes only one value, i.e.,
spherical trajectories, can be generated for allv values above
v05arccos@~A1024!/6#'98.03°. Below that value, as shown
in Fig. 3, all the configurations of cubicp/2 paths have posi-
tive isotropy imbalances, and to compensate for them, so
configurations withv above 98.03° have to be used. The s
f

-

TABLE III. Isotropy imbalance for second-rank tensors of the configurations belonging to various types op/2
paths in the cubic group. To simplify the analytical expressions the 0→p/2 and p/2→p, as well as the
p/2→2p/3 and 2p/3→p8 pulses have been regrouped to form singlep pulses. The configurations are desig
nated by the total anglea along these paths andc stands for cosa ~see also Fig. 3!.

Path a cosv k1 k2 d

0→p aZ c ~2c11!/3 (4c212c21)/5 ~c21!2/5
p/2→p8 p/2Z1aY ~c21!/2 c/3 (c22c21)/5 (3c212c23)/10
p→p8 pZ1aY 21 21/3 1/5 c221/5
o. 10, 8 September 1995
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of allowed scaling factors in this region is determined
Appendix B and plotted in Fig. 4. Compared to the gene
isotropic limit defined by Eqs.~4!, there is only a small re-
duction of the area of allowed scaling factor combinatio
In the region of second-rank decoupling the maximum i
tropic first-rank scaling is reduced by about 13%.

So far we have not introduced any constraint on
pulses. In real experiments, however, the local interacti
are not negligible compared with the strengths of the av
able magnetic field pulses. The optimum pulse shape is r
angular in this case and, even if split pulses are used,
contribution of the pulses to the total isotropy imbalance a
the scaling factors must be integrated over completep/2
paths. The averages ofd, k1, andk2 over the five possible
p/2 paths can be deduced from the expressions in Table
They are listed in Table IV. The integrated pulse contrib
tions can be considered as forming five discrete configu
tions that have to be combined with each other or with a
cubic set of configurations in such a way thatd vanishes.

If we now exclude split pulses~so any single pulse is a
completep/2!, then only the five original discrete cubic con
figurations can be combined with the five possible puls
From this set of ten trajectory parts, five have positive, a
four negatived, giving a total of twenty possible isotropi
combinations. The set of allowed scaling factors, shown
Fig. 4, will be given again by the convex envelope of t
scaling-factor combinations. Table V lists the optimu
schemes, i.e., schemes yielding scaling-factor combinat

FIG. 3. Isotropy imbalanced of second-rank interactions~defined in the
text! for schemes containingp/2 pulses only along the fixedX, Y, andZ
axes plotted as a function of cosv, wherev is the total rotation angle of a
configuration. By selecting a path which averages outd we can generate an
isotropic scaling sequence. The interval between successive black dot
responds to 6° increases in the pulse angle between the cubic configur
indicated by the larger empty circles~see Sec. III!. The corresponding plots
of the first- and second-rank isotropic scaling factorsk1 and k2 are also
shown below. An example of second-rank isotropic sequence, combinin
2p/3 andp/2 configurations, is shown by dashed lines.
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at the borderline of the allowed area. As expected, the area
allowed scaling factors in this case falls between the tw
limits found above for thed pulses and for unrestricted cubic
pulses.

The limit for rectangular pulses appears more realist
than that for the cubic pulses of unrestricted shape cons
ered previously. As a matter of fact, the constraints impose
on the pulses are not sufficient, because, although the sh
has to be rectangular, the relative amplitudes between diffe
ent pulse sets have not been specified and the topologi
features of the network ofp/2 paths have been overlooked.
For instance, if all pulses have to be of the same amplitud
incommensurate weighing factors between differentp/2
pulse sets~as in Table V! may be difficult to obtain in simple
sequences. As shown in the examples of the next sectio

cor-
tions

the

FIG. 4. Allowed combinations of isotropic scaling factors for first-~l51!
and second-~l52! rank interactions,k1 and k2, are limited to the dark-
shaded region of the (k1 ,k2) plane for sequences with pulses of unrestricted
shape but of the axes alongX, Y, or Z and of the total anglep/2 ~cubic
pulses!. For comparison, the set of allowed combinations for completel
unconstrained isotropic schemes is also shown in light grey. Spherical
quences~i.e., those that involve one value ofv only! cannot be generated
for v values belowv05arccos@~A1024!/6#, corresponding to point A. This
causes a reduction of about 13% in the first-rank scaling factor for th
second-rank decoupling, as in point B at (k1 ,k2)5~A2/3,0!. With the supple-
mentary constraint of rectangular shape for thep/2 pulses, the area of al-
lowed scaling factors is further limited to the concave side of the polygon
line C ~whose corner points are given in Table V!. The limit for d-pulse
sequences D, already marked in Fig. 1, is also shown.

TABLE IV. Isotropy imbalance for second-rank tensors averaged over th
various types ofp/2 paths connecting the cubic configurations~square pulse
shape is assumed!. These values are obtained by integrating the expressio
given in Table III overa50 top/2 anda5p/2 top. TheN is the number of
differentp/2 paths of a given type and has to be taken into account whe
combining the pulses and configurations to generate an isotropic sequen

Path N k1 k2 d

0→p/2 6 ~p14!/3p ~p14!/5p ~3p28!/10p
p/2→p 6 ~p24!/3p ~p24!/5p ~3p18!/10p
p/2→2p/3 24 2/3p 2~p14!/10p 2~3p28!/20p
2p/3→p8 24 22/3p 2~p24!/10p 2~3p18!/20p
p→p8 12 21/3 1/5 3/10
No. 10, 8 September 1995
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TABLE V. Optimum isotropic cubic trajectories involvingp/2 pulses of square shape. Starting from a givenp/2 pulse-type the combinations with other pulse
and cubic configurations are designed to average out the isotropy imbalance obtained from Tables I and III~see Figs. 2 and 3!. Out of the twenty possible
combinations excluding identity at (k1 ,k2)5~0,0!, only eight are optimal~i.e., they belong to the convex envelope of scaling factor combinations as sho
in Fig. 4!. Out of those eight, the one which combines discrete cubic configurations atp and 2p/3 has already been listed in Table II. For the seven others
set ofp/2 pulses is combined with discrete cubic configurations~five cases! or otherp/2 paths~two cases! as listed in the table. The weighing factors are
associated with the whole sets of either pulses or configurations, and effective sequences have thus to take into account the number of elements
~given byN in Tables I and III!.

Config./Path Weight Config./Path Weight k1 k2

0→p/2 3p

6p28

2p/3 3p28

6p28

p14

6p28

2

3p24

0→p/2 1

3

p/2→2p/3 2

3

p18

9p

0

p/2 3p28

7p28

p/2→2p/3 4p

7p28

p

7p28
2

p

7p28

p/2→p 3p28

9p18

p/2→2p/3 6p116

9p18
3p228p164

3p(9p18)
2

8

9p18

p/2→p 3p

6p18

2p/3 3p18

6p18
2

2p14

6p18
2

2

3p14

p 3

11

2p/3 8

11
2

1

11
2

1

11

p 3p18

19p18

2p/3→p8 16p

19p18
2
3p140

57p12

2p18

19p18

p→p8 2

5

p8 3

5
2
1

3

1

5
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each experimental case requires a specific analysis. How
the area of allowed scaling factor combinations that has b
calculated above with the rectangular-pulse assumption g
a reasonable estimate for the performance of real seque

Although the natural symmetry to build isotrop
schemes for second-rank tensors in SO~3! is icosahedral, it is
interesting to note that the cubic symmetry can do alm
equally well. The smaller areas of allowed scaling factors
Figs. 1 and 4 should not be seen as coming from the s
metry but from the stringent condition of orthogonalp/2
pulses in the sequences. This restricts the allowed config
tions near the origin topositive values of imbalance only.
They could be actually compensated by using configurati
at the samev values but with opposite imbalance, for in
stance along the magic directions. The symmetry of the
rangement would still be cubic and spherical sequen
would then be available for any value ofv. In the formalism
of irreducible tensors used in the first part of this work,16 this
means that the cubic symmetry can average out up to fou
rank spherical harmonics. Although the general gro
theoretical arguments show that one fourth-rank spher
harmonic is not averaged out by the cubic group,20 there are
specific point distributions of this symmetry that do avera
out this remaining term~and even remaining terms of highe
ranks!.21 Such distributions are already well known fo
spherical quadratures,21 but, for second-rank tensors, the c
bic sequences will in terms of number of points always
less efficient than the corresponding icosahedral sequen
Examples are provided by the two naturally spherical cu
sets of configurations, found atv05arccos@~A1024!/6# and at
v5p ~see Fig. 3!. They contain, respectively, 24 and 1
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different configurations, compared to 12 and 6 for the icos
hedral solutions.

IV. GENERATING REAL SEQUENCES: TIME
REVERSAL FOR FIRST-RANK COUPLINGS

As in high-field NMR,2 pulse sequences in zero fiel
have to be compensated for various error sources: finite pu
lengths, effects of higher-order terms in the average Ham
tonian, as well as pulse errors and inhomogeneities. The
nite width of the pulses is compensated using the gene
principles of the previous sections. The second-order corr
tions due to the finite duration of the sequence are elimina
by time-symmetrized sequences2 and this also compensate
for the residual rotation after one cycle due to the pulse
rors ~provided that opposite pulses are properly balanc
and even if they are inhomogeneous or poorly calibrate!.
However, pulse errors and inhomogeneities affect also
average Hamiltonian by generating configuration paths t
do not follow the ideal trajectory. Although this last problem
has been addressed in a high-field NMR,2 we shall not at-
tempt to devise the corresponding schemes in a zero fiel

In all the sequences used in the experiments shown
low, one cycle$Ri%0< i<n is compensated by the next cycl
$Rn2 i%0< i<n, where the configurations are explored in th
reverse order. It follows from Eq.~1! that the pulses in the
symmetric cycle are opposite and applied in the reverse or
compared to the pulses in$Ri%0< i<n. In contrast with the
high-field situation where opposite pulses are just rela
through a phase shift ofp, opposite dc pulses are obtaine
by applying physically opposite currents in the pulse coi
No. 10, 8 September 1995
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This has another significant advantage: the reduction of ed
currents effects. Ideally, the coils that generate the dc puls
in ZF-NMR should have no metallic parts in their vicinity to
avoid the generation of eddy currents,14,18 but few experi-
mental setups can perfectly comply to this condition. The
for a given pulse sequence, the time average of the magne
field pulses has to vanish in order to avoid the build up
steady residual magnetic fields from the eddy currents. Th
is automatically ensured by the symmetrization for th
second-order compensation.

When using time-symmetrized cycles to compensate f
the second-order effects, it is possible to get rid of two puls
between the two time-symmetric subcycles. This is exte
sively used in high-field sequences~such as WHH2,5! to re-
duce somewhat the average irradiation power and to elim
nate any rotations around the magnetic-field axisZ ~X andY
rotations are obtained with single rf pulses whereasZ rota-
tions require composite transverse pulses, or dc pulses al
Z!. In contrast, the elimination of two pulses in zero-fiel
sequences is not very useful: All the pulse directions a
equivalent and, because of the higher number of pulses
cycle, the reduction of the average power is negligible. Fu
thermore, for symmetry arguments, the compensation for t
finite length of the pulses is achieved more efficiently whe
preserving all the pulses of a subcycle. All the second-ord
compensated sequences will thus consist of complete s
cycles containing their total number of pulses as given in t
noncompensated versions.

Isotropic sequences for first-rank interactions were e
amined in the first part of this work.16 If isotropy for second-

FIG. 5. Configuration trajectories in the SO~3! sphere for isotropic time
reversal of first-rank interactions. In thed-pulse version only the threep
configurations of the cubic group are needed~points 1, 2, and 3, along theX,
Y, andZ axes! and they are connected by threep pulses@sequence~15!#.
This path~heavy line! can be compensated for the finite length of the pulse
by adding three pulses to obtain a path of cubic symmetry, as shown by
medium heavy line@sequence~17b!#. Note that opposite configurations on
thep sphere represent identical elements of SO~3!, so the seemingly open
path is actually closed. These trajectories can be made isotropic for
second-rank tensors as well by stopping at thep8 configurations, as shown
by empty dots along thep paths, according to the relative weights given in
Tables II and V.
J. Chem. Phys., Vol. 103, N
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rank tensors is not required, the general principles of isot
pic scaling show that configuration distributions o
tetrahedral symmetry are sufficient. Such schemes were
ready given for decoupling,13,15 and for thed-pulse versions
of time reversal.15,16They are simple illustrations of the gen
eral cubic formalism introduced in the previous section
since the tetrahedral groupT is a subgroup of the cubic
groupO.

Optimum time reversal ofl51 tensors is obtained with
configurations on thev5p sphere of SO~3!.16 A tetrahe-
drally symmetric set of points necessarily contains 1, 4, 6,
12 elements, so in general the minimum number of config
rations for isotropic tetrahedral sequences is 4. However
already pointed out,16 the folded structure of SO~3! allows us
to reduce these numbers in the case of thev5p sphere. The
simplest case, as shown in Fig. 5, consists of the threep
configurations of the cubic group. In thed-pulse limit the
sequence contains threep pulses15,16

pZ2~t/22pY2t2pZ2t2pX2t/2!n2pZ . ~15!

where, as explained in the Appendix of the first part of th
work,16 the pulses have been computed according to Eq.~1!,
assuming that they correspond toactive, right-handed rota-
tions of the spin magnetization. We shall use this definition in
all the sequences listed below. After symmetrization f
second-order corrections, the three-pulse building blo
yields a six-pulse cycle with two sampling points

pZ2~t/22pY2t2pZ2t2pX2t2p2X

2t2p2Z2t2p2Y2t/2)n2pZ . ~16!

For pulses of finite length, the tetrahedral symmetrization
the trajectory yields six differentp paths~see Fig. 5!. Each
vertex is connected to the others by an even number op
paths which makes it possible to explore all the paths j
once with a six-pulse sequence. Starting from the sim
three-pulse sequence~15!, there are two possible ways o
generating such a trajectory

pZ2~t/22pY2t2pZ2t2pX2t2pX

2t2pZ2t2pY2t/2)n2pZ , ~17a!

pZ2~t/22pY2t2pZ2t2pX2t2p2Y

2t2p2Z2t2p2X2t/2)n2pZ . ~17b!

An interesting feature of the first version is that thepZ , pX ,
andpY configurations are explored in the reverse order in t
second half of the cycle, so second-order effects are pa
compensated~they are not for the pulses themselves!. How-
ever, this is not achieved with the usual method of oppos
pulses in reverse order, and thus eddy currents are not c
pensated. By contrast, in the second version, the eddy
rents are compensated whereas the second-order effect
not.

Since none of the six-pulse sequences for time rever
allows us to compensate for all the major error sources
multaneously, some more complex versions had to be use
the experiments. As for high-field sequences,2 they were gen-
erated with a building-block approach, where the most s
nificant effects were treated first. In the present experim
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3990 Llor, Olejniczak, and Pines: Coherent isotropic averaging. II
the pulses were much stronger than the local interaction
the first effects to be compensated for were a second-o
term in the average Hamiltonian and eddy currents. Acco
ingly, we used the following 24-pulse sequence:

pZ2~t/22pY2t2pZ2t2pX2t2p2X2t2p2Z2t

2p2Y2t2p2Y2t2p2Z2t2p2X2t2pX2t

2pZ2t2pY2t2p2Y2t2p2Z2t2p2X2t

2pX2t2pZ2t2pY2t2pY2t2pZ2t2pX2t

2p2X2t2p2Z2t2p2Y2t/2)n2pZ , ~18!

where the sampling periods appear every three pulses.
6-pulse blocks compensate for the second-order effects
eddy currents, the 12-pulse subcycles include finite pul
length corrections, and finally the 24-pulse total cycle ca
cels the second-order terms arising from the configuratio
explored during the pulses, which are not taken into acco
otherwise.

All these sequences are isotropic for first-rank tens
only. They can be made isotropic for second-rank inter
tions according to the general principles given in the pre
ous sections. For thed-pulse sequences, the isotropy imba
ance of thep configurations has to be compensated by thep8
configurations, as given in Table II. Since there are sixp8
configurations, they can be included in the trajectory of s
quence~16! by replacing all thep pulses with successivep/2
pulses according to

p i2t→~p/2! i22t/32~p/2! i2t/3, ~19!

yielding 12-pulse sequences. As in Eq.~17b!, this scheme
reduces the influence of eddy currents and is also comp

FIG. 6. Isotropic spin echoes for first-rank interactions:~A! The magnetiza-
tion of the protons in a sample of water decays in the low residual magn
field ~which varies both in direction and in magnitude over the sample! in
the zero-field NMR spectrometer;~B! The isotropic time-reversal sequenc
~5! is applied after 1.2 ms of free evolution, and generates an echo 3.6
later, because the scaling factor is21/3; ~C! Free evolution is resumed at 8.4
ms, resulting in a second echo at 9.6 ms. The 24-pulse sequence was
pensated for the second-order effects and finite pulse lengths~see Sec. IV!.
The signal was sampled at every 3-pulse subcycle of 120ms and thep-pulse
duration was 2ms.
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sated for the effect on first-rank interactions of the finit
length of the pulses. For second-rank tensors, the isotrop
imbalance of the pulses has also to be corrected. Accordi
to Table V, the substitution~19! becomes

p i2t→~p/2! i2~2t/313t8!2~p/2! i2t/3, ~20!

wheret8 is the duration of thep/2 pulses.
The 24-pulse sequence~18! was tested on the proton

NMR of a water sample in our zero-field spectromete
where the zero-field shimming coils were deliberately set fa
from their optimal values. The residual field was a superp
sition of a constant 0.231024 T along theY direction, and of
a gradient alongZ, of 0.431024 T over the sample height. In
this way the residual field varied in both the magnitude~from
about 0.231024 T to 0.331024 T! and the orientation~by
about 90°! over the sample. In order to avoid the ‘‘locking’’
of the magnetization in theYZ plane initial and final pulses
were added to follow the evolution by monitoring the polar
ization alongX. The time-reversal effect was observed by
generating an echo, as shown in Fig. 6. The decay of t
signal was monitored under free evolution in the inhomoge

tic

ms

om-

FIG. 7. Configuration trajectories in the SO~3! sphere for isotropic time
reversal of second-rank interactions. In thed-pulse version, as in sequence
~21!, 16p/2-pulses are needed to explore 14 cubic configurations atv5p/2
and 2p/3 @points labeled 1 to 16 along the path shown by the heavy line
~a!#. This path has aD4 symmetry along theZ axis and, in order to com-
pensate for the finite pulse lengths in a cubic-symmetric way, it is repeat
after 2p/3 rotations along the magiĉ111& direction, as in sequence~23!. To
facilitate the derivation of sequences~21! to ~25!, the pulses joining the
vertices of the trajectory are shown in~b!, as calculated from thep/2 to the
2p/3 configurations according to Eq.~1!.
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3991Llor, Olejniczak, and Pines: Coherent isotropic averaging. II
neous field, up to a timet, when the sequence was applie
so at time 4t the echo was recovered from the depolariz
sample, showing the time-reversal effect with a scaling
tor equal to 1/3. A secondary echo was also obtained
further application of the sequence followed by a free e
lution. The damping of the echoes is due to the inhomo
neities and errors in the pulses coming from eddy curr
contributions and, in a smaller degree, to pulse imper
tions.

V. TIME REVERSAL OF SECOND-RANK COUPLINGS

The previous section illustrated the methods to gene
isotropic cubic sequences. This example was fairly sim
three configurations and an even number of paths conne
each of them to its neighbors. We shall now treat the cas
time reversal for second-rank interactions. It is more co
plex but has also a broader range of applications, for
stance, in the ‘‘multipolar zero-field NMR’’ experimen
which are analogous to the multiple-quantum NMR te
niques.

As listed in Table II, second-rank time reversal
achieved with a21/5 scaling factor by combining the s
and eight configurations atp/2 and 2p/3, respectively. The
configurations, together with the 24p/2 paths that join them
are shown in Fig. 7 embedded in the SO~3! sphere represen
tation. Although there is a total of 14 configurations,
pulses ofp/2 are required to explore all of them: indee
there are 8 configurations at 2p/3 to be explored at leas
once, by followingp/2 paths that never directly connect tw
such vertices. Since all thep/2 paths connect 2p/3 to p/2
configurations, thep/2 vertices will be explored eight time
also, although there are only six of them. Thus, in the s
plest version of the cycle, there are two of thep/2 configu-
rations that must be explored twice. These configurations
be chosen to be opposite in sign, as in Fig. 7, to preserv
highest symmetry possible. Many topologically differe
paths can now be used, but again, in order to achieve h
symmetry, we shall select a trajectory invariant underD4 ~a
subgroup of the cubic groupO!.

At this point there are still two unequivalent ways
exploring the path of Fig. 7. In order to reduce the effec
eddy currents we shall retain the path involving an eq
number of positive and negative pulses in each of the c
@this was not possible in one cycle for the first-rank ti
reversal in Eq.~15!#. In the d-pulse limit, we can thus
achieve the second-rank time reversal with the following
quence:

~p/2!2Z2~t/22~p/2!2X2t2~p/2!Y22t2~p/2!Y2t

2~p/2!X2t2~p/2!2Y2t2~p/2!X22t2~p/2!X2t

2~p/2!Y2t2~p/2!X2t2~p/2!2Y22t

2~p/2!2Y2t2~p/2!2X2t2~p/2!Y2t

2~p/2!2X22t2~p/2!2X2t2~p/2!2Y2t/2)n

2~p/2!Z , ~21!
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where the time spent at the various configurations is weig
according to Table II. It is noticeable that, except for t
initial and final p/2 pulses, this sequence contains puls
alongX andY only. It is an isotropic, zero-field analog, o
the ‘‘magic sandwich’’ in a high field.11

At this stage it is desirable to compensate for the seco
order contributions to the average Hamiltonian by tim
symmetrization of the cycle in Eq.~21!. Just as in HF-NMR
sequences,2 this is done prior to the compensation for th
finite length of the pulses, because the cycle time has to
made as long as possible~but smaller than the characterist
time scale of the local interactions!, in order to reduce the
influence of pulse errors. Let us denote the main time per
of the interaction, the subcycle duration, and the total du
tion of the pulses in the subcycle byT, TC , andTP , respec-
tively, and letA be the average relative magnitude of t
anisotropic contributions due to the finite length of t
pulses. After one cycle, in the second order, the magnitu
of the different terms in the average interaction are

1/~5T!, A~TP /TC!/T, TC /~2T
2!, ~22!

for the scaled interaction, the anisotropic scaled parts of
interaction, and the second-order average Hamiltonian,
spectively. The ratio between the last two terms is th
A(T/TC)(TP/TC). Usually (T/TC) is chosen around 5 to 10
while in practice (TP/TC) is always below 1 and seldom
above 1/2. The ratio between the two leading correction
thus determined byA, which, as will be shown below, can
vary considerably, depending on the adjustments of the v
ous time intervals. In more refined versions theA can be
reduced from about 1/8 in Eq.~21! to as low as 1/100. We
can thus say that the leading correction term is the seco
order average Hamiltonian and that time symmetrization
the elementary cycle in Eq.~21! has to be carried out befor
any other compensation.

The last step consists in compensating for the fin
length of the pulses in Eq.~21!, or its second-order symme
trized version. There are 24 differentp/2 paths connecting
the p/2 and 2p/3 configurations and, as shown in Fig.
each 2p/3 vertex is connected by three such paths. As
ready mentioned in Sec. III, it is thus impossible to explo
all of the 24 paths just once with a continuous trajectory. T
compensation for the finite length of the pulses in this c
involves necessarily a trajectory containing eachp/2 path
twice, yielding a 48-pulse sequence. Since thed-pulse cycle
~21! contains 16 pulses, it is natural to combine three su
cycles. The trajectory in Fig. 7 is symmetrized by applyi
2p/3 rotations along thê111& direction, but then the cycles
have to start at a 2p/3 configuration that is invariant unde
the C3 rotations alonĝ 111&, for instance at the 2p/3^111&.
According to the pulse definitions of Fig. 7, we thus find
No. 10, 8 September 1995
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~p/2!2Z2~p/2!2X2@~t/22~p/2!Y2~2t1kt8!2~p/2!Y2t2~p/2!X2t2~p/2!2Y2t2~p/2!X2~2t1kt8!

2~p/2!X2t2~p/2!Y2t2~p/2!X2t2~p/2!2Y2~2t1kt8!2~p/2!2Y2t2~p/2!2X2t2~p/2!Y2t

2~p/2!2X2~2t1kt8!2~p/2!2X2t2~p/2!2Y2t2~p/2!2X2t/2)2~16-pulse cycle withX→Y and Y→Z!

2~16-pulse cycle withX→Z and Y→X!] n2~p/2!X2~p/2!Z , ~23!

with three sampling points per cycle. Additional time delays at thep/2 configurationskt8 have been inserted to compensate
for the isotropy imbalance introduced by the pulses of durationt8. Using the result listed in Table V, one can find that
k5328/p'0.454, becausekt8 is inserted at four out of sixp/2 configurations. The time delays are inserted in the first cyc
according to theD4 symmetry~instead of the usual cubic symmetry! in order to compensate for the isotropy imbalances fo
each of the 16-pulse subcycles as much as possible. Indeed, Fig. 7 shows that the trajectory is more ‘‘dense’’ along theZ axis,
and in order to improve the isotropy imbalance of one subcycle it is reasonable to add ‘‘more’’ configurations in the equa
plane, although the 2p/3 cycling along thê 111& axis eventually restores the full cubic symmetry in the global 48-puls
sequence~23!. A rigorous proof of this intuitive point is given in Appendix C, together with the derivation of the lea
anisotropic version

~p/2!2Z2~p/2!2X2@~~t/21k8t8!2~p/2!Y2~2t1kt8!2~p/2!Y2~t1k8t8!2~p/2!X2t2~p/2!2Y2~t1k8t8!

2~p/2!X2~2t1kt8!2~p/2!X2~t1k8t8!2~p/2!Y2t2~p/2!X2~t1k8t8!2~p/2!2Y2~2t1kt8!2~p/2!2Y

2~t1k8t8!2~p/2!2X2t2~p/2!Y2~t1k8t8!2~p/2!2X2~2t1kt8!2~p/2!2X2~t1k8t8!2~p/2!2Y2t

2~p/2!2X2t/2!2~16-pulse cycle withX→Y and Y→Z!2~16-pulse cycle withX→Z and Y→X!#n

2~p/2!X2~p/2!Z , ~24!

wherek51/p13/4'1.07 andk853/p23/4'0.205. An average magnitude of the residual anisotropy in theD4 symmetric
subcycles can be determined: Considering the Hamiltonian partially averaged over the pulses~with their compensating time
delays!, the sequences~23! and ~24!, respectively, leave about 5% and 1% of the free interactions, compared to the 2
isotropic scaling factor. In situations where the pulse length is not negligible, sequence~24! is thus preferable. Both Eq.~23!
and Eq.~24! are valid in the ‘‘windowless’’ limit, i.e., whent50, and can be adapted with time-symmetrized subcycles to yie
96-pulse sequences as

~p/2!2Z2~p/2!2X2@~~t/21k8t8!2~p/2!Y2~2t1kt8!2~p/2!Y2~t1k8t8!2~p/2!X2t2~p/2!2Y2~t1k8t8!

2~p/2!X2~2t1kt8!2~p/2!X2~t1k8t8!2~p/2!Y2t2~p/2!X2~t1k8t8!2~p/2!2Y2~2t1kt8!2~p/2!2Y

2~t1k8t8!2~p/2!2X2t2~p/2!Y2~t1k8t8!2~p/2!2X2~2t1kt8!2~p/2!2X2~t1k8t8!2~p/2!2Y2t

2~p/2!2X2t/2!2~ time-symmetric 16-pulse cycle!2~16-pulse cycle withX→Y and Y→Z!

2~ time-symmetric 16-pulse cycle withX→Y and Y→Z!2~16-pulse cycle withX→Z and Y→X!

2~ time-symmetric 16-pulse cycle withX→Z and Y→X!#n2~p/2!X2~p/2!Z . ~25!
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A time-reversal experiment on the zero-field dipolar c
plings of protons in a polycrystalline sample of adamant
was performed with sequence~25!, simplified by usingk850
andk'0.5 as in sequence~23!. An echo was generated aft
a free induction decay, as shown in Fig. 8. The obser
scaling factor was close to the theoretical value of21/5. A
secondary echo was also obtained by further applicatio
the sequence followed by a free evolution. Compared to
quence~25! with ideal values ofk andk8, the larger residua
imbalance of the 16-pulse subcycles in the experiment
J. Chem. Phys., Vol. 103,
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not found to give any noticeable effects, due to the presence
of many other error sources. The damping of the echo am-
plitude comes from five main imperfections: nonideal pulse
profiles, imbalances between pulse edges in the three coils
eddy currents, insufficient time delays between pulses, and
higher-order terms in the average Hamiltonian. The actual
pulses in the spectrometer deviated from the ideal ‘‘square’’
shapes assumed in the compensation schemes presented
far. Furthermore, although the inductances of the threeX, Y,
andZ coils were similar, their volumes and efficiencies dif-
No. 10, 8 September 1995
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3993Llor, Olejniczak, and Pines: Coherent isotropic averaging. II
fered by up to a factor of three, so the corresponding ris
and falling edges were different for various pulses and
global cubic symmetry of the pulses was not strictly o
served. These two effects are certainly not negligible, si
in our spectrometer the duration of eachp/2 pulse wast 51
ms, while the rising and falling times where estimated in p
I16 to be of similar duration~using measured pulse profile
lower-symmetries schemes might be designed to compen
for these effects!. Furthermore, the time interval between t
pulsest50.9ms was barely longer than the pulse transie
and some interference between successive pulses could
be expected. Finally, higher-order terms in the aver
Hamiltonian were non negligible, since the 16-pulse s
cycle duration~36.4ms! was comparable to the typical pe
riod of the local interactions in adamantane~where the free
induction decay in a zero field lasts about 50ms!.

Despite all those error sources however, the cubic
quences are more efficient than the icosahedral seque
previously described.16 The total power requirements of th
pulse-length compensated schemes are similar, they do
induce any ‘‘orientation-transient’’ errors~due to the differ-
ent behavior of the coils when generating pulses of rand
axes!, and they are much simpler to calibrate. For examp
the optimal icosahedral time-reversal scheme of second-
interactions at cosv521/4 involves 12 pulses per samplin
cycle for a total angle of about 7.23p,16 compared to 16
pulses and a total 83p angle for the equivalent cubic se
quence~21!, but it needs to be recycled five times, instead
three in the cubic case to achieve the compensation for
finite pulse lengths. It should be noticed that in any ca
these values are about an order of magnitude above th
quirements for the corresponding high-field experiments;
optimal time-reversal scheme of second-rank interacti
~which can be derived from WHH2! involves only two pulses

FIG. 8. Isotropic spin echoes for zero-field second-rank interactions:~A!
The magnetization of the protons in polycrystalline adamantane decays
to the local isotropic dipole–dipole couplings;~B! After 74ms, the isotropic
time-reversal sequence~7! is applied and the magnetization is retrieved 3
ms later for an observed scaling factor of 19.5%, which is close to
expected theoretical scaling factor of 20.1%'1/5; ~C! Free evolution in the
zero field is resumed at time 802ms, resulting in a second echo at 880ms.
The 96-pulse sequence~25! was compensated for second-order effects a
finite pulse lengths~see Sec. V!. The signal was sampled at every 16-pul
subcycle of 36.4ms, and thep/2-pulse duration was 1ms.
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per cycle with a total angle ofp and is recycled twice for
pulse compensation.

VI. CONCLUSION

We have shown the feasibility of practical pulse
irradiation schemes to isotropically scale the various sp
couplings in zero-field NMR. Group-theoretical conside
ations make it possible to generate such sequences u
only p/2 pulses along the three orthogonal coordinate ax
This approach provides also error compensation metho
~second-order averaging terms, finite pulse lengths, eddy c
rents generation, etc.!. Although theoretically less efficient
than the optimal icosahedral sequences reported in the fi
part of this work,16 these cubic sequences yield, within 20%
all of the theoretically allowed scaling factors with conside
ably easier experimental constraints.

Two experimental examples of cubic-symmetric se
quences were shown for time reversal of first- and secon
rank interactions. As already said in the first part of th
work,16 time-reversal opens new interesting opportunities a
lowing, for example, a zero-field analog of the high-fiel
multiple-quantum NMR technique. This method, which w
shall call ‘‘multipolar zero-field NMR,’’ yields simpler spec-
tra for many-spin systems by reducing the number of tran
tions, while preserving the isotropy of spectra, in contra
with multiple-quantum HF-NMR. This could provide a new
tool for structural investigations of solid-state samples, ev
if they are polycrystalline or amorphous.

APPENDIX A: CALCULATION OF THE ISOTROPY
IMBALANCE FOR p/2 PULSES OF FINITE LENGTH

As explained in Sec. III, the average over the cub
group of a transformation of second-rank tensors can be
tained by computing the partial traces over theaa andab
sets of second-rank Cartesian tensors. We shall thus comp
this trace over some chosen simple paths, as in Fig. 9. T
transformations of first-rank Cartesian tensors are the sa
as those of usual three dimensional vectors as given in Fig
Along the 0→p path, the second-rank tensors transform a
cording to

due

0
e

d
e

FIG. 9. Schematic representation of configurations of the five cubic clas
connected byp/2 pulses. The transformations of the three Cartesian tens
X, Y, andZ are shown for the configurations along the paths designated
the pulse anglea.
o. 10, 8 September 1995
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XX2YY→~cX1sY!22~cY2sX!25c2~XX2YY!1s2~2XX1YY!1•••5 ~c22s2!~XX2YY!1•••

ZZ→ ZZ

YZ→~cY2sX!Z5 cYZ1•••

ZX→Z~cX1sY!5 cZX1•••

XY→~cX1sY!~cY2sX!5 ~c22s2!XY1••• , ~A1!

where c5cosa, s5sina. We used the (XX2YY,ZZ) basis for theE representation~with XX1YY1ZZ50!. Only the
diagonal terms are retained in Eq.~A1!, since all others are irrelevant to calculate the traces. It is thus found

kaa5c2, ~A2a!

kab5~2c212c21!/3. ~A2b!

The isotropic scaling is related tov by Eq. ~4b!, and for this patha5v. This allows us to calculated and after some
elementary transformations the expressions of the first line in Table III are found.

In a similar way, along thep/2→p8 path, the second-rank tensors transform according to

XX2YY→YY2~2cX1sZ!25YY2c2XX1•••5 2~11c2!~XX2YY!/21•••

ZZ→~cZ1sX!25c2ZZ1s2XX1•••5 ~c22s2/2!ZZ1•••

YZ→~2cX1sZ!~cZ1sX!5 01•••

ZX→~cZ1sX!Y5 01•••

XY→Y~2cX1sZ!5 2cXY1••• , ~A3!

which yields

kaa5~c221!/2, ~A4a!

kab52c/3. ~A4b!
n
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The isotropic scaling of a configuration ata can be obtained
by calculating the relationship betweena andv, or by using
the total trace of Eq.~A3!. Instead of applying the general
formula for the composition of rotations, we can easily de
rive an expression forv as a function ofa by using the
first-rank isotropic scaling. It is obtained from the trace o
the first-rank basis and along thep→p8 path we get

2 cosv115cosa. ~A5!

Hence the formulas in the second line of Table III. The la
and simplest line is calculated in a similar way.

Thed vsv curves shown in Fig. 3 are obtained by elimi
natinga in the expressions of Table III. It is found for the
two 0→p andp/2→p8 paths

d5~cosv21!2/5, ~A6a!

d5~6 cos2 v18 cosv11!/5, ~A6b!

This last expression has a zero at cosv5c05~A1024!/6
'20.14. It is remarkable that we havek152k2
5(A1021)/9'0.24 for this point.

APPENDIX B: ALLOWED SCALING-FACTOR
COMBINATIONS FOR p/2 PULSES OF FINITE LENGTH

For cosv abovec05~A1024!/6, all thep/2 paths of the
cubic group display a positive isotropy imbalanced, as
shown in Fig. 3. To obtain isotropic trajectories containin
J. Chem. Phys., Vol. 103, N
-

t

configurations in this range, it is necessary to combine th
with configurations at cosv belowc0. The range of allowed
scaling factors will be given by the convex envelope of th
isotropic combinations involving only two values of cosv.

There are two such regimes of compensations, depe
ing on whether the configuration at cosv.c0 is on the 0→p
or thep/2→p8 paths. We shall denote the values of cosv in
the sequence byc1 andc2, with weightsl and 12l. Accord-
ing to Eqs.~A6!, the isotropic conditions are

l~c121!2/51~12l!~6c2
218c211!/550, ~B1a!

l~6c1
218c111!/51~12l!~6c2

218c211!/550,
~B1b!

depending on whether thec1 point belongs to the 0→p or
thep/2→p8 paths. The scaling factors are given by

k15l~2c111!/31~12l!~2c211!/3, ~B2a!

k25l~4c1
212c121!/51~12l!~4c2

212c221!/5.
~B2b!

For each value ofc1 there will be a continuous set of com
binedl andc2 values that can give isotropic schemes. Th
defines a curve of associated (k1 ,k2) combinations. The ac-
cessible scaling factors will now be limited by the envelop
of all these curves for varyingc1. This family of curves can
o. 10, 8 September 1995
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3995Llor, Olejniczak, and Pines: Coherent isotropic averaging. II
be parametrized in various ways and we shall perform
trigonometrical change of the variablesc1, c2, andl to sim-
plify further calculations.

First we examine the case of compensation by confi
rations belonging to thep/2→p8 paths, as defined in Eq
~B1b!. Multiplying Eq. ~B1b! by 2/3 and subtracting from
Eq. ~B2b!, we simplify the second-rank scaling factor to t
following form:

k252l~2c111!/32~12l!~2c211!/352k1 . ~B3!

This result holds whenever anisotropies are compensate
tween two configurations belonging to thep/2→p8 path. In-
deed, this was already observed for the isotropic comb
tions of thep/2 configuration with either 2p/3 or p8, as
listed in Table II, and also for the configuration atv5v0, as
shown in Appendix A. The envelope of the scaling-fac
curves in this case is trivially given byk252k1 .

The case of compensation by configurations belong
to the 0→p paths, as defined in Eq.~B1a!, is less trivial. To
take advantage of the fact that 0<l<1 and thatc1 and c2
behave symmetrically in Eqs.~B2!, we introduce the thre
parametersa, r , andb such that

cosa5l1/2, ~B4a!

r cosb5c1 cosa , ~B4b!

r sin b5c2 sin a , ~B4c!

In this way we preserve the symmetry betweenc1 andc2 and
obtain the simple relationships:l5cos2 a, 12l5sin2 a,
lc1

21(12l)c2
25r 2, lc11(12l)c25r cos~a2b!,

lc1
22(12l)c2

25r 2 cos~2b!, and lc12(12l)c2
5rcos~a1b!. Equations~B2! and Eq.~B1a! can be rewritten
as

k15~2r cos~a2b!11!/3, ~B5a!

k25~4r 212r cos~a2b!21!/5, ~B5b!

~7/2!r 22~5/2!r 2 cos~2b!13r cos~a2b!

25r cos~a1b!1150. ~B5c!

In contrast to Eqs.~B2!, the scaling factors are now given
functions of just two independent parameters,r and a–b,
whereas the constraint~B5c! involvesb as well. By elimi-
nating r anda–b, an implicit relationship betweenk1, k2,
andb can be found, and its partial derivative with respec
b must vanish along the envelope curve. The derivative
Eq. ~B5c! with respect tob, keepingr and a–b constant,
yields a supplementary condition

r sin~2b!12 sin~a1b!50. ~B6!

An implicit relationship betweenk1 andk2 on the envelope
curve can thus be obtained by eliminatingr , a–b, andb,
between Eqs.~B5! and~B6!. After some lengthy but straigh
forward algebra it is found that

3k2
226k1k219k1

224k22250. ~B7!

This equation defines an ellipse in the (k1 ,k2) plane that,
as expected, contains the points~1,1! and ~~A1021!/9,
2~A1021!/9! ~the latter is the scaling combination obtain
for the cubic configurations atv0, as shown in Appendix A!.
J. Chem. Phys., Vol. 103,
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The limit found in Eq.~B3! is obviously inside the concave
area limited by Eq.~B7!. Thus the area of allowed scaling
factors, as shown in Fig. 4, is limited by Eq.~B7! above
k15~A1021!/9, and by the general boundary as given by
Eqs. ~4! below thatk1. The intercept with thek250 axis is
found at k15A2/3'0.47, which is about 13% below the
maximum theoretical value of~A511!/6'0.54. In canonical
form, Eq. ~B7! reads

~x/a!21~y/b!251, ~B8!

where:

S xyD5SC 2S
S C D •S k1k2D1

4

3 S S3

2C3D , ~B9a!

a52~2/3!1/2S, b52~2/3!1/2C, ~B9b!

C5
A21&

2
, S5

A22&

2
. ~B9c!

APPENDIX C: ISOTROPY IMBALANCE OF A
D4-SYMMETRIC SEQUENCE FOR TIME REVERSAL
OF SECOND-RANK COUPLINGS

We shall analyze the anisotropy properties of the first-
order average of a second-rank interaction over the path o
p/2 pulses withD4 symmetry defined by sequence~21!. The
analysis will be similar to that for the cubic group given in
Sec. III. The pulses are assumed to be of finite length and
rectangular shape.

The five second-rank Cartesian tensors now span fou
different irreducible representations ofD4,

19 designated as
A1, B1, B2, and E, for ZZ, XX–YY, XY, and $YZ,ZX%,
respectively,~E is two-dimensional!. After theD4 symmetri-
zation of a given configuration, the associated average
transformation matrix scales each tensor representation. Thu
there are four scaling factors which may be different. This
holds because, just as in the case of the cubic symmetr
explored in Sec. III, the Cartesian tensors are decompose
into nonidentical irreducible representations. To calculate the
representation scaling factors, we shall use a procedure sim
lar to that in Appendix A@Eq. ~A3!#, where a configuration
along ap/2 path is designated by the anglea from the initial
p/2 configuration~see Fig. 9!.

Starting from thep/2Z configuration, a rotation bya
along Y yields the transformation given in Eq.~A3! from
which the four scaling factors can be deduced

kZZ5~3c221!/2, ~C1a!

kXX2YY52~c211!/2, ~C1b!

kXY52c, ~C1c!

kYZ,ZX50, ~C1d!

where c5cosa. For c51 we obtain the scalings for the
p/26Z configurations, while the average overa50 to p/2
yields the pulse scalings. For isotropic sequences we shall tr
to reduce the differences between the scaling factors, an
therefore we introduce the four~nonindependent! imbalance
factorsd i5ki2k2
No. 10, 8 September 1995
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TABLE VI. Scaling factor imbalances of various second-rank cartesian tensors~classified according to the
irreducible representations of theD4 group! corresponding to the full pulse path and different types ofp/2
configurations in Fig. 7~see Appendix C!. Inspection of the signs of theki factors clearly shows the higher
efficiency of pulse-length compensations byp/26X,6Y configurations alone.

Configuration dZZ dXX2YY dXY dYZ ,dZX

p/2 Pulses ~2p116!/~40p! 2~11p116!/~40p! 2~2p16!/~10p! ~p21!/~10p!
p/26Z 6/5 24/5 24/5 1/5
p/26X,6Y 23/10 7/10 1/5 23/10
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dZZ5~13c212c23!/10, ~C2a!

dXX2YY52~7c222c13!/10, ~C2b!

dXY52~c214c21!/5, ~C2c!

dYZ,ZX52~c22c21!/5, ~C2d!

obtained from Eqs.~C1! using the isotropic scaling facto
listed in Table III.

Similarly, starting with ap/2X configuration for instance,
we shall get the scaling factors for the configurations on
vertical faces of the trajectory~see Fig. 7!. The correspond-
ing transformation can be deduced from Eq.~A3! by circu-
larly permutingX, Y, andZ ~which is a 2p/3 rotation along
^111&!. It is then found that

dZZ52~2c222c13!/10, ~C3a!

dXX2YY5~8c212c23!/10, ~C3b!

dXY52~c22c21!/5, ~C3c!

dYZ,ZX52~2c213c22!/10, ~C3d!

where the scalings atp/26X,6Y are obtained forc51, while
for the pulses the average overa is needed.

Now we are interested in analyzing the isotropy imba
ance of the 16-pulse cycle~21! where all the pulses are sup
posed to be of the same duration, whether they connect
p/26Z or p/26X,6Y configurations. We shall thus average th
scaling imbalances obtained from Eqs.~C2! and ~C3! over
the whole group of sixteen pulses. The results are listed
Table VI with the imbalances of the two types ofp/2 con-
figurations. Ideally, the differences between the four scal
factors of the pulses should be canceled by combinati
with thep/26Z andp/26X,6Y configurations. However, this
cannot be done rigorously, since we are faced with th
equations with two parameters only. It must be noticed t
in this compensation the 2p/3 configurations cannot be use
not only because their scaling factors are linear combinati
of those ofp/26Z andp/26X,6Y ~we know a linear combi-
nation of these configurations to be isotropic, see Table!,
but also because the cubic symmetric analysis in Sec.
shows that the pulse paths have to be combined withp/2
configurations only~see Table V!.

The analysis of cubic-symmetric pulse compensation
Sec. III gave the relative weights between thep/2→2p/3
pulses andp/2 configurations~see Table V!. We shall thus
introduce the same global weighing factors in our pres
D4-symmetric analysis, but the relative weights of thep/26Z

and p/26X,6Y configurations may now depart from th
J. Chem. Phys., Vol. 103, N
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cubic-symmetric values. Ifl and 12l represent these
weights and if boldd’s are used for the four-dimensiona
vectors of scaling imbalances~whose components are give
in Table VI!, the global imbalance of a compensation sche
can be written as

dScheme~l!5~4p!/~7p28!dPulses1~3p28!/~7p28!

3@ld6X,6Y1~12l!d6Z#, ~C4!

using the global weights given in Table V. Although there
nol which could canceldSchemeand give an isotropic behav
ior, it is still possible to minimize its magnitude. In this wa
the mean anisotropic part of the averaged second-rank
sors will reach a minimum. The mean square imbalance o
the five-dimensional space of second-rank tensors will
given by

idi25~dZZ
2 1dXX2YY

2 1dXY
2 12dYZ,ZX

2 !/5, ~C5!

where the factor 2 accounts for the fact that theE represen-
tation is two-dimensional. Inserting Eq.~C4! into Eq. ~C5!
with the scaling factors from Table V, after some element
algebra one finds

5~7p28!2idScheme~l!i2

5~61p22272p1304!2~81p22396p1480!l

1~54p22288p1384!l2. ~C6!

The minimization of this expression as a function ofl gives
the optimum weight

lOpt5~9p220!/~12p232!'1.452, ~C7!

which is greater than one. Thusl51 is the closest to the
optimum and incidentally it corresponds to the seque
~23!. The average anisotropic contribution during the co
pensated pulses can then be found as

idScheme~1!i5~A7/A10!~42p!/~7p28!'5.13%.
~C8!

This value is not negligible when compared to the isotro
scaling of220%, but it is still much smaller than that ob
tained atl52/3 when all thep/2 configurations are evenly
weighed

idScheme~2/3!i5~1/A30!~3p2116!1/2/~7p28!

'8.81%. ~C9!

Although Eq.~C7! yields an apparently unrealistic neg
tive weight for thep/26Z configurations, this result can sti
be used. By further adding the standard cubic-symme
o. 10, 8 September 1995
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3997Llor, Olejniczak, and Pines: Coherent isotropic averaging. II
combination ofp/2 and 2p/3 configurations~as given in
Table II!, it is possible to cancel the weight of the negati
p/26Z configurations. In this way the most efficient compe
sation scheme can be generated. The corresponding we
for this scheme are found as

lPulses516p/~13p128!'0.730, ~C10a!

lp/2,6X6Y5~3p14!/~13p128!'0.195, ~C10b!

l2p/35~26p124!/~13p128!'0.075, ~C10c!

which yields the mean square imbalance

idScheme~lOpt!i5~1/A10!~42p!/~14p216!'0.97%.
~C11!

This result is at least a factor of 5 better than the cru
compensations examined before@see Eqs.~C8! and ~C9!#.
When compared with the individual length of the pulses
weighing coefficients in Eqs.~C10! become

lPulses516, ~C12a!

lp/2,6X6Y5314/p'4.27, ~C12b!

l2p/3526124/p'1.64, ~C12c!

from which sequence~24! is deduced.

ACKNOWLEDGMENTS

We are grateful to J. Sachleben for his help with t
experiments. This work was supported by the Director,
fice of Energy Research, Office of Basic Energy Scienc
Materials Sciences Division of the U.S. Department of E
ergy under Contract No. DE-AC03-76SF00098. A.L. also
knowledges financial support from the Commissariat´
l’Energie Atomique, France, and from the North-Atlant
Treaty Organization~Grant No. 68C89FR!.
J. Chem. Phys., Vol. 103, N
-
hts

e

e

e
f-
s,
-
-
a

1A. Abragam,Principles of Nuclear Magnetism~Clarendon, Oxford, 1961!;
C. P. Slichter,Principles of Magnetic Resonance, 3rd ed.~Springer, Berlin,
1990!.

2M. Mehring, Principles of High Resolution NMR in Solids~Springer-
Verlag, Berlin, 1983!; U. Haeberlen,Advances in Magnetic Resonanc
Suppl. 1~Academic, New York, 1976!, 2nd ed.

3R. R. Ernst, G. Bodenhausen, and A. Wokaun,Principles of NMR in One
and Two Dimensions~Oxford Scientific, Oxford, 1987!; C. A. Fyfe,Solid
State NMR for Chemists~C.F.C., Guelph, 1983!.

4E. R. Andrew, A. Bradbury, and R. G. Eades, Nature~London! 182, 1659
~1958!; I. J. Lowe, Phys. Rev. Lett.2, 285 ~1959!.

5J. S. Waugh, L. M. Huber, and U. Haeberlen, Phys. Rev. Lett.20, 180
~1968!; U. Haeberlen and J. S. Waugh, Phys. Rev.175, 453 ~1968!.

6A. Llor and J. Virlet, Chem. Phys. Lett.152, 248 ~1988!; B. F. Chmelka,
K. T. Mueller, A. Pines, J. Stebbins, Y. Wu, and J. W. Zwanziger, Nat
~London! 339, 42 ~1989!.

7A. Samoson, E. Lippmaa, and A. Pines, Mol. Phys.65, 1013~1988!.
8D. P. Weitekamp, A. Bielecki, D. Zax, K. Zilm, and A. Pines, Phys. Re
Lett. 50, 1807 ~1983!; D. Zax, A. Bielecki, K. Zilm, A. Pines, and D. P.
Weitekamp, J. Chem. Phys.83, 4877~1985!.

9E. L. Hahn, Phys. Rev.80, 580 ~1950!.
10H. Schneider and H. Schmiedel, Phys. Lett. A30, 298 ~1969!.
11W.-K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. Lett.25, 218 ~1970!;
W.-K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. B3, 684 ~1971!; K.
Takegoshi and C. A. McDowell, Chem. Phys. Lett.116, 100 ~1985!.

12D. P. Weitekamp, Adv. Magn. Reson.11, 111~1983!; M. Munowitz and A.
Pines, Adv. Chem. Phys.LXVI , 1 ~1987!.

13C. J. Lee, D. Suter, and A. Pines, J. Mag. Res.75, 110 ~1987!.
14A. Llor, D.Sc. thesis~in French!, UniversitéParis XI, Orsay, 1987.
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