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I. General theory and icosahedral sequences
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We present a general theory of coherent isotropic averaging in nuclear magnetic resonance~NMR!.
In a zero external field, magnetic-field pulses can selectively average the internal spin Hamiltonians,
while preserving the intrinsic invariance of the spectrum with respect to the sample orientation. The
theory predicts the limits of the scaling factors for tensor interactions of different ranks. Time
reversal is found to be possible for first- and second-rank tensors with scaling factors of21/3 and
21/4, respectively. Explicit sequences, based on icosahedral symmetry, are given for a number of
optimal scaling factors. To illustrate the theory, an experiment is also presented in the special case
of rank-selective decoupling. As in high-field NMR, applications can be expected from the
introduction of coherent averaging schemes for zero-field techniques: for example, decouplings~by
rank or nuclear species!, time reversal, and multipolar experiments~zero-field analog of
multiple-quantum NMR!. © 1995 American Institute of Physics.
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I. INTRODUCTION

The importance of NMR as an analytical tool deriv
from its ability to provide atomic and molecular informatio
about a sample through the measurement of intrinsic nuc
spin couplings. However, these are not observed alone b
conjunction with the Zeeman interaction, which trunca
them in an anisotropic way.1,2 The truncated local coupling
depend upon the orientation of the privileged local directio
~for instance, crystalline axes! with respect to the magneti
field. Since many available solid-state samples are polyc
talline or amorphous, they yield powder spectra in which
anisotropy broadening often obscures any potentially res
able features.

To overcome this difficulty, various techniques of so
state NMR have been developed over the last three deca
including ‘‘magic-angle’’ spinning~MAS!,3 multiple-pulse
irradiation sequences~for example, WHH!,4 and more re-
cently, dynamic-angle spinning~DAS!,5 and double rotation
~DOR!.6 By using such techniques, the anisotropic parts
the interactions are averaged out and the resolution of
spectra can become similar to that obtained from liq
samples.2–7 These methods involve sample reorientatio
and coherent radiofrequency irradiations whose effects
be described in terms of coherent-averaging theory.7 Coher-
ent averaging allows for a wide range of Hamiltonian m
nipulations, where different terms can be modified accord
to magnetogyric ratio~as in heteronuclear decoupling! or
tensor rank~as in WHH!. Sign changes, known as time r
versals, have also been performed~as in Hahn echo8 and
magic echo experiments9! and they are essential for pha
coherence in multiple-quantum NMR and other forms
two-dimensional conjugate detection.10

Although the use of high-resolution tools of solid-sta

a!Present address: 5, rue Saint Denis, 92100 Boulogne, France.
b!Present address: Radiospectroscopy Division, Institute of Nuclear Phy
Radzikowskiego 152, 31-342 Krako´w, Poland.
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NMR enhances the information content of the spectra,
leads to some loss of information as well. The anisotropi
parts of the broadening are due to contributions from th
local couplings whose observation can be as valuable. A
alternative approach, zero-field NMR~ZF-NMR!, was intro-
duced a few years ago to address this problem.11 In contrast
with many spectroscopies, ZF-NMR has no privileged direc
tion in the laboratory frame since the magnetic field is re
moved, and thus all the crystallites of the sample are equiv
lent. For powder samples, the resolution of observed spect
is similar to what would be obtained from standard high-field
NMR on the corresponding single crystals. ZF-NMR is
closely related to nuclear quadrupolar resonance~NQR!,12

but it is a coherent technique where the signal is recorded
the time domain, yielding the spectrum after Fourier trans
formation. As shown in Fig. 1, the evolution in a zero field is
initiated and stopped by sudden transitions of the magnet
field, whereas to monitor the signal, nuclear polarization i
created and observed in a high field. Through field cycling
this exploits the isotropic behavior in a zero field, while pre
serving the sensitivity of standard NMR. We shall use th
term ‘‘high-field NMR,’’ or HF-NMR, for the usual NMR
spectroscopy where the Zeeman interaction is much strong
than the local interactions.

An intermediate solution has been developed recentl
the ‘‘zero field in high field’’ NMR, or ZFHF.13,14 This co-
herent averaging method combines sample rotation and r
diofrequency irradiationperformed completely in a high field
and makes the system evolveas if it were in a zero field. This
‘‘untruncation’’ technique has many advantages over the pur
ZF-NMR, since no field cycling is necessary and hetero
nuclear species can be easily decoupled, but it is limited b
the maximum achievable spinning rate of the sample~cur-
rently up to 30 kHz in the state-of-the-art turbines!.

