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We present a general theory of coherent isotropic averaging in nuclear magnetic resdidRge

In a zero external field, magnetic-field pulses can selectively average the internal spin Hamiltonians,
while preserving the intrinsic invariance of the spectrum with respect to the sample orientation. The
theory predicts the limits of the scaling factors for tensor interactions of different ranks. Time
reversal is found to be possible for first- and second-rank tensors with scaling factedg&nd

—1/4, respectively. Explicit sequences, based on icosahedral symmetry, are given for a number of
optimal scaling factors. To illustrate the theory, an experiment is also presented in the special case
of rank-selective decoupling. As in high-field NMR, applications can be expected from the
introduction of coherent averaging schemes for zero-field techniques: for example, decofiplings
rank or nuclear specigstime reversal, and multipolar experimen{gero-field analog of
multiple-quantum NMR © 1995 American Institute of Physics.

I. INTRODUCTION NMR enhances the information content of the spectra, it
leads to some loss of information as well. The anisotropic
The importance of NMR as an analytical tool derivesparts of the broadening are due to contributions from the
from its ability to provide atomic and molecular information local couplings whose observation can be as valuable. An
about a sample through the measurement of intrinsic nucleatiternative approach, zero-field NMZF-NMR), was intro-
spin couplings. However, these are not observed alone but igluced a few years ago to address this probiem.contrast
conjunction with the Zeeman interaction, which truncateswith many spectroscopies, ZF-NMR has no privileged direc-
them in an anisotropic way? The truncated local couplings tion in the laboratory frame since the magnetic field is re-
depend upon the orientation of the privileged local directionamoved, and thus all the crystallites of the sample are equiva-
(for instance, crystalline axgsvith respect to the magnetic lent. For powder samples, the resolution of observed spectra
field. Since many available solid-state samples are polycryss similar to what would be obtained from standard high-field
talline or amorphous, they yield powder spectra in which theNMR on the corresponding single crystals. ZF-NMR is
anisotropy broadening often obscures any potentially resolvelosely related to nuclear quadrupolar resonati¢®R),*?
able features. but it is a coherent technique where the signal is recorded in
To overcome this difficulty, various technigues of solid the time domain, yielding the spectrum after Fourier trans-
state NMR have been developed over the last three decaddsrmation. As shown in Fig. 1, the evolution in a zero field is
including “magic-angle” spinning(MAS),®> multiple-pulse initiated and stopped by sudden transitions of the magnetic
irradiation sequence&or example, WHH,* and more re- field, whereas to monitor the signal, nuclear polarization is
cently, dynamic-angle spinnindAS),®> and double rotation created and observed in a high field. Through field cycling,
(DOR).® By using such techniques, the anisotropic parts ofthis exploits the isotropic behavior in a zero field, while pre-
the interactions are averaged out and the resolution of thserving the sensitivity of standard NMR. We shall use the
spectra can become similar to that obtained from liquidterm “high-field NMR,” or HF-NMR, for the usual NMR
samples~’ These methods involve sample reorientationsspectroscopy where the Zeeman interaction is much stronger
and coherent radiofrequency irradiations whose effects cathan the local interactions.
be described in terms of coherent-averaging thé@ypher- An intermediate solution has been developed recently,
ent averaging allows for a wide range of Hamiltonian ma-the “zero field in high field” NMR, or ZFHF** This co-
nipulations, where different terms can be modified accordindierent averaging method combines sample rotation and ra-
to magnetogyric ratioas in heteronuclear decouplingr  diofrequency irradiatioperformed completely in a high field
tensor rank(as in WHH. Sign changes, known as time re- and makes the system evolas if it were in a zero fieldThis
versals, have also been perform@ss in Hahn ecHband  “untruncation” technique has many advantages over the pure
magic echo experimerfisand they are essential for phase ZF-NMR, since no field cycling is necessary and hetero-
coherence in multiple-quantum NMR and other forms ofnuclear species can be easily decoupled, but it is limited by
two-dimensional conjugate detectith. the maximum achievable spinning rate of the sampla-
Although the use of high-resolution tools of solid-staterently up to 30 kHz in the state-of-the-art turbines
Although coherent averaging methods are now well
dpresent address: 5, rue Saint Denis, 92100 Boulogne, France. known and understood in HF-NMRor decoupling, time

bpresent address: Radiospectroscopy Division, Institute of Nuclear Physicggv‘?rsal’ etc),. there_ is an a'_mOSt complete lack, so far, C_’f
Radzikowskiego 152, 31-342 Krakp Poland. similar techniques in zero-field spectroscopy. Indeed, aside
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By analogy with the HF-NMR case, the development of
general coherent methods in ZF-NMR can be seen as a use-
ful step in expanding the possible applications of NMR in
solids. The present article is thus devoted to an important
class of coherent processes in ZF-NMR that we teaher-
ent isotropic averagingSome preliminary examples were
introduced in a recent letté?, with applications to time-
reversal experiments. Here, we shall extensively discuss the
\ /\ concept of isotropic averaging, providing the group theoreti-

Magnetic Field

cal foundations of the theory. Symmetry considerations make
Y, it possible to solve the theoretical problem in the general
. . i case, and provide “canonical” sequences based on icosahe-
Polarization Evolution Observation . . . . .
— o R dral distributions. The special case of decoupling sequences
will then be examined, together with the general high-field

. - , . isotropic sequences. In conclusion, possible applications of
FIG. 1. Schematic description of the zero-field NNEFF-NMR) experiment . p_ ql' . d P il b Ep v di
(Ref. 13). Through magnetic-field cycling, the evolution of the nuclei under Isotropic sca 'ng n ZF'NMR an NQR .W' .e riefly dis-
the influence of the untruncated local interactions in the zero field is recusseddecoupling, multipolar analysis, imaging,.and we

corded in the high field, with the corresponding sensitivity enhancementghg|| make some general comments on time-reversal scal-

Thg eyolutlon is .|n|t|ated and termlngted by sqddenly switching the mggéngs_ An experiment based on an icosahedral sequence will
netic field. This is a coherent transient experiment, where the zero-fiel

evolution is recorded point by point and the spectrum is obtained after thé&!SO be reported in this paper, but the practicglly useful CUbiC.
Fourier transformation with respect to time t. Since strong magnets canngequences are relegated to a subsequent article, together with

be switched rapidly enough, a two-step cycling of the field is performed:experimenta| considerations Concerning finite pu|se compen-
first, in about 200 ms, to an intermediate valael0 mT) generated by an sations

auxiliary coil, which, in turn, can be switched in less thapd.

Longitudinal
Magnetization

II. GENERAL CONCEPT OF ISOTROPIC TRAJECTORY

from single crystal cases, coherent irradiation schemes have The starting point is the general problem igbtropic
been limited to excitation and echo technigi®e®*’and to  scaling How can we perform a scaling of the complete zero-
a theoretical exploration of some specific homonuclear defield Hamiltonian while preserving the isotropic behavior of
coupling sequencéd:’® NQR echoes, which were intro- ZF-NMR. This may not seem very useful in general, except
duced shortly after the HF-NMR Hahn echbare not in the ZFHF sequence, which performs an isotropic scaling
evolved under a well defined truncation axis in the laboratory(starting with a truncated anisotropic interachion the ex-
frame. In a polycrystalline sample, the orientations of theperiment carried out completely in a high fieftf* As we
local quadrupolar interactions are randomly distributed, inshall see, however, different parts of the Hamiltonian, distin-
ducing correspondingly different matrix elements of the irra-guished by rank of interactions or nuclear species, can be
diation field!? The evolution in a powder sample during a scaled by different factors. Then, WHH-like scheniesde-
NQR echo is only approximately refocused and, in contrastouple second-rank interactions while retaining first-rank
to the HF-NMR Hahn and magic echoes, it cannot be used asteractions, or vice vergatime reversal, or heteronuclear
a building block to generate coherent irradiation sequenceslecoupling become special cases of scaling-factor combina-
Compensation schemes for these imperfections have ndéibns, and they can be more clearly visualized and under-
been implemented to manipulate spin interactions in a zerstood from the broader framework of isotropic scaling. We
field, but some echo-train techniques have been used to inshall devote most of the present article to the homonuclear
prove the signal detection or perform two-dimensionalcase(like spins.
experimentg®1’ In a high-field NMR, coherent manipulations of the
Coherent manipulations of the local interactions in ZF-Hamiltonian are achieved by applying radio-frequency
NMR can be performed using magnetic field pulses, tradipulses (modulated in phase, frequency or amplitudend
tionally called “dc pulses.?® Unlike an rf pulse in NQR, a sample reorientation&ising a turbine, for exampl&’ In a
dc pulse in ZF-NMR can excite the whole spectrum, just aszero field, however, there is no Zeeman interaction and ac-
the initial magnetic field transient doésig. 1). Furthermore, cordingly the spins have to be excited with dc pulses of the
since the field during the pulse is stronger than the locamagnetic field, in such a way that all the transitions of the
interactions, its effect can be conveniently described as aystem are effectively covered up to the cutoff frequency
spin rotation. By analogy with pulse schemes in HF-NRIR, corresponding to the pulse duratihSince there is no ro-
zero-field homonuclear decoupling sequences have bedating frame, there is no equivalent to the phase modulations
developed usingn/2 rotations along the three reference of HF-NMR, and pulses along different axes must be gener-
axes:®® These averaging processes, which we shall calbted by physically applying dc pulses along these orienta-
“cubic,” were designed for the full zero-field Hamiltonians, tions. Thus zero-field coherent processes require a set of at
regardless of the crystallite orientations. In th&jpulse ver- least two, and more conveniently three, crossed coils to gen-
sions, the cubic sequences involved 4 or4#2 pulses for erate any type of pulse. On the other hand, it can be sHown
interactions transforming under spin rotations as first- osee Sec. Vjlthat sample reorientation is not necessary in a
second-rank tensors, respectively. zero field. It can always be imitated by applying dc pulses,
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which are significantly more efficient than reorientation. We
shall thus describe all the zero-field coherent processes in
terms of magnetic-field pulses only.

As a brief reminder of the main ingredients of coherent
averaging theory,consider the case of &pulse sequence,
under which the system evolves due to the zero-field Hamil-
tonianH(Q)) (where() represents the orientation of the local
interaction axes in the laboratory frajnguring n+1 time
intervalst; (0=<<i=<n), separated by pulses whose effects

are given by rotation operato8; in the spin space. The FIG. 2. _Exgm?'es of g_?jecéogi?s ‘”;_heIConﬁg“ratiogb)sf“@?@é‘der
. . . _various irradiation conditionga) for a §-pulse sequencéb) for a window-
evolution of the system over one sequence CyCIe’ in the ﬂr%ss pulse sequencg,) for a sequence with a continuously modulated mag-

21 . . . .
order;" is determined by the average Hamiltonian netic field. Each point in the sphere represents a rotation which acts on the
Hamiltonian of the system.

ml)(Q)Z 2 (Ri-Ho(Q)- RiT)ti It

0<i=n
Here, it must be emphasized that isotropic sequences are not
=S HO)t/t =(H,(Q)) (1) necessarily scaling sequences. The important property in ZF-
oS, e M ’ NMR is that theeigenvaluegbut not the eigenstatesf the

o _ local Hamiltonian are independent of the crystallite orienta-
where the bracket notation in the last expression stands Q|5 0. Thus we shall also call isotropic a sequence that at

the average over. The rotations appli_ed to the Hamiltonian, the same time scales and rotates the HamiltoH&hExcept

R;, are related to the pulses according to in experiments where both the modified and free Hamilto-
nians are used successively, the effect of this rotation would

R=(P-Pi_i- =+ -P,-P)" or P=R\‘Ri_;, (2 Y | Vo
be undetectable on a powder sample, and only transition in-
with the supplementary condition of a cyclic sequence tensities would be changed for a single crystal. This case of
R residual rotation is normally irrelevant since it can be com-
Rn=(Pn-Pno1-Pyz- -+ -P3-Py-Py)'=1, (3 pensated by two extra pulses. However, we do not rule out

wherel is the identity operator. According to the establishedthe p.OSS'b'“ty that Some averaging schemes complymg with
the eigenvalue invariance may not be reduced to simple scal-

terminology, we call the set of rotated Hamiltonians, ings by rotations. It can be shown that the applicability of
{H;(Q)}, thetrajectory in the operator spacdhe{R;} will gs by ' ) pplicability

. . : . such sequences would be restricted to some specific cases of
be called theset of configurations or the configuration tra-

jectory, and it is the object that is the closest ()}, interactions, generally involving limited numbers of levels.

. : ' In the present work, we shall only analyze pure scaling se-
which completely and uniquely defines the process. The roquences as defined by E).

tation of operators defines a representation of the group o Before solving Eq(4) explicitly, it is important to ex-

rotations, S@3), on the space of operators, and titis(Q)} . g EQ.%) explicitly, | P )

: . . : : plore its symmetry properties. Starting from any given scal-

is associated withR;} through this group representation. For . ; X

o . . ing sequencéR;}, we can generate another trajectory using

any{R;}, the magnetic-field trajectorg.e., the pulse$P;}) h f ; RV wh qv fixed

will be given by Eq.(2). In the case of a practical sequencet e transformatioqU A }, whereU andV are fixed ro-
o tations. DefiningS=V' and Q=U-V, we can rewrite the

that does not consist af pulses(continuous, windowless or transformed configurations 49 S- Ri~ST}, and according

with pulses of finite widt, the _effect of the_ mag_net|c f_|eld to the linearity of Eq(4), the first order average Hamiltonian
can be accounted for by a continuous configuration trajector};viII become

R(t), with the discrete sum in Eq1) replaced by an integral
over O<t<t.. To visualize a trajectory, it is convenient to HO(Q)=((Q-S-R;-S")-Ho(Q)-(Q-S-R;-SHT,
use the representation of the group of rotations(3Qas a

sphere of radiusr, where a rotation is represented by a vec- =Q-S(Ri-Ho(S(2))-R)-8"-Q",

tor pointing along the direction of the rotation axis and of a —KQ-S-Ho(S(Q))- ST QT =kHo(Q 1(Q)).
length equal to the magnitude of the total rotation arigle.

Thus an ideab-pulse sequence, a windowless sequence, and (5)

a continuous trajectory are described, respectively, by a s&henQ=1, the scaling behavior of a sequence is thus pre-
of discrete points, a continuous line, and a continuous lineserved under the transformati¢s- R;-S'}. The pulses are
without kinks(differentiable pathinside the S@B) sphere as also rotated td S- Pi~ST} according to Eq(2). This invari-
shown in Fig. 2. ance can be intuitively understood by considering that the
The trajectory is calledsotropic if it generates a zero- {R;} define some privileged directions in the laboratory
field-like average Hamiltoniard Y(Q). This is the case, for frame, and that a scaling sequence must be independent of
instance, if the sequence performs gealing of the local  the initial choice of a reference frame. The other transforma-
interactionHy((2) by a factork, independent of the orienta- tion, {Q-R;}, preserves the isotropic character of the cou-

tion O plings as well, but at the same time it does change the aver-
) . age Hamiltoniarunless the scaling factor is zerdhus in the
HY(Q)=(Ri-Ho(Q) - Ri) =kHo(Q). (4 configuration space, the invariance group for isotropic scal-
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ing is SA3), whereas for decoupling it is S®XSO3). As (21 +1)-dimensional vector spacke(2l +1).222% The repre-
we shall see, these symmetry properties lead to different agsentation formalism here is important, since the invariance
proaches to generating the corresponding scaling and decoproperty of Eq. (8) means precisely that the average

pling sequences. (D'm,m(Ri)> belongs to the subspace of invariant irreducible
representations ik (21 +1). We thus introduceJ, ,, the ir-

IIl. GENERAL SOLUTION TO THE ISOTROPIC- reducible tensor basis for (2 1)(2l + 1) matricesU, , can

SCALING PROBLEM be chosen identical to the usual irreducible operator tensors

of a spinl,>* but we use a different notation, because the two

q Abls' '? HF-NMR, thetmtt_e%raﬁct_mnstﬁre ef;(pzin(:?g mtollrre- tensors form the expansion bases of physically different ob-
ucible tensor representati Ince the efiect of the puises jects that operate in different spac@s;, are used to expand

is described by rotations of the .Hamlltomans. We s.hal.l CONYamiltonians and operate over the spin space, wheggs
sider only one such representation of ortidoecause in first

d Hamiltonian th tributi ; gif texpand superoperators and act over the set of operators
order average Hamittonian the contrioutions from Giterent i jnciydes Hamiltonians ant,,,). The expansion of a

representations are just linearly superimposed. We thus wri igner matrix takes an especially simple form when the ro-

m tation is defined by its total rotation angéeand its rotation
Ho(Q) =2 (= 1)"A () Tim, ) axisn®?

where the set off|,, is a basis for the irreducible tensor | _ 1/2 o
= + —

operators, and\,(Q2) are the coefficients of the expansion D(R)=[4m/ (21 +1)] ;,L (=D @)Y u(M Uy,

which depend on the local axes orientatioh (T,,, and (11

Aim(Q) are also known as the spin and lattice parts, respec- . . i
tively). In the following, the rank will be 1 (as for residual whereY,, are the spherical harmonlcg\ are the general

Zeeman couplingsor 2 (as for dipole—dipole and quadru- ized charactergy}, is the standard charactgh), and the sum

< —A<pu<\. . -
pole couplingg though it might be higher in some special runs ovr(]ar 8=\ 2'. anld A=p=A.In Eq (.11) tlhe LLM‘ tTn h
cases? By introducing Wigner matricéé to describe the sorsdw ose Qa_trlxeemen'lts Tre/przgportlona totl_e%egsc -
effect of the rotationdR;}, we can rewrite Eq(4) in the Gordan coefficientsC(x u;Imim’),™ are normalized by

following way: Tr(UTU)=1.
g way: Introducing expansiofll) for the D'm,m(Ri) in Eq. (8),

we obtain a set of relations
2 (= D)™A (D (R Ti)
mm

(X'(w))=k (21 +1), (123
=k (= 1)"A _o(Q) T, @ ((@)Yyu(n))=0 for any I=i<2l
and —A<pu<A\. (12b)

where we show explicitly that the scaling factor may depend
on the rank. Since Eq(7) must hold for any Hamiltonian of The first equatiofwhich, incidentally, can be deduced di-
the given rank and for any orientatidn, it must be valid rectly by calculating the trace of Eq8)] gives a simple
whatever the coefficientd, _ (). Thus relationship between the scaling factor and the configuration

(D' (R))=k&, ® trajectory: It is theaverage of a function of the configuration

m’m 1m'm> rotation angle, regardless of the rotation axBy substitut-
for anym andm’ between—| andl. The Q) dependence in ing the explicit expressions for tHe=1 and 2 characters we
Eg. (8) is now eliminated and the only remaining character-get
istic of the Hamiltonian is its rank.

Now, the invariance properties of scaling sequences as
given by Eqg. (4) can be transferred to Eq(8). The ko=((4 co$ w;+2 cosw;—1)/5)
{R}—{S-R;-S"} transformation translates into a linear
transformation of the Wigner matricé)s%m,(Ri)

Dlmrm(Ri)‘)S(Dlmrm(Ri)) so the only relevant features are the mean aqd _the mean
square of cos; over the trajectory. The fact th&f is inde-
B | | - pendent of the rotation axes);} is intuitively reasonable,
—2 D ()P (Ri)Dy(ST). 9 since the isotropy constraint does not distinguish any special
nn directions. The spherical representation of($0s thus very
Actually, S can be applied to any (2 1)(2l+1) matrixM,  convenient, because all the configurations of a given concen-

ki=((2 cosw;+1)/3)=(2(cosw;)+1)/3, (133

=(4(cog w;)+2(cosw;)—1)/5, (13b

according to tric spherical surface will have the same contribution to the
| scaling factors.
M m—S(Mmrm) = >, Dm,n,(S)Mn/nDLm(ST)- (10 Equations(13) constrain the set of possible scaling-
nn’

factor combinations. To explore the allowed sequences, it is
The relationship betwee8 andS is thus a linear represen- useful to introducesphericaltrajectories or sequences, de-
tation, known as the adjoint representation, of the group ofined as scaling trajectories where the mean-square deviation
rotations S@3), in the space of linear transformations of the of cosw vanishes, i.e., where is constantbut wheren does
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@ perefrrerp ey
n 5n/6 27f/3 2 /3 7(/6:0

FIG. 3. An icosahedral sequence is represented by its configurations in the

SQ(3) group with the simplesCs;-symmetric path connecting them. The N ) .
icosahedral symmetry ensures that the sequence accomplishes an isotro@é;' 4. The set of allowed combinations of first- and second-rank scaling

scaling of all the spin couplings up to rank 2. The icosahedron has beeff ctors for isotropic zero-field sequences. Scaling-factor combinations are

embedded in the reference frame o as to havefmymmetry axes along (PSR W ROTES Tl AV SdEE O BEARER MBS
X, Y, andZ. The path corresponds to sequelit8) in the text and isC5 : q g

symmetric around the magi¢11) direction. The pulse sequences associated ;:I)kz:lir;?ggnviitze:’:g( et;)b t\?;upearail\?eogcozotrﬁ:”slz;:r:t stﬁgetr)lgtatlgrtrrlajgt(:)t;r;es
with such trajectories are given in Table | for some specific values of the ™" S gven. N . .
rotation anglew. optimum combinations are of special interest: A: 2nd-rank decoupling with

scaling of 1st-rank between ({5—1)/6 and(,5+1)/6; B: 1st-rank decou-
pling with scaling of 2nd-rank between1/5 and 2/5; C: optimum time-
. . . . reversal scaling for 1st-rank interactiorls,=—1/3 (2nd-rank scaled by
change in order to have an isotropic resultn important  k,=1/5); D: optimum time-reversal scaling for 2nd-rank interactions,

property is that the effect @fn arbitrary scaling trajectorys ~ k,=—1/4 (1st-rank scaled bi,=1/6); E: optimum scaling for time reversal
oth 1st and 2nd-rank interactiorlg,=k,=—1/9; F:zero-field in high-

ivalent t ion of spherical n e
Eq.lild.a ebl Ok a SL(JjCCGdSSr:) 0 ﬁp ? ca ?eque _CES .used ield (ZFHF) which can be regarded as the center of all the possible isotropic
uilding blocks. Indeed, the sca Ing factor for a given 'SOtrO'schemes(Refs. 13, 14, k;=1/3 andk,=1/5. The scaling combinations on

pic scheme{R;}, is determined by{w;} only. Therefore, an the parabolic arc are generated by the icosahedral sequences listed in
original sequence can be replaced by a succession of sphefgble I.

cal sequences applied at the samealues and for the same

time intervals as defined by tHey;} distribution. In conse-

qguence, by analyzing_ the feasibility of sphgri_cgl sequences,  gince Eq.(14) does not involvew, spherical(for in-

we shall be able to give the general rules limiting the set Ofance, icosahedjatajectories are available for any value of
allowed scaling factors. . In the (k;,k,) plane, the set of scaling factors for spheri-

cal sequences is obtained by eliminatiagn Egs.(13)
IV. SPHERICAL, ICOSAHEDRAL AND TETRAHEDRAL )
SEQUENCES: THE SET OF ALLOWED SCALING ko= (9ki—3k;—1)/5, (15)

FACTORS wherek; goes from—1/3 to 1 since &w=<m. The Eq.(15)

Since the rotation angle is constant for spherical se- describes a parabolic arc and, according to the last remarks
quences, the Eq12b) becomes of the previous section, the set of all allowed scaling factors
is the concave side of the cur¢the convex envelopdim-

(Vau(n))=0 for any Isa<2l and —Asps<\. (14 g by the inequalities

For specific values ofs, some generalized charactef,g(w) —1/3<k.<1 (163
may vanish, thus reducing the set)of/alues for which Eq. e
(14) has to hold. However, we shall restrict ourselves to the (9k§—3k1— 1)/5<k,<(3k;+2)/5. (16b

general case, because it is completely independeant Btir-

; : This area is shown in Fig. 4, and no other isotropic combi-
thermore, according to Eq14), any spherical sequence fora __ . . .
. . . nations are allowed. As a consequence, the isotropic scalings
given value ofl will be spherical for all values smaller than

| as well. General solutions to EGL4) are well knowR52” for first- and second-rank tensors are restricted to the follow-

and have also been used in other NMR techniques such ELY fanges-

MAS and WHH (A=2), or DAS and DOR(\=2 and 4.>° —1/3<k;<1, (179
For instance, it is possible to average out all spherical har-

monics from\=1 to 4, using icosahedral symmetfEqua- ~1/a<k<1. (17D

tion (14) can thus be solved by selecting 12 rotation axes The pulses required for icosahedral spherical sequences
with equal weights, and pointing towards the vertices of arcan be generated in many different ways according to the
icosahedron, as shown in Fig. 3. The correspondipylise  order in which the configurations are explored. To reduce the
sequences are callécbsahedralspherical sequences. power requirements, it is simpler to explore the configura-
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TABLE |I. Lists of pulses(angles and axgdor the icosahedral isotropic sequenc¢&8) and(19). The configurations explored by the sequences are labeled
according to Fig. 3. Exact pulse parameters are listed in the third part of the table for some useful values of first- and second-rank scalaisoféistets
decouplinggk,=0), optimal time reversalgk;<0 and minimun), and common time reversal of both ranks € k,<0). The scaling factors and the pulses
are deduced from the configuration parameter «a@cording to Eqs(13), (A5a), and (A6). The directions {,,v,,W,), (Us,v4,W,) and Ug,v5,w3)

are deduced from(—cos#, sinfd, 0) by rotations, according to Eqs(A7) and (A9). The direction @;,0,w3)=(—[(5~— /5)/10]*2,0,—[(5
+¢5)/10]*?) is independent o, as explained in the Appendix. The second version of the sequenc& dEghough less symmetric than E@.8), is more
efficient for ©>124.54° as shown by the smaller total duration of the pulse=asured by the sum of the angle magnitiides

Configuration 1 2 3 4 5 6 7 8 9 10 11 12 1
Pulse angle a a a a a a a a a a @ a
Pulse X —cosé u, sin 6 Uy 0 W, cosé Wy sin 0 v 0 A
axis Y sin 0 vy 0 A —cosé U, sin @ Uy 0 Wy cosé Wy
direction Z 0 W, coséd W, sin @ v 0 vy —cosé U, sin g Uy
Configuration 1 2 8 11 5 6 il 3 9 10 4 7 1
Pulse angle a B a B a B a B a B a B
Pulse X —cos6 u; ug W 0 W wj 0 sin6 0 vy —uy
axis Y siné 0 vy —Uuj —cos6 u; VA w, 0 W, Wy 0
directionZ 0 Wy Wy 0 siné 0 vy —uy —cosé u; ug Wy
cosw cosa cosé o° o ¢ Ky K, Total anglé
J5-1 J5—-1 5+ 5 72 72 31.7 J5+1 0 2.40

4 4 10 6
—1/4 J5-3 33-35 104.5 98.2 47.7 1/6 —1/4 3.27

3716 —58
~1/2 3/5-13 25-345 120 108.3 55.8 0 -1/5 3.61
20 58
-2/3 5-6 7— JE 131.8 114.7 62.3 -1/9 —-1/9 3.823.52
9 22

V5+1 -1/2 3- 5 144 120 69.1 V5-1 0 4.003.20
T4 6 6
-1 -3/5 0 180 126.9 90 -1/3 1/5 4.232.1))

aWhere f=2(7— w).
bIn degrees.
‘In turns per cycle for the first version of the sequence;dor120° the numbers in parenthesis refer to the second version of the sequence.

tions by joining closest neighbors as in Fig. 3, so all the  Sequences such as H48) are not necessarily the most
pulses have the same length Furthermore, if the three co- efficient because the associated configurations are distributed
ordinate axes are chosen alofg symmetry axes of the in a folded spacé¢the SG3) group): In the folded structure
icosahedron, the configuration path can be designed so as &b SO(3), two opposite points on the sphere represent the
display aC5; symmetry along the magid11) direction. This same rotations. The closest neighbors to a given vertex are
makes it possible to deduce the pulses from each other hbiyot always limited to the five next vertices of the icosahe-
cyclic permutations of the three coordinates. In this way, thalron, but they can also include the opposite vertex. As shown
icosahedral sequences can always be written according to the the Appendix, whenw is above 124.549cosw=—(4
pattern +,5)/11], the icosahedral distribution of configurations can
o—([(712—a;=71/2)i21 4)3cc)n— (— ), (18) thus be explored according to the more efficient pattern

where 3 c.c. stands for the repetition, with cyclic permuta—w_([q_/z_al
tions of the coordinates, of the four pulses. Icosahedral

sequences, like all other spherical trajectories, require that

the initial and final pulses are applied in order to connectthe ~ —2(T—®)4— 7/2]5cc)n— (— ®), (19
initial state atw=0, with the configurations at the selected

nonzerow. Analytical expressions for the, pulses as a func- in which the C; symmetry is preserved. The limiting case
tion of w are given in the Appendix, and some special com-w= is especially important, because the twelve vertices of
binations of scaling factors are listed in Table I; they arethe icosahedron are then reduced to six. Detailed pulse pa-

decoupling and optimal time reversal, for first- and secondrameters for some special valuesabire also given in Table
rank tensors. l.

—7=2(T—w)—T—az—T
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Compared to the previously available coherent schemesyhere the indexM labels pulses applied along the magic
the icosahedral sequences introduce significant improvedirection, (111). This sequence was already deduced
ments for many applications: previously*® For optimum time reversal, it should be noticed

(1) Global time reversalranks 1 and 2 The optimum that w=1, so the configurations of opposite directions are
scaling is k;,k,)=(—1/9,—1/9) with an icosahedral se- identical. A distribution of tetrahedral symmetry can thus be
guence. The previous limit waé—1/11-1/11) in time-  obtained with only three points on th¢, Y, andZ axes,
reversal sequences that could be deduced from some decaterresponding to the centers of the six edges of a tetrahedron
pling schemes, by removing the identity configurations they(this set actually has a higher, octahedral symmetygain,
contained(a similar procedure exists in HF-NMR between the set of configurations is found to be the- 7 class of the
the WHH and the magic sandwich sequences tetrahedral subgroup in $8), and the resulting sequence

(2) Rank-selective time reversal. For the first-rank inter-consists ofrr pulses only
actions, the theoretical optimum &§=-—1/3 was already
obtained from the previous decoupling schefhéut the
present icosahedral sequences are also isotropic for second-

rank interactions. For the second-rank interactions, the icosey' DECOUPLING SEQUENCES

hedral trajectories provide the optimum time-reversal scaling  ag we have already mentioned in Sec. I, the symmetry

atk,=—1/4, exceeding the previous value-6l/8 (obtained  ,operties of decoupling schemes are wider than those of
again from aldecoupllng scheme, the discrete zero-field Velisotropic schemes in generfdee Eq.(5)]. Decoupling se-
sion of MAS®). _ quences can be generated as special cases of isotropic se-
(3) Rank-selective decoupling. A scheme to decouplé;,ences, but other trajectories can be designed which result
both first-and second-rank tensors was availabht icosa- from the S@3)xSQ(3) symmetry. In the same way that Eq.
hedral sequences make it now possible to build isotropicg) \yas expanded into irreducible representations of350
rank-selective decoupling schemes. When decoupling thg, the general isotropic case, we now expand it into irreduc-
first-rank interactions, the second-rank tensors can be scalgg representations of S8)xSQ(3), with k;=0. Instead of

between—1/5 and 2/5, whereas for second-rank decouplingie adjoint representation defined by E#0), we have the
the first-rank tensors are scaled betweef5—1)/6 and product representation

(y5+1)/6.

It should be noted that except for the special values of
w=275 or 4x/5, where the configurations belong to the
icosahedral group, the angles and axes of the pulses are not (22
associated in any simple way with any known subgroup o
SO@3), even for optimum combinations of scaling factors,
like (—1/3,1/9 or (1/6,—1/4). Although many high-field se-
guences generally involve group rotations as pu(sesally U in Eq. (22), constantn columns of theM :m matrix
w2 alongX and Y)’. thi_s is not a relevant symmetry C.)f the transform as <’;1 (2+ 1)-dimensional vectors inmthleh-order
process. When designing a coherent pr(.)gess,.the various Coftaqycible representations. We also have a similar property
straints(for example, the isotropy conditions in the present or the right-hand product on constamt-rows. So Eq(8) is

casg can be translated into group symmetrical properties o Iready in its irreducible tensor form, and only one represen-

the configuration trajectory, but this does not imply that thetation is involved,|®1. In contrast to the general isotropic

_configuratio_n trajectory is_the group ?tself, Just asa pOIytOpecase, the completely invariant representation, her@,0s
L;nrotl:]s Euclidean space is not equivalent to its symmetrynot present. This is consistent with the fact that we are deal-
' . . . ing with a decoupling trajectory.
So far we have only considered icosahedral spherlca{1 The identification of the appropriate symmetry groups is

sequences, since almost all the local interactions behave %Suseful step in the solution of nonlineéhough algebraic

second-ran_k tensors. If. OW'V first-ran tensors are involve roblems like Eq(8). An important and extensively explored
(due to res'd“"?" magnetic fields, for |nsta)1dég.(.14) has to example is the quadrature on a sphere in three-dimensional
hold for A<2 instead of 4. At constanb, this is accom- g ,qjigeqn spac&?’ We ask how to find a set of discrete
pllshed by means of a tetrahedral dlst_rlbutlon of four dlrec-pomtsni on a sphere, such that the average of any spherical
tions n;, so the pulse sequences, which are deduced by rmonic over{n;} vanishes, up to some givdnvalue [we

procedure similar to the icosahedral case, are considerab ready came across this problem in Etg)]. Since any set
S|mpler. quuences for time reversgl and decouplmg are ? (n;)} is also a solution ifn;} is a solution, the invariance
particular importance. For decoupling, the conﬁguranonsgroup is S@3) again. To generate a discrete &et (or {R}
happen to be a&)=277/3, and form the 2/3 c!ass of the in our problen), one can start from an initial orientation,
tetrahedral subgroup in $8), so the sequence involves only called the “seed,” and apply a discrete subgroup of(30
7 pulses along th andY axes G.?% In this way we build a set, called an “orbit,” as

{ni}={g(ng)lqc - The distribution of points is then strongly

ax— (72— my—T— T}~ T— W7~ T[2)y— TTX . (21

M prm— (UXV) (M) = D! (U)M,Dh (V)
nn’

(Nhose irreducible representations are known to be the tensor
products of the S@) irreducible representations, labeled as
|®1".22 For the left-hand product of the matri by rotation

Qa3 — (72— mx— 17— Ty =TT~ T Ty~ 7/2), constrained, but simple group-theoretical arguments can tell
us if Eq.(14) is fulfilled.?® For instance, whatever the seed,
—(—=27m3)y . (20 the tetrahedral, cubic, and icosahedral groups are known to
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cancel spherical harmonics uplte 2, 3, and 4, respectively. the configurations around the magdicll) direction, this tra-
These limiting values can be increased by a proper choice géctory is also identical to thé=1 tetrahedral decoupling
ng with respect to the symmetry axes, or by combining twosequence(20) described in Sec. IV. As shown by the
or more seeds, and analytical solutions can be found in thidiscrete-MAS case, however, it is not always possible to re-
way for maximuml values of up to 17/ duce a decoupling sequence to a special case of isotropic
The group-theoretical approach to solve this type ofscaling.
problem generally consists of three main steps: Identifying  Another interesting case arises in decoupling both first-
the invariance group, selecting some discrete subgroupnd second-rank tensors. This can be done by a 13-pulse
which already solves most of the equations, and choosing atombination of spherical sequences, for instance, at
appropriate seed to fulfill the remaining conditions. For in-(k;,k,) =(—1/9,—1/9) and(1,1) (see Fig. 4. But, as already
stance, when solving E@8) for isotropic scaling in Sec. IV, shown!® it can also be performed regardless of the seed by
we selected a configuration at some giverand applied the the subgroupl X{l}, whereT is the tetrahedral group. In-
icosahedral group to generate a solution. Incidentally, ideed, the tetrahedral group is known to caradebf thel =1
should be noted that the icosahedral group contains 60 el@nd 2 tensoré® so each constanh’ column of the Wigner
ments, but the icosahedral sequengdié® those we listed in  matrix in Eq.(8) is averaged out. Now, in the $8) spheri-
Table |) contain only 12 configurations, because the seed wasal representation, this set of configurations has 1, 8, and 3
chosen on &5 axis to obtain a smaller orbit. This specific elements on spheres, respectivelywatO, 277/3, andm, so it
solution using the 12 vertices of the icosahedron can also beannot be reduced to a combination of spherical isotropic
considered to be generated by te&rahedralgroup, starting sequences. By a proper selection of the seed, the tetrahedral
from a particular seed to cancel the spherical harmonics atequence can also be generated byDh& C57 subgroup.
=3 and 4 that are not normally averaged out by the smaller At this point we can compare, on a qualitative basis, the
group. efficiency of the various sequences we have discussed so far.
The symmetry arguments can also be applied to our deif we disregard the pulse lengths in the first approximation,
coupling problemk,;=0, which can be seen as a quadraturethe efficiency is given by the number of configurations in-
over the S@3) space(instead of over the usual sphere in volved in the averaging schemes. Herl and 2, Eq.(8)
three-dimensional Euclidean spacéccordingly, solutions consists of 9 and 25 conditions, respectively, to be matched
we search for are configuration sets defined by orbits genewith a set of 3N parametergwe assume equal weights on all
ated from a subgroup of 3@ XSO(3) acting on a seel,. of the N configurations We can thus expect that 3 or 9
If the subgroup is of the typ&sXxXH, where G and H configurations will be needed respectively, and up to 12 con-
are subgroups of S@), then the configurations are figurations in the case of a sequence that is isotropic for both

{Ri}={9-Ro-h}(gnycoxn- If we use theCs;XCs; sub-  |=1and 2. In view of this, the discrete-MAS and icosahedral
group of SA3)xSO(3), Eq. (8) gives forl =2 sequences can be considered as the optimum, whereas the
tetrahedral sequences for first-rank tensors appear less effi-
<Dr2nm’(Rl)>:(1/9) 2 eimaDﬁ]m,(RO)eim/)f client.
a,y=0,*27/3

_ 2 _

= Somdom'Doo(Ro) =0. (23 VI. HIGH FIELD ISOTROPIC SCHEMES
Decoupling can thus be achieved if we select the seeth The relationships between high-field and zero-field co-

cancel the remaining elgmem,éo, for instance using a ro- herent schemes were previously pointed out for decoupling
tation by 8= 6, (the magic angle, c8%,=1/3) around the¥  sequence® and for the zero-field in high-field NMR tech-
axis. With this trajectory the first-rank tensors are neithernique (ZFHP™ mentioned in Sec. I. These two classes of
decoupled nor isotropically scaled, because high-field methods can be seen as isotropic scalings pro-
1 _ 1 _ 1/2 cesses, and in the present section we analyze them as zero-
(D (R1))= domom' Doo( Ro) = domom /37770 field trajectories according to the general theory of isotropic
(29 .
scaling.

As we shall see in the next section, this trajectory, which we  The translation of high-field schemes into zero field in-
term “discrete MAS,” is the discrete zero-field analog of the volves two main steps. First, any NMR experiment can be
usual, high-field MAS and WHH sequences. A similar trajec-viewed, theoretically, as a zero-field process; the static mag-
tory to decouple second-rank interactions was also exploredetic field in HF-NMR is a “very long” dc pulse, of many
within the more restrictive framework of the cubic grotfp. times 27, and any high-field coherent technique is then a
In the present formalism, it can be generated by the sam&vindowless sequence.” MAS and ZFHF are thus zero-field
seedR,, but using the subgrou@,;x C,;. decoupling, and zero-field isotropic scaling schemes, respec-

First-rank tensors can be decoupled by applying fouriively. Second, any physical reorientation of the sample in a
pulse sequences based on @ X C,, group, and using a zero field can be mimicked by an opposite motion of the
rotation byB==/2 aroundY as a seed. In this particular case, spins with a fixed sample. This is easily seen for all the local
the set of configurations can be identified with the dihedrainteractions that are not field dependdlike the dipolar,
groupD, (identity and threer rotations alongX, Y, andZ), quadrupolar and] couplings, because the corresponding
and it can also be generated by the subgrbyp{l}, with Hamiltonians for a rotated sample can be transformed ac-
the identity as a seed. Aside from a globat/2 rotation of cording to
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H=2 (—1)™A _n(R(Q) T B B M
m N o Z %agic

=2 (=™ L (RA - ()T

=3 (“D™A (@)D}, (R YTy ! bedel

mm’ b
One Adiabatic Precession of Field Around Magic Cone .
— -1
=2 (= DA _m( Q)R H(Tip), (25) = = = =
" c g g 5 5
(where we have used the symmetries of the Wigner o X Y 2z .

matrice€®). This result can also be understood in terms of

reference frames: an active rotation of the sample is equiva- o ; ;i ; . %; ; ; gé

lent to the opposite passive rotation of the laboratory frame O S I S S A

which defines the spin-quantization axes. b 8 i
When considering high-field coherent processes, one B8 Le delle = llll=0=1- .

may think that the above equivalence of sample and spin

motions is not valid anymore because the interactions are = = = z
truncated. Indeed, the truncated Hamiltonian of the coupling e & 5 & &
becomes mz .2 m,Z .
H=A10(2)To, (26) NN NE N N NE NN NE
and a sample rotation cannot be transformed into a spin ro- 5
tation just as it could in Eq(25). However, if we consider ¢ 8 i
the Zeeman field as a part of the coherent prodessa BBl e llcl-d-U-l-1U- i

strong X7 pulse, we have torotate it together with the
spinsin order to properly imitate the sample motion. In the

conflguratlon space 30 the Zeeman COUpImg generates z.ihigh—field trajectories that decouple second-rank tenfbtaS (Ref. 3,

loop trajectory, and a rotation Qf the spins or the lattice ISWHH (Ref. 4 and magic hoppingRef. 29]. The sample rotation in a fixed
actually represented by a rotation of this loop. The sampl@igh magnetic field(a), is transformed into a motion of the magnetic field
motion can thus be rep|aced by a reorientation of both the@round a fixed sample: either adiabatically for MA®), or by sudden

main magnetic field and the spins around the fixed Sample'reorientations combined with pulses for magic hoppify, The WHH se-

. . . . . guence is readily transformed as(#), since it does not involve any sample
An |||U§trat|ye e;«;lmple is provided .by the MAS trajec- motion. All these sequences can be transformed into Wigitlse equiva-

tory in a high field>>7 In MAS, decoupling of second-rank lents as in(d) for MAS and magic hopping off) for WHH, since the

interactions, like dipolar couplings, is achieved by Spinningtruncation effect of second-rank interactions by a static field can be obtained

the sample around an axis a the magic angle with respect {12 9 eors, Tese dree S seerees e cuaint o
the magnetic field. The corresponding zero-field version consq3)xsa3) (see Sec. Y. They cannot be reduced to spherical sequences.
sists of rotating the magnetic field around a magic cone, as

shown in Fig. 5. The motion must be adiabatic, just as in the

standard high-field MAS. In a nonadiabatic version of MAS,

magic hoppind? the sample is reoriented by discrete jumps@/ong the same directiod. When comparing the puré-
of 2m/3 around the magic direction. This can also be transPulse versions of the WHH and magic-hopping experiments

lated to a zero-field version, by applying the field fan2 (Fig. 5), we obtain the same sets of nine configurations, al-
periods along theX, Y andZz directions, and adding23 & though the path exploring them is different. For instance, the
pulses along the magic direction in order to have the spin§onfigurations in the discrete WHH and magic-hopping cases

accompany the field trajector§Fig. 5). A pure &-pulse ver- ~¢an be written as

FIG. 5. Construction of theS-pulse, zero-field versions of some common

sion can be generated when the long2pulses are replaced Ruwmn(i,j) =R(2i7/3,M)-1-R(2j7/3,2), (279
by three 27/3 pulses(since they generate, in the first order, o _ _ _
the same truncation of the second-rank interacjions Run(i,j)=R(2i7/3,M)-1-R(2j7/3,ZYX(i)), (27b

Second-rank interactions can also be averaged in a highhere i andj are integer indices running from1 to 1
field using rf irradiation. In WHH, the spins are nutated R4 n) denotes the configuration given by rotatiararound
along theX, Y, andZ directions by rf pulse§”’The Lee—  yisp, andZYX (i) is the axisZ, Y, or X depending on the
Goldburg experiment is a continuous version of WHH,,,5,e ofi. Equation(27b) can be rewritten as:
where an off-resonance irradiation causes the spins to pre-

cess around the magi€lll) axis M. Both of these Ryn(i,))=R(2i7/3,M)-R(2j7/3,ZYX(i))

schemes can be viewed as zero-field processes. The zero- ; :
XR(2i7/3,—M)-R(2iw/3,M),

field version of WHH, shown in Fig. 5, is similar to that of (2l )-R(2im )

magic hopping, although thenzr pulses are always applied =R(2j7w/3,Z)-R(2i7/3,M), (28
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The general question of high-field isotropic schemes can
be discussed within the theoretical framework of zero-field
isotropic scaling. In high-field schemes, both sample rota-
tions and spin irradiations are adiabatic compared to the
main Zeeman frequency;, , and this translates in the $8)
configuration space by a succession of slowly rotating 2
loops. The configurations along such a path are given by

Riaticd t) - R(@zt,Z) - Repind 1), (29

where the time modulation of the spin and lattice parts is

much slower than the Zeeman frequency. This adiabatic ap-
proximation makes it legitimate to average independently
over a=wyt and over the lattice and spin configurations, and

the isotropic conditions become

NMR experiment, or ZFHKRef. 14, consists of six straight lines along the
C; axes of an icosahedron in the @Dspace(thick lines. In fact, the lines
become loops because of the folded structure of33C(ZFHF sequence
isotropically scales first- and second-rank interactions by 1/3 and 1/5, re- I

spectively. This generic sequence provides an isotropic path connecting all :<D0mr*(RLi)D|0m( RSi)>i =KiOmm- (30)
the concentric icosahedral sets of configurations. For instance, by introduc-

ing stops at the spheres defineddsy 0 andw= (large points at the center This equation, an analog to E(ﬁ), was already explorejd‘,

and t_he vertices of the icosahedypthe ranl_(—selective decoupling sequence and we shall only give the corresponding area of allowed
(35) in the text can be generated. The icosahedral symmetry ensures the

isotropic character of the sequence, even with finite pulses. Scaling factors. By taking the trace of HGO)' we obtain the
scaling factors as

FIG. 6. The configuration trajectory of the simplest zero-field in high-field | “1\ inaml
En: Dm’n(RLi )e Dnm(RSi)
o

_/p! -1
which is now clearly identical to E427a by exchanging the ki=(Doo(Rsi-R(i))i/(21+1), (31

rotation axesM andZ, and the indices andj. These argu- thev d d the L d | ials of &
ments show how all the high-field decoupling experimentsso ey depend upon the Legendre polynomials of&0s

like MAS. WHH. and ic hoopinadisolay th only, whereg; is the second Euler angle of the combined
(like ’ » and magic | oppinglisplay the same gen- spin and lattice rotatioRg;- R;*. For first- and second-rank
eral C,XC, symmetry (which can, eventually, be dis-

. ) . i . interactions this gives
cretized intoC5;X C3). The main Zeeman interaction gener-

ates an averaging through tle, group, and the decoupling k;=(cos B /3);, (329
process is completed by a spin or lattice motion throGgh
(WHH, magic hoppingor C.. (MAS). k,=((3 cog B;—1)/10);. (32b)

As shown in the previous sections, isotropic scaling
schemes cannot be generated usig< C,, symmetries. The Just as in the general isotropic case, it can be proved that any
isotropic scaling schemes in a high field, such as ZFHF, arécheme at constag} can be built using the icosahedral sym-
thus more complex than the decoupling techniques. The sinetry again. The set of allowed scaling factors in a high field
plest ZFHF trajectory can be described as a windowlesss thus defined by
zero-field sequence, involving only sixr2pulses along the
Cs axes of an icosahedrdf.This corresponds to straight —1/3<k,=<1/3, (3339
radial paths in the S@) space, as shown in Fig. 6, and the
icosahedral symmetry yields isotropic scalings for first- and
second-rank couplings, acgordlng to the arguments of Se(\:/\'/hich is shown in the K, ,k,) plane in Fig. 7. In any case,
IV. The scaling factors are just the averages avetO to 7 the scaling factors are limited by
in Egs.(13), and give k;,k,)=(1/3,1/9 as plotted in Fig. 4.

(27k2—1)/10=<k,=<1/5, (33b)

From this sequence, where the magnetic field is always ap- _1/3< k,<1/3 (349
plied, sequences in a higstatic field were designed by
replacing the magnetic-field reorientation by a sample mo-  _1/10<k,<1/5. (34b)

tion synchronized with the proper pulse sequence, according

to the general principles of equivalence between high- and In practical situations, the sample motion is almost al-

zero-field schemes. For practical purposes, however, the serays restricted to a steady, high-speed rotation around a
guences effectively used in a high-field are not based on thsingle, fixed axis. The set of allowed scaling factors is then

icosahedral schenté;still this approach shows that isotropic reduced even further, and many important properties of op-
scaling is indeed completely achievable in a high field. Theimal isotropic trajectories are lost. For instance, isotropic

icosahedral six-pulse sequence still plays a central role ibhehavior may hold for second-rank couplings, but not for

pulse compensation of zero-field sequences, as shown in thiest-rank ones. The trajectories also lose their icosahedral
next section. symmetry.

J. Chem. Phys., Vol. 103, No. 10, 8 September 1995



3976 Llor, Olejniczak, and Pines: Coherent isotropic averaging. |

FIG. 8. The configuration trajectory for a spherical windowless scaling se-

FIG. 7. The set of allowed combinations of first- and second-rank scalingqu;nce t;_aszd oln an igoiahed:_al Seft g;scot?figu_rationsh(ﬂ)S{(_Drhheﬁg an
factors for isotropic high-field sequences. As in Fig. 4, scaling factor com-2rbitrary fixed value and the outline of thesphere s not s ownThe lines

binations are represented by points in the,k,) plane, and the dark-grey '€ obtained by rotating the icosahedron in Fig. 3 around@yexes. Each

area[given by Eqs(33)] is the set of allowed values. For comparison, the point on the curve can be_assougted W|th.e_le_ven other points to fprm an
set of allowed scaling factors for unrestricted isotropic schemes is given iicosanedron. Since this trajectory is a loop joining all the nodes, which are
light grey (see Fig. 4 The outlined points are the optimum combinations of evenly branched, it can be fully explored in just one run. In order to obtain

scaling factors, for decoupling and time reversal: A: 2nd-rank decoupling@" iSotropic scaling, the circles are explored at a constant speed, and the
1strank scaling between 1/(3,3) and 1(3;3); B: 1st-rank decoupling sequence must stop at each of the four outlined points for the same amount
! vy B '

2nd-rank scaling between1/10 and 1/5; C: optimum time-reversal scaling ©' ime otherwise needed to explore a complete circle.

for 1st-rank interactionss;=—1/3, 2nd-rank scaled b¥,=1/5; D: optimum

time-reversal scaling for 2nd-rank interactioks=—1/10, 1st-rank decou- ) . )
pled; F: the simplest zero-field in high-field NMR sequence, or ZFR&,.  the pulse-length compensated sequences will be slightly dif-

14), gives the maximum scaling factors for first- and second-rank interacferent from those of the origina?pulse versions.
tions, withk,=1/3 andk,=1/5. Based on the icosahedral distribution of configurations,
it is also possible to design some spherical windowless se-
VIL. FINITE PULSE COMPENSATIONS: AN quences. For this, it is just necessary to connect all the ver-
EXPERIMENTAL EXAMPLE USING THE ZFHE tices b_y a single path, in such a way thqt, for each pqmt on
TRAJECTORY the trajectory, there are ele\{en other pqlnts on the trajecto.ry
to form an icosahedron. This can be simply done by reori-
Experimentally, the finite length of the pulses is the mostenting an icosahedron while following its vertices, for in-
important limiting factor for coherent averaging schemes instance, using 2 rotations around two of th€5 axes, as in
systems displaying strong couplings, such as dipole—dipol€ig. 8. The whole path can be fully traced just once by a
interactions between protons in solid-state samples. It is thusontinuous trajectory since there is an even number of lines
worthwhile to analyze more carefully the possibilities of connected to any vertex. The sequence can be shown to con-
icosahedral sequences in that respect. By pulse compensatisist of successive periods of constant-speed precessions of
we mean the removal of any residual anisotropic interactionthe field around various fixed cones, with matching condi-
due to the finite length of the pulses, although changesions between the cone angles, the precession speed, and the
(hopefully smal) of the isotropic scaling factors are toler- field strength.
ated. We shall review three main possibilities: icosahedral  Although these methods are conceptually simple and ef-
pulse compensations, spherical windowless trajectories, arfitient as far as scaling factors are concerned, the corre-
the zero-field-in-high-field path. We shall also give an ex-sponding magnetic-field trajectories are rather involved. The
perimental example of this last possibility. magnetic fields are generated by coils wound around the
The configuration trajectory for an icosahedral sequenceample, with their appropriate power supplies controlled
with finite pulses does not display an overall icosahedrafrom a pulse programmer, and the simplest design involves
symmetry, as shown in Fig. 3, so it is not compensated fothree coils to create the orthogonal coordinates of the field.
the pulse lengths. A theoretically simple solution to the prob-With this kind of experimental setup, it is rather difficult to
lem is to restore the icosahedral symmetry by using pulsesalibrate the very general pulse directions and angles needed
corresponding to all of the 30 different edges of the icosahein icosahedral sequences, especially when about 60 of them
dron. However, since each vertex is connected to the othelare threaded and expected to yield no final rotation. For the
by an odd number of edgéfve), the whole path would need windowless trajectories the calibration procedure would be
to have at least 60 pulses. It should also be noted that duringven more tedious, given all the specific synchronization
the pulses the explored configurations are not confined to eonditions between the magnitude, precession speed and pre-
constaniw sphere, because they are on the shortest path frowession angle of the field.
one vertex to the next. In any case then, the scaling factors of A much simpler path, joining the vertices while preserv-
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ing the icosahedral symmetry, is provided by the zero-field in
high-field trajectory(ZFHF),'* introduced in the previous - 4
section. Since it consists of sixm2pulses along the vertex —
directions of an icosahedron, the ZFHF trajectory connects
all the vertices of icosahedra lying on all the possible spheres
of constantw, as shown in Fig. 6. Owing to its icosahedral a
structure, the trajectory provides paths from one vertex to the
next, via the identity point, that are intrinsically compensated
for finite pulse lengths. Any combination of scaling factors
can thus be generated by appropriately splitting the 2
pulses and adding free-evolution periogee Fig. 6. The
pulses contribute to the scaling factors by 1/3 and 1/5 for b
first- and second-rank tensors, respectively, so the ZFHF tra-
jectory can be considered as a central point in the set of
allowed scaling factorgsee Fig. 4, i.e., it is obtained by 7
averaging the spherical sequences over all possiblaelues
with a constant weight. Furthermore, as already mentioned in
Sec. IV, any spherical or near-spherical sequence involves c
initial and final pulses from identity to some configuration at
the selectedv; to compensate for the finite lengths of these
pulses, it would thus be necessary, in general, to add supple- - B
mentary paths to the identity, a feature already taken into 06 03 0 03 o6
account by the ZFHF trajectory. kHz

We carried out an experiment using a ZFHF-based se-
guence to average out first-rank tensors while preservingl!G. 9. Proton zero-field spectra of GEl, dissolved in a randomly ori-
scaled second-rank tensors. This technique can be useful fted smecti€ liquid crystal:(a with optimal shimming conditions of the

.. . L. zero-field region of the spectrometéb) with the presence of an inhomo-
applications where the residual magnetic fields cannot bSeneous, randomly oriented, residual magnetic field in the<d@* T
properly compensated and distort the zero-field spectrurfinge;(c) in the same conditions db), but recorded using a rank-selective
generated by local interactions. We used amtfulses se- icosahedral sequence that decouples first-rank couplings but isotropically

quence according to the general scheme described abo\;éales second-rank interactions by about 0.33. The residual fields in the
spectrometer distort the zero-field spectrum: at low fields a parasitic peak at

st_opping at then=0 and W=7 config_urations(_as shown in" ,erg frequency appears, and at higher fields the structure of the whole zero-
Fig. 6) to generate the highest possible scaling factor for theield spectrum is obscured. By using the decoupling sequence, some of the

second-rank tensors while still decoupling the first rank. Theoriginal structure of the zero-field spectrum is retrieved and the central peak
sequence can thus be written as is suppressed. Pulse imperfections and nonvanishing high-order terms in the

averaged couplings introduce distortions, which make it difficult to resolve
the high-frequency lines.
[(r—m—37=27"—m)i=16ln, (395 gn-reauency

=
o I
N

L
T

1

where 7 is the length of ther pulses, and labels the six
icosahedralCg axes. This sequence is compensated for finitec50x10°7 T along Z over the sample heightWith the
pulse lengths and the second-rank scaling factor is same inhomogeneous residual field, but using the icosahedral
ko= (27+ 7' )/5(7+17"), (36) I =1 decoupling sequend@5) during the fre_e evolution of.
the system, the spectrum recovers most of its usual zero-field
which is always between 1/5 and 2/5. The sequence wateatures, as shown in Fig(®, although all the frequencies
applied to the proton spins of GBI, dissolved in a are scaled by about 1/3. The residual central peak of the
disordered smectic-E liquid crysta(5%—-10% wt in a usual zero-field spectrum, due to uncompensated residual
50%-50% wt  mixture of  4-butyloxybenzylidene- fields, is fully removed, although the third- and higher-order
4'-n-octylaniline and 4r-octyloxy-4-n-cyanobiphenyl  terms in the average Hamiltonian, the pulse transients, and
The pure zero-field spectrum of this sample was alreadyhe eddy currents induce a broadening and a distortion of the
reported® and, as shown in Fig.(8), it consists of three spectrum. The expected 200 Hz fine structure of the transi-
transitions at 0.2, 1.4, and 1.6 kHz, arising from the residuations around 1.5 kHz is thus obscured by poor resolution.
anisotropic dipolar coupling between the two protons. When  The experiment was carried out on a modified version of
a small residual field is present, the lines broaden and a shaqur zero-field spectromet&.The sample polarization was
parasitic peak at the zero frequency appdaee Fig. @a)]. prepared and monitored using field cycling with a sample-
Eventually, for residual fields strong enough, the transitionshuttling systent!*2 and the zero-field evolution was initi-
cannot be distinguished any more and only the central peated and terminated by the sudden switching of a magnetic
remains. This is shown in the spectrum of Figh)9obtained field (along the mainZ axis) stronger than the local
as the zero-field spectrum in Fig(ad, but with a stronger interactions:! Three class A, dc to 1 MHz, 2 kW amplifiers
residual field applied by deliberately setting the zero-fieldwere interfaced to the 0.4s resolution pulse programmer
shimming coils in our spectrometer far from the optimal val-via 12-bit digital-to-analog converters. They provided up to
ues (=100x10 " T along theY axis and a gradient of 75x10 “T in three orthogonal coils(, Y, andZ, around the
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zero-field region of the spectrometer. The homogeneity anthe cycle time and the highest frequency present in the sys-
the orthogonality of the coils over the sample6 mm diam-  tem.

eter and 0.7 mm heightvere better than 0.5%. Using nuta- Despite the pulse-calibration difficulties and the pulse
tion experiments on a water sample, the amplitudes of théistortions, the ZFHF trajectory could be regarded a useful
three coordinates of the icosahedrapulses were adjusted tool in designing icosahedral pulse-compensated schemes.
from their theoretical values to account for the nonlinearitiesHowever, the scaling factors averaged over the pulses in
imbalances and transient effects in the three power amplifisuch sequences are positive and non-negligible, compared to
ers. Pulse transients are due not only to the finite rising anthe optimum time-reversal scalingd/3,1/9 vs (—1/3,1/9
falling times of the currents in the coils, but also to the dif- or (1/6,—1/4) in the (k.,k,) plane(see Fig. 4 Since the
ferences in rising and falling times if the pulses are not onlytotal duration of the pulses must be much smaller than the
alongX, Y, or Z. We refer to the latter effects as orientation cycle time, it becomes impractical to use this kind of com-
transients, which are analogous to phase transients in higfpensation method for time-reversal sequences applied to
field NMR.” The nutation adjustment ensured that, even aftestrong local couplings, such as dipole—dipole interactions be-
a train of many hundred cycles, the sequence did not genetween protons in a solid sample. On our spectrometer, for
ate any residual rotations that would have distorted the spe@xample, ther pulses on protons were s long, giving a
trum in the form of an effective Zeeman coupling. Symmet-total of 24 us for the six 2r-pulses needed in a ZFHF se-
ric cycles with opposite pulses were alternated with thequence. By combining these pulses with configurations on
standard cycle to suppress the second-order averadgee cosw=—1/4 sphere for optimum second-rank time rever-
Hamiltonian! and to reduce the effects of pulse inhomoge-sal, we would get a modest scaling factor-6t/20 for a total
neities and eddy currents in the metallic parts around théycle time of 48us. This is quite unacceptable for dipole—
zero-field region. The experimental parameters were as fodipole interactions between protons that usually fall in the 50
lows: pulse lengths’ =2 us, time intervalsr=3.6 us, cycle  kHz range. We have therefore explored other possibilities to
time 134.4us, acquisition dwell time #134.4 us=537.6  avoid the difficulties associated with sequences of icosahe-

us. These values yield an ideal scaling factor of 23/@6®3  dral type. An important class is provided by the cubic
according to Eq(36). sequence® where the set of configurations is restricted to
The distortions observed in the spectrum of Figc)9 those generated by combinations of2 pulses along the
allow us to estimate the duration of the pulse transients anfiree axes. A companion article is devoted to this tdpic.
the amplitude of the eddy currents. We estimated the changes
in k, andk, using a simplified model for the pulse transients
(described by constant slopes, equal for the rising and fallin
edges and for the eddy currentglescribed during each evo- We have shown theoretically that isotropic coherent ma-
lution period by a constant field along the orientation of thenipulations(decoupling, time reversghre possible in zero-
last applied pulse Under these conditions, the k2 paths  field NMR on powder samples, and we have discussed the
defined by the sequence in &) (see Fig. § are no longer |imits and the main features for optimughpulse sequences
explored at uniform speeds, and the scaling factors duringh homonuclear spin systems. Both the first-rank interactions
the pulses are perturbed. The detailed calculations that willsuch as residual fieliland the second-rank interactiofs-
be given elsewhef@ show that the first-rank scaling factor polar or quadrupolar couplinggan be isotropically scaled.
of the sequencédd) is not affected at all by the finite tran- The scaling factors of a given isotropic scheme can be dif-
sient times or the eddy currents. The sequence is thus rathgsrent for the two types of interactions, although they are not
robust with respect to its decoupling capabilities. In contrastcompletely independent. In any case, the first-rank scaling
for second-rank tensors the scaling factor is reduced both biactors are between-1/3 and 1, whereas those for the
the finite transient times and by the eddy currents. For insecond-rank fall betweer 1/4 and 1. Due to experimental
stance, the effective scaling factor obtained in our experitimitations the application of those techniques was shown for
ment in Fig. 9c) is about 0.28, i.e., 84% of the theoretical one simple case only, and more practical schemes based on
value of 23/76-0.33. A numerical evaluation of the pulse- /2 pulses are developed in the second paber.
transient effects shows that, at the worst, the scaling factor The potential applications of this work will be primarily
would be k,=0.31 for transient durations of 2s (which  in further expansion of ZF-NMR method&!° Two cases of
then means that, since the pulse length is algs 2he pulse isotropic scaling can be considered particularly useful: de-
shape is triangular On the other hand, the observed reduc-coupling and time reversal. In the homonuclear case, the de-
tion of the scaling factor is obtained if the amplitude of the coupling according to the rank of the interactions allows us
eddy currents is around 6.3% of the pulse amplitude. Actuto eliminate the usually disturbing effects of nonzero residual
ally, both pulse transients and eddy currents are present affig¢lds. The decoupling is also useful in the heteronuclear
they combine to yield the observed reductionkgf These case, because various local interactions can be made to be-
estimates clearly show the importance of the experimentatave as tensors of different ranks due to different values of
imperfections. It is not surprising then, that the fine structurehe magnetogyric ratic Time reversal is probably the most
of the original spectrum in Fig.(8) is distorted or lost under interesting of the new possibilities, because it allows us to
the decoupling sequence. Additional errors also arise frondesign a zero-field analogue of the HF-NMR technique
the third-order term in the average Hamiltorfiavhose order called multiple-quantum NMR° This technique that we
of magnitude may be as high as 100 Hz, as evaluated frorshall call “multipolar zero-field NMR,” should yield simpler

alll. CONCLUSIONS
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spectra for many-spin systems by reducing the number ofhen, the transformation from active to passive pulses can be
transitions(like in multiple-quantum NMR, while still pre-  accounted for by a simpler phase shift of the transmitter.
serving the isotropy of spectra. This is not the case in ZF-NMR, and to avoid any confusion,
Another closely related spectroscopy that may profitthe pulses will be given as the active rotatiotigt are de-
from the isotropic techniques is nuclear quadrupolar resoduced from the configurations using E®). To translate the
nance(NQR). Apart from the problem of isotropic manipu- spin rotations into magnetic field pulses in the spectrometer,
lation, which is identical to the ZF-NMR case, NQR createsall the possible inversion sources must also be taken into
yet another difficulty: The local interactions are usually tooaccount: signs in the Shdinger equation, the Hamiltonians,
strong to allow the excitation of the whole spectrum by cur-and the magnetogyric ratio, and polarities of the pulsed coils
rently available magnetic-field pulses. Radiofrequencyaround the sample. Assumingpasitive magnetogyric ratio
pulses are thus applied to excite and observe the vicinity oind a right-handed positive system of pulsed coitke
some transitions only. The effect of such pulses can be corHamiltonian and the propagator in the spin space for a dc
sidered similar to that of dc pulses but truncated so as tpulse aré’
retain the matrix elements corresponding to the transition

under study. This truncation effect of the excitation field by ~ H=—I.B, (Ala)
the local interaction is orientation dependent. In contrast to
the zero-field situation where a dc pulse generates a rotation p_ exq —iHt]=exgiyl -Bt]=exgial -n] (A1b)

independent of the crystallite orientation, the allowed ma-

nipulations in NQR are not rotations and are not isotropiCwhereB is the magnetic field vector along directiananda

The configuration space and the trajectories are so complejs the pulse angle. The operatBris an active rotation by
that generating coherent averaging schemes with such tookhgle« along direction—n [or a passive rotatiofw,n)]. This
seems hopeless. However, in the case of a spin 1 or 3/2, fqlist means that spins of positive magnetogyric ratio precess
instance, it is possible to “untruncate” an rf pulse by simul- counterclockwisén a magnetic field.

taneously applying a matched dc pulse in the same direction. The icosahedral pulse sequend@8) and (19) are de-
Thus reducing the effect of the global pulse to a simplefined by 12 vertices of an icosahedron drawn on a sphere at
isotropic rotation of the spins is possible, and any isotropicconstantw inside the configuration space &2 This is
technique based on rotations can be used. Though such me#hown in Fig. 3, where we chose the icosahedron to be em-
ods would be rather demanding experimentally, potential apbedded in the reference frame with, symmetry axes along
plications of decoupling, multipolar analysis, or even imag-X, Y, andZ. The rotation axes of the configurations are then

ing, would be important. given by the normalized vectors
An interesting theoretical question is that of the class of
systems that can be time reverSemhtuitively, it could be 55 5+ 5
argued that this is possible on two-dimensional systems only, .=+ ( + \/ 0, \/ &c.c., (A2)
as in the previously known examples from HF-NMR where 10 10

the truncation formally restricts the coherences to the trans- ) .

verse plane. The problem was raised twenty yearS agad is where c.c. stands for the cyclic permutatiorsX,Y) and

still unsolved, but we have now, with the negative isotropic(YZ.X). This choice of the reference frame will simplify the
scalings, added a new broad class of systems which are b&lculation of the pulses, provided that we choose, as in Fig.
sically three dimensional. Thus it seems that the dimension3: @Cs-symmetric trajectory along th11) magic direction
ality is certainly not a limiting factor and that probably few, (it can be seen that this is the highest possible symmetry
if any, restrictions exist for time reversal of spin couplings, 8vailable for a 12-pulse pathThe path shown in Fig. 3 is the

provided one has some appropriate experimental means 8fly one that displays such a symmetry and joins the neigh-
manipulating the coherences. boring vertices of the icosahedron.

The pulse lengths and directions are deduced from Eq.

APPENDIX: CALCULATION OF THE MAGNETIC-FIELD (2) according to the formulas giving the angle and axis for
PULSES IN ICOSAHEDRAL SEQUENCES the combination of twdactive rotation$®

We assume that the configurations represemive rota-
tions of the Hamiltonians, in aight-handed reference
frame?® This assumption is not important for the general
theory of icosahedral sequences as given in Secs. Ill and IV €08 @/2)=coda;/2)co8 a/2)
(passive rotations are just opposite to active rotations, and

R(a,n):R(az,nz)'R(al,nl), (A3a.)

: : . . —(Ng-Nny)Si 12)si 12), A3b
the icosahedral sequences always contain opposite configu- (N1 np)sin(a/2)sin(a,/2) (A3b)
rationg. However, it is an important point to explicitly com- nsina/2)=n. si /2)co /2
pute the pulse characteristics, because the trajectory obtained Nal2)=n, sifay/2)cosaz/2)
by reverting the pulses of an icosahedral sequence is not +ny sin(a;/2)coq ay/2)

necessarily icosahedral.

The question whether rotations are active or passive is
seldom important in HF-NMR,’ because the Hamiltonian is If we select forn; andn, the vertices labeled 1 and 2 in Fig.
truncated and the pulses are confined to the transverse plarg.as given by Eq(A2), we find the pulse

—(nyXny)sin(aq/2)sin(a,/2). (A3c)
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Plﬂ2=R(a,n)=R(w,—n2)'R(a),nl), (A4)

according to Eq(2). From Eq.(A3) and after some elemen-
tary transformations we find the pulse angle and direction

(3~ J5)cof w+4 cosw+(y/5—2)
_ - ,

cos o (A5a)

n in(al2) ( \/5_\6 in ! (1-co )0)
12 SIN « = — SIN w, —= - Sw), .
10 V5

(A5b)

n,_., is thus confined to thXY plane, and its orientation can
be described by an angke according to

|
_ 5+.5 1+cosw 3+.5 1-cosw
ny_,=(us,vq,wq)=(—cosé,sin 9,0)=| — , ,0].  (AB)
2 4+\/5+cosw 2 4+ \5+cosw

All the pulses between the vertices in Fig. 3 can be de- J5—-1 1
duced from that between 1 and 2 using the appropriate rota- -

tion that brings thg1,2) edge to the i(,j) edge. For(2,3),
(3,4, and (4,5 we use rotations by-2#/3 around face
(1,2,3, 2%/3 around(1,1,—1), and 27/3 around facd€1,4,5,

respectively. Owing to th€,; symmetry of the trajectory, the

remaining eight pulses are found by applying cyclic permu- —

tations of the coordinates. Using explicit expressions for the
rotations, and after some elementary, though lengthy, alge-

braic manipulations, we found that

1 J5+1
2 4
J5+1  \B—1|[-cos#
N2 3= (Uz, 02 W) =| ——5— —— sing |’
J5+1 1
- 5
(A7)
N3_.4=(U3,03,W3)=(sin 6,0,c0s6), (A7b)
V5+1  5-1
4 4
J5—-1 1 —cosé
Ng_5=(Ug,04,Wy) = 4 ) sing |°
1 J5+1
2 4
(A7c)

4 2
o 1 J5+1 —cos 6
Ng_.11=(U3,03,W3)= 2 4 sing /-
V5+1 5-1
4 4
(A9)

Specific pulse values for some useful scaling factors
have been explicitly computed using E¢&5a), (A6), (A7),
and(A9). The results are summarized in Table I.
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