Although coherent averaging methods are now we
known and understood in HF-NMR~for decoupling, time
reversal, etc.!, there is an almost complete lack, so far, of
similar techniques in zero-field spectroscopy. Indeed, asid

ics,
/95/103(10)/3966/16/$6.00 © 1995 American Institute of Physics
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3967Llor, Olejniczak, and Pines: Coherent isotropic averaging. I
from single crystal cases, coherent irradiation schemes h
been limited to excitation and echo techniques,12,15–17and to
a theoretical exploration of some specific homonuclear
coupling sequences.18,19 NQR echoes, which were intro
duced shortly after the HF-NMR Hahn echo,15 are not
evolved under a well defined truncation axis in the laborat
frame. In a polycrystalline sample, the orientations of
local quadrupolar interactions are randomly distributed,
ducing correspondingly different matrix elements of the ir
diation field.12 The evolution in a powder sample during
NQR echo is only approximately refocused and, in contr
to the HF-NMR Hahn and magic echoes, it cannot be use
a building block to generate coherent irradiation sequen
Compensation schemes for these imperfections have
been implemented to manipulate spin interactions in a z
field, but some echo-train techniques have been used to
prove the signal detection or perform two-dimension
experiments.16,17

Coherent manipulations of the local interactions in Z
NMR can be performed using magnetic field pulses, tra
tionally called ‘‘dc pulses.’’18 Unlike an rf pulse in NQR, a
dc pulse in ZF-NMR can excite the whole spectrum, just
the initial magnetic field transient does~Fig. 1!. Furthermore,
since the field during the pulse is stronger than the lo
interactions, its effect can be conveniently described a
spin rotation. By analogy with pulse schemes in HF-NMR4,7

zero-field homonuclear decoupling sequences have b
developed usingp/2 rotations along the three referen
axes.18,19 These averaging processes, which we shall
‘‘cubic,’’ were designed for the full zero-field Hamiltonians
regardless of the crystallite orientations. In theird-pulse ver-
sions, the cubic sequences involved 4 or 12p/2 pulses for
interactions transforming under spin rotations as first-
second-rank tensors, respectively.

FIG. 1. Schematic description of the zero-field NMR~ZF-NMR! experiment
~Ref. 11!. Through magnetic-field cycling, the evolution of the nuclei und
the influence of the untruncated local interactions in the zero field is
corded in the high field, with the corresponding sensitivity enhancem
The evolution is initiated and terminated by suddenly switching the m
netic field. This is a coherent transient experiment, where the zero-
evolution is recorded point by point and the spectrum is obtained after
Fourier transformation with respect to time t. Since strong magnets ca
be switched rapidly enough, a two-step cycling of the field is perform
first, in about 200 ms, to an intermediate value~'10 mT! generated by an
auxiliary coil, which, in turn, can be switched in less than 1ms.
J. Chem. Phys., Vol. 103,
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By analogy with the HF-NMR case, the development o
general coherent methods in ZF-NMR can be seen as a u
ful step in expanding the possible applications of NMR i
solids. The present article is thus devoted to an importa
class of coherent processes in ZF-NMR that we termcoher-
ent isotropic averaging. Some preliminary examples were
introduced in a recent letter,20 with applications to time-
reversal experiments. Here, we shall extensively discuss
concept of isotropic averaging, providing the group theore
cal foundations of the theory. Symmetry considerations ma
it possible to solve the theoretical problem in the gener
case, and provide ‘‘canonical’’ sequences based on icosa
dral distributions. The special case of decoupling sequen
will then be examined, together with the general high-fie
isotropic sequences. In conclusion, possible applications
isotropic scaling in ZF-NMR and NQR will be briefly dis-
cussed~decoupling, multipolar analysis, imaging,...!, and we
shall make some general comments on time-reversal sc
ings. An experiment based on an icosahedral sequence
also be reported in this paper, but the practically useful cub
sequences are relegated to a subsequent article, together
experimental considerations concerning finite pulse compe
sations.

II. GENERAL CONCEPT OF ISOTROPIC TRAJECTORY

The starting point is the general problem ofisotropic
scaling: How can we perform a scaling of the complete zero
field Hamiltonian while preserving the isotropic behavior o
ZF-NMR. This may not seem very useful in general, exce
in the ZFHF sequence, which performs an isotropic scali
~starting with a truncated anisotropic interaction! in the ex-
periment carried out completely in a high field.13,14 As we
shall see, however, different parts of the Hamiltonian, disti
guished by rank of interactions or nuclear species, can
scaled by different factors. Then, WHH-like schemes~to de-
couple second-rank interactions while retaining first-ran
interactions, or vice versa!, time reversal, or heteronuclear
decoupling become special cases of scaling-factor combi
tions, and they can be more clearly visualized and und
stood from the broader framework of isotropic scaling. W
shall devote most of the present article to the homonucle
case~like spins!.

In a high-field NMR, coherent manipulations of the
Hamiltonian are achieved by applying radio-frequenc
pulses ~modulated in phase, frequency or amplitude! and
sample reorientations~using a turbine, for example!.2,7 In a
zero field, however, there is no Zeeman interaction and a
cordingly the spins have to be excited with dc pulses of t
magnetic field, in such a way that all the transitions of th
system are effectively covered up to the cutoff frequen
corresponding to the pulse duration.18 Since there is no ro-
tating frame, there is no equivalent to the phase modulatio
of HF-NMR, and pulses along different axes must be gene
ated by physically applying dc pulses along these orien
tions. Thus zero-field coherent processes require a set o
least two, and more conveniently three, crossed coils to g
erate any type of pulse. On the other hand, it can be show18

~see Sec. VI! that sample reorientation is not necessary in
zero field. It can always be imitated by applying dc pulse
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3968 Llor, Olejniczak, and Pines: Coherent isotropic averaging. I
which are significantly more efficient than reorientation. W
shall thus describe all the zero-field coherent processe
terms of magnetic-field pulses only.

As a brief reminder of the main ingredients of cohere
averaging theory,7 consider the case of ad-pulse sequence
under which the system evolves due to the zero-field Ham
tonianH0~V! ~whereV represents the orientation of the loca
interaction axes in the laboratory frame! during n11 time
intervals t i (0< i<n), separated byn pulses whose effects
are given by rotation operatorsPi in the spin space. The
evolution of the system over one sequence cycle, in the fi
order,21 is determined by the average Hamiltonian

H̄ ~1!~V!5 (
0< i<n

~Ri•H0~V!•Ri
†!t i /tc

5 (
0< i<n

Hi~V!t i /tc5^Hi~V!&, ~1!

where the bracket notation in the last expression stands
the average overi . The rotations applied to the Hamiltonian
Ri , are related to the pulses according to

Ri5~Pi•Pi21• ••• •P2•P1!
† or Pi5Ri

†
•Ri21 , ~2!

with the supplementary condition of a cyclic sequence

Rn5~Pn•Pn21•Pn22• ••• •P3•P2•P1!
†5I , ~3!

whereI is the identity operator. According to the establish
terminology, we call the set of rotated Hamiltonian
$Hi~V!%, the trajectory in the operator space. The $Ri% will
be called theset of configurations or the configuration tra
jectory, and it is the object that is the closest to$Hi~V!%,
which completely and uniquely defines the process. The
tation of operators defines a representation of the group
rotations, SO~3!, on the space of operators, and thus$Hi~V!%
is associated with$Ri% through this group representation. Fo
any $Ri%, the magnetic-field trajectory~i.e., the pulses$Pi%!
will be given by Eq.~2!. In the case of a practical sequenc
that does not consist ofd pulses~continuous, windowless or
with pulses of finite width!, the effect of the magnetic field
can be accounted for by a continuous configuration traject
R(t), with the discrete sum in Eq.~1! replaced by an integral
over 0<t<tc . To visualize a trajectory, it is convenient t
use the representation of the group of rotations, SO~3!, as a
sphere of radiusp, where a rotation is represented by a ve
tor pointing along the direction of the rotation axis and of
length equal to the magnitude of the total rotation angle22

Thus an ideald-pulse sequence, a windowless sequence,
a continuous trajectory are described, respectively, by a
of discrete points, a continuous line, and a continuous l
without kinks~differentiable path! inside the SO~3! sphere as
shown in Fig. 2.

The trajectory is calledisotropic if it generates a zero-
field-like average Hamiltonian,H̄ ~1!~V!. This is the case, for
instance, if the sequence performs thescaling of the local
interactionH0~V! by a factork, independent of the orienta
tion V

H̄ ~1!~V!5^Ri•H0~V!•Ri
†&5kH0~V!. ~4!
J. Chem. Phys., Vol. 103, N
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Here, it must be emphasized that isotropic sequences are
necessarily scaling sequences. The important property in
NMR is that theeigenvalues~but not the eigenstates! of the
local Hamiltonian are independent of the crystallite orien
tion V. Thus we shall also call isotropic a sequence tha
the same time scales and rotates the Hamiltonian.13,14Except
in experiments where both the modified and free Hamil
nians are used successively, the effect of this rotation wo
be undetectable on a powder sample, and only transition
tensities would be changed for a single crystal. This case
residual rotation is normally irrelevant since it can be co
pensated by two extra pulses. However, we do not rule
the possibility that some averaging schemes complying w
the eigenvalue invariance may not be reduced to simple s
ings by rotations. It can be shown that the applicability
such sequences would be restricted to some specific cas
interactions, generally involving limited numbers of leve
In the present work, we shall only analyze pure scaling
quences as defined by Eq.~4!.

Before solving Eq.~4! explicitly, it is important to ex-
plore its symmetry properties. Starting from any given sc
ing sequence$Ri%, we can generate another trajectory usi
the transformation$U•Ri•V%, whereU andV are fixed ro-
tations. DefiningS5V† andQ5U•V, we can rewrite the
transformed configurations as$Q•S•Ri•S

†%, and according
to the linearity of Eq.~4!, the first order average Hamiltonia
will become

H ~1!~V!5^~Q•S•Ri•S
†!•H0~V!•~Q•S•Ri•S

†!†&,

5Q•S•^Ri•H0~S~V!!•Ri
†&•S†•Q†,

5kQ•S•H0~S~V!!•S†•Q†5kH0~Q
21~V!!.

~5!

WhenQ5I , the scaling behavior of a sequence is thus p
served under the transformation$S•Ri•S

†%. The pulses are
also rotated to$S•Pi•S

†% according to Eq.~2!. This invari-
ance can be intuitively understood by considering that
$Ri% define some privileged directions in the laborato
frame, and that a scaling sequence must be independe
the initial choice of a reference frame. The other transform
tion, $Q•Ri%, preserves the isotropic character of the co
plings as well, but at the same time it does change the a
age Hamiltonianunless the scaling factor is zero. Thus in the
configuration space, the invariance group for isotropic sc

FIG. 2. Examples of trajectories in the configuration space SO~3! under
various irradiation conditions:~a! for a d-pulse sequence,~b! for a window-
less pulse sequence,~c! for a sequence with a continuously modulated ma
netic field. Each point in the sphere represents a rotation which acts on
Hamiltonian of the system.
o. 10, 8 September 1995



a
c

e-
s
on

n
r

r
n

e

-
a

n
f

er

ar

-

e

ce
e
le

ors
o
b-

tors

o-

h–

-

on

ean

ial

en-
e

-
is
-
tion

3969Llor, Olejniczak, and Pines: Coherent isotropic averaging. I
ing is SO~3!, whereas for decoupling it is SO~3!3SO~3!. As
we shall see, these symmetry properties lead to different
proaches to generating the corresponding scaling and de
pling sequences.

III. GENERAL SOLUTION TO THE ISOTROPIC-
SCALING PROBLEM

As in HF-NMR,7 the interactions are expanded into irr
ducible tensor representations,22 since the effect of the pulse
is described by rotations of the Hamiltonians. We shall c
sider only one such representation of orderl , because in first
order average Hamiltonian the contributions from differe
representations are just linearly superimposed. We thus w

H0~V!5(
m

~21!mAl ,2m~V!Tlm , ~6!

where the set ofTlm is a basis for the irreducible tenso
operators, andAlm~V! are the coefficients of the expansio
which depend on the local axes orientationV ~Tlm and
Alm~V! are also known as the spin and lattice parts, resp
tively!. In the following, the rankl will be 1 ~as for residual
Zeeman couplings! or 2 ~as for dipole–dipole and quadru
pole couplings!, though it might be higher in some speci
cases.19 By introducing Wigner matrices22 to describe the
effect of the rotations$Ri%, we can rewrite Eq.~4! in the
following way:

(
mm8

^~21!mAl ,2m~V!Dm8m
l

~Ri !Tlm8&

5kl(
m

~21!mAl ,2m~V!Tlm , ~7!

where we show explicitly that the scaling factor may depe
on the rankl . Since Eq.~7! must hold for any Hamiltonian o
the given rank and for any orientationV, it must be valid
whatever the coefficientsAl ,2m~V!. Thus

^Dm8m
l

~Ri !&5kldm8m , ~8!

for anym andm8 between2l and l . TheV dependence in
Eq. ~8! is now eliminated and the only remaining charact
istic of the Hamiltonian is its rankl .

Now, the invariance properties of scaling sequences
given by Eq. ~4! can be transferred to Eq.~8!. The
$Ri%→$S•Ri•S

†% transformation translates into a line
transformation of the Wigner matricesDmm8

l (Ri)

Dm8m
l

~Ri !→S~Dm8m
l

~Ri !!

5(
nn8

Dm8n8
l

~S!Dn8n
l

~Ri !Dnm
l ~S†!. ~9!

Actually, S can be applied to any (2l11)(2l11) matrixM ,
according to

Mm8m→S~Mm8m!5(
nn8

Dm8n8
l

~S!Mn8nDnm
l ~S†!. ~10!

The relationship betweenS andS is thus a linear represen
tation, known as the adjoint representation, of the group
rotations SO~3!, in the space of linear transformations of th
J. Chem. Phys., Vol. 103, N
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~2l11!-dimensional vector spaceL ~2l11!.22,23 The repre-
sentation formalism here is important, since the invarian
property of Eq. ~8! means precisely that the averag
^Dm8m

l (Ri)& belongs to the subspace of invariant irreducib
representations inL ~2l11!. We thus introduceUlm , the ir-
reducible tensor basis for (2l11)(2l11) matrices.Ulm can
be chosen identical to the usual irreducible operator tens
of a spinl ,24 but we use a different notation, because the tw
tensors form the expansion bases of physically different o
jects that operate in different spaces:Tlm are used to expand
Hamiltonians and operate over the spin space, whereasUlm

expand superoperators and act over the set of opera
~which includes Hamiltonians andTlm!. The expansion of a
Wigner matrix takes an especially simple form when the r
tation is defined by its total rotation anglev and its rotation
axisn23,25

Dl~R!5@4p/~2l11!#1/2(
lm

~2 i !lxl
l ~v!Ylm~n!Ulm ,

~11!

whereYlm are the spherical harmonics,xl
l are the general-

ized characters~x0
l is the standard characterxl!, and the sum

runs over 0<l<2l and2l<m<l. In Eq. ~11! theUlm ten-
sors, whose matrix elements are proportional to the Clebsc
Gordan coefficientsC(lm; lmlm8),25 are normalized by
Tr(U†U)51.

Introducing expansion~11! for theDm8m
l (Ri) in Eq. ~8!,

we obtain a set of relations

^x l~v i !&5kl~2l11!, ~12a!

^xl
l ~v i !Ylm~ni !&50 for any 1<l<2l

and 2l<m<l. ~12b!

The first equation@which, incidentally, can be deduced di
rectly by calculating the trace of Eq.~8!# gives a simple
relationship between the scaling factor and the configurati
trajectory: It is theaverage of a function of the configuration
rotation angle, regardless of the rotation axis. By substitut-
ing the explicit expressions for thel51 and 2 characters we
get

k15^~2 cosv i11!/3&5~2^cosv i&11!/3, ~13a!

k25^~4 cos2 v i12 cosv i21!/5&

5~4^cos2 v i&12^cosv i&21!/5, ~13b!

so the only relevant features are the mean and the m
square of cosvi over the trajectory. The fact thatkl is inde-
pendent of the rotation axes$ni% is intuitively reasonable,
since the isotropy constraint does not distinguish any spec
directions. The spherical representation of SO~3! is thus very
convenient, because all the configurations of a given conc
tric spherical surface will have the same contribution to th
scaling factors.

Equations ~13! constrain the set of possible scaling
factor combinations. To explore the allowed sequences, it
useful to introducespherical trajectories or sequences, de
fined as scaling trajectories where the mean-square devia
of cosv vanishes, i.e., wherev is constant~but wheren does
o. 10, 8 September 1995
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3970 Llor, Olejniczak, and Pines: Coherent isotropic averaging. I
change in order to have an isotropic result!. An important
property is that the effect ofan arbitrary scaling trajectoryis
equivalent to a succession of spherical sequences use
building blocks. Indeed, the scaling factor for a given isot
pic scheme,$Ri%, is determined by$vi% only. Therefore, an
original sequence can be replaced by a succession of sp
cal sequences applied at the samev values and for the sam
time intervals as defined by the$vi% distribution. In conse-
quence, by analyzing the feasibility of spherical sequen
we shall be able to give the general rules limiting the se
allowed scaling factors.

IV. SPHERICAL, ICOSAHEDRAL AND TETRAHEDRAL
SEQUENCES: THE SET OF ALLOWED SCALING
FACTORS

Since the rotation anglev is constant for spherical se
quences, the Eq.~12b! becomes

^Ylm~ni !&50 for any 1<l<2l and 2l<m<l. ~14!

For specific values ofv, some generalized charactersxl
l ~v!

may vanish, thus reducing the set ofl values for which Eq.
~14! has to hold. However, we shall restrict ourselves to
general case, because it is completely independent ofv. Fur-
thermore, according to Eq.~14!, any spherical sequence for
given value ofl will be spherical for all values smaller tha
l as well. General solutions to Eq.~14! are well known26,27

and have also been used in other NMR techniques suc
MAS and WHH ~l52!, or DAS and DOR~l52 and 4!.5,6

For instance, it is possible to average out all spherical h
monics froml51 to 4, using icosahedral symmetry.28 Equa-
tion ~14! can thus be solved by selecting 12 rotation axesni ,
with equal weights, and pointing towards the vertices of
icosahedron, as shown in Fig. 3. The correspondingd-pulse
sequences are calledicosahedralspherical sequences.

FIG. 3. An icosahedral sequence is represented by its configurations i
SO~3! group with the simplestC3-symmetric path connecting them. Th
icosahedral symmetry ensures that the sequence accomplishes an iso
scaling of all the spin couplings up to rank 2. The icosahedron has b
embedded in the reference frame so as to have theC2 symmetry axes along
X, Y, andZ. The path corresponds to sequence~18! in the text and isC3

symmetric around the magic^111& direction. The pulse sequences associa
with such trajectories are given in Table I for some specific values of
rotation anglev.
J. Chem. Phys., Vol. 103,
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Since Eq.~14! does not involvev, spherical~for in-
stance, icosahedral! trajectories are available for any value of
v. In the (k1 ,k2) plane, the set of scaling factors for spheri-
cal sequences is obtained by eliminatingv in Eqs.~13!

k25~9k1
223k121!/5, ~15!

wherek1 goes from21/3 to 1 since 0<v<p. The Eq.~15!
describes a parabolic arc and, according to the last remar
of the previous section, the set of all allowed scaling factors
is the concave side of the curve~the convex envelope! lim-
ited by the inequalities

21/3<k1<1, ~16a!

~9k1
223k121!/5<k2<~3k112!/5. ~16b!

This area is shown in Fig. 4, and no other isotropic combi
nations are allowed. As a consequence, the isotropic scalin
for first- and second-rank tensors are restricted to the follow
ing ranges:

21/3<k1<1, ~17a!

21/4<k2<1. ~17b!

The pulses required for icosahedral spherical sequenc
can be generated in many different ways according to th
order in which the configurations are explored. To reduce th
power requirements, it is simpler to explore the configura
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FIG. 4. The set of allowed combinations of first- and second-rank scaling
factors for isotropic zero-field sequences. Scaling-factor combinations ar
represented by points in the (k1 ,k2) plane, and the grey area@given by Eqs.
~16! in the text# is the set of allowed values. The sequences whose scalin
combinations belong to the parabolic borderline are spherical trajectorie
associated with a fixedv value given on the scale at the bottom. Some
optimum combinations are of special interest: A: 2nd-rank decoupling with
scaling of 1st-rank between2~A521!/6 and ~A511!/6; B: 1st-rank decou-
pling with scaling of 2nd-rank between21/5 and 2/5; C: optimum time-
reversal scaling for 1st-rank interactions,k1521/3 ~2nd-rank scaled by
k251/5!; D: optimum time-reversal scaling for 2nd-rank interactions,
k2521/4 ~1st-rank scaled byk151/6!; E: optimum scaling for time reversal
of both 1st and 2nd-rank interactions,k15k2521/9; F: zero-field in high-
field ~ZFHF! which can be regarded as the center of all the possible isotropi
schemes~Refs. 13, 14!, k151/3 andk251/5. The scaling combinations on
the parabolic arc are generated by the icosahedral sequences listed
Table I.
No. 10, 8 September 1995



3971Llor, Olejniczak, and Pines: Coherent isotropic averaging. I
TABLE I. Lists of pulses~angles and axes! for the icosahedral isotropic sequences~18! and ~19!. The configurations explored by the sequences are labeled
according to Fig. 3. Exact pulse parameters are listed in the third part of the table for some useful values of first- and second-rank scaling factors~also listed!:
decouplings~kl50!, optimal time reversals~kl,0 and minimum!, and common time reversal of both ranks (k15k2,0). The scaling factors and the pulses
are deduced from the configuration parameter cosv according to Eqs.~13!, ~A5a!, and ~A6!. The directions (u2 ,n2 ,w2), (u4 ,n4 ,w4) and (u58 ,v38 ,w38)
are deduced from~2cosu, sinu, 0! by rotations, according to Eqs.~A7! and ~A9!. The direction (u28 ,0,w28)5(2@(52A5)/10#1/2,0,2@(5
1A5)/10#1/2) is independent ofv, as explained in the Appendix. The second version of the sequence, Eq.~19!, though less symmetric than Eq.~18!, is more
efficient forv.124.54° as shown by the smaller total duration of the pulses~measured by the sum of the angle magnitudes!.

Configuration 1 2 3 4 5 6 7 8 9 10 11 12 1
Pulse angle a a a a a a a a a a a a

Pulse X 2cosu u2 sinu u4 0 w2 cosu w4 sinu n2 0 n4
axis Y sinu n2 0 n4 2cosu u2 sinu u4 0 w2 cosu w4

direction Z 0 w2 cosu w4 sinu n2 0 n4 2cosu u2 sinu u4

Configuration 1 2 8 11 5 6 12 3 9 10 4 7 1
Pulse angle a b a b a b a b a b a b

Pulse X 2cosu u28 u38 w28 0 w28 w38 0 sinu 0 n38 2u28
axis Y sinu 0 n38 2u28 2cosu u28 u38 w28 0 w28 w38 0
directionZ 0 w28 w38 0 sinu 0 n38 2u28 2cosu u28 u38 w28

cosv cosa cosu vb ab ub k1 k2 Total anglec

A521

4

A521

4
A51A5

10

72 72 31.7 A511

6

0 2.40

21/4
3

A523

16 A3323A5
58

104.5 98.2 47.7 1/6 21/4 3.27

21/2 3A5213

20 A2523A5
58

120 108.3 55.8 0 21/5 3.61

22/3 A526

9
A72A5

22

131.8 114.7 62.3 21/9 21/9 3.82~3.52!

2
A511

4

21/2 A32A5
6

144 120 69.1
2

A521

6

0 4.00~3.20!

21 23/5 0 180 126.9 90 21/3 1/5 4.23~2.11!

aWhereb52~p2v!.
bIn degrees.
cIn turns per cycle for the first version of the sequence; forv.120° the numbers in parenthesis refer to the second version of the sequence.
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tions by joining closest neighbors as in Fig. 3, so all t
pulses have the same lengtha. Furthermore, if the three co
ordinate axes are chosen alongC2 symmetry axes of the
icosahedron, the configuration path can be designed so
display aC3 symmetry along the magiĉ111& direction. This
makes it possible to deduce the pulses from each othe
cyclic permutations of the three coordinates. In this way,
icosahedral sequences can always be written according t
pattern

v2~@~t/22a i2t/2! i51,4#3c.c.!n2~2v!, ~18!

where 3 c.c. stands for the repetition, with cyclic permu
tions of the coordinates, of the four pulsesai . Icosahedral
sequences, like all other spherical trajectories, require
the initial and final pulses are applied in order to connect
initial state atv50, with the configurations at the selecte
nonzerov. Analytical expressions for theai pulses as a func
tion of v are given in the Appendix, and some special co
binations of scaling factors are listed in Table I; they a
decoupling and optimal time reversal, for first- and seco
rank tensors.
J. Chem. Phys., Vol. 103, N
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Sequences such as Eq.~18! are not necessarily the most
efficient because the associated configurations are distribute
in a folded space@the SO~3! group#: In the folded structure
of SO~3!, two opposite points on thep sphere represent the
same rotations. The closest neighbors to a given vertex ar
not always limited to the five next vertices of the icosahe-
dron, but they can also include the opposite vertex. As shown
in the Appendix, whenv is above 124.54°@cosv52~4
1A5!/11#, the icosahedral distribution of configurations can
thus be explored according to the more efficient pattern

v2~@t/22a12t22~p2v!22t2a32t

22~p2v!42t/2]3c.c.)n2~2v!, ~19!

in which theC3 symmetry is preserved. The limiting case
v5p is especially important, because the twelve vertices o
the icosahedron are then reduced to six. Detailed pulse pa
rameters for some special values ofv are also given in Table
I.
o. 10, 8 September 1995
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3972 Llor, Olejniczak, and Pines: Coherent isotropic averaging. I
Compared to the previously available coherent schem
the icosahedral sequences introduce significant impro
ments for many applications:

~1! Global time reversal~ranks 1 and 2!. The optimum
scaling is (k1 ,k2)5~21/9,21/9! with an icosahedral se
quence. The previous limit was~21/11,21/11! in time-
reversal sequences that could be deduced from some de
pling schemes, by removing the identity configurations th
contained~a similar procedure exists in HF-NMR betwee
the WHH and the magic sandwich sequences!.

~2! Rank-selective time reversal. For the first-rank int
actions, the theoretical optimum ofkI521/3 was already
obtained from the previous decoupling scheme,18 but the
present icosahedral sequences are also isotropic for sec
rank interactions. For the second-rank interactions, the ic
hedral trajectories provide the optimum time-reversal sca
at k2521/4, exceeding the previous value of21/8 ~obtained
again from a decoupling scheme, the discrete zero-field
sion of MAS18!.

~3! Rank-selective decoupling. A scheme to decou
both first-and second-rank tensors was available,18 but icosa-
hedral sequences make it now possible to build isotro
rank-selective decoupling schemes. When decoupling
first-rank interactions, the second-rank tensors can be sc
between21/5 and 2/5, whereas for second-rank decoupli
the first-rank tensors are scaled between2~A521!/6 and
~A511!/6.

It should be noted that except for the special values
v52p/5 or 4p/5, where the configurations belong to th
icosahedral group, the angles and axes of the pulses ar
associated in any simple way with any known subgroup
SO~3!, even for optimum combinations of scaling facto
like ~21/3,1/5! or ~1/6,21/4!. Although many high-field se-
quences generally involve group rotations as pulses~usually
p/2 alongX andY!, this is not a relevant symmetry of th
process. When designing a coherent process, the various
straints~for example, the isotropy conditions in the prese
case! can be translated into group symmetrical properties
the configuration trajectory, but this does not imply that t
configuration trajectory is the group itself, just as a polyto
in the Euclidean space is not equivalent to its symme
group.

So far we have only considered icosahedral spher
sequences, since almost all the local interactions behav
second-rank tensors. If only first-rank tensors are involv
~due to residual magnetic fields, for instance!, Eq.~14! has to
hold for l<2 instead of 4. At constantv, this is accom-
plished by means of a tetrahedral distribution of four dire
tions ni , so the pulse sequences, which are deduced b
procedure similar to the icosahedral case, are consider
simpler. Sequences for time reversal and decoupling ar
particular importance. For decoupling, the configuratio
happen to be atv52p/3, and form the 2p/3 class of the
tetrahedral subgroup in SO~3!, so the sequence involves on
p pulses along theX andY axes

~2p/3!M2~t/22pX2t2pY2t2pX2t2pY2t/2!n

2~22p/3!M . ~20!
J. Chem. Phys., Vol. 103,
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where the indexM labels pulses applied along the magic
direction, ^111&. This sequence was already deduced
previously.18 For optimum time reversal, it should be noticed
that v5p, so the configurations of opposite directions are
identical. A distribution of tetrahedral symmetry can thus be
obtained with only three points on theX, Y, and Z axes,
corresponding to the centers of the six edges of a tetrahedr
~this set actually has a higher, octahedral symmetry!. Again,
the set of configurations is found to be thev5p class of the
tetrahedral subgroup in SO~3!, and the resulting sequence
consists ofp pulses only

pX2~t/22pY2t2pX2t2pZ2t/2!n2pX . ~21!

V. DECOUPLING SEQUENCES

As we have already mentioned in Sec. II, the symmetr
properties of decoupling schemes are wider than those
isotropic schemes in general@see Eq.~5!#. Decoupling se-
quences can be generated as special cases of isotropic
quences, but other trajectories can be designed which res
from the SO~3!3SO~3! symmetry. In the same way that Eq.
~8! was expanded into irreducible representations of SO~3!
for the general isotropic case, we now expand it into irreduc
ible representations of SO~3!3SO~3!, with kl50. Instead of
the adjoint representation defined by Eq.~10!, we have the
product representation

Mm8m→~U3V!~Mm8m!5(
nn8

Dm8n
l

~U !Mn8nDnm
l ~V!,

~22!

whose irreducible representations are known to be the tens
products of the SO~3! irreducible representations, labeled as
l ^ l 8.22 For the left-hand product of the matrixM by rotation
U in Eq. ~22!, constant-m columns of theMm8m matrix
transform as a (2l11)-dimensional vectors in thel th-order
irreducible representations. We also have a similar proper
for the right-hand product on constant-m8 rows. So Eq.~8! is
already in its irreducible tensor form, and only one represen
tation is involved,l ^ l . In contrast to the general isotropic
case, the completely invariant representation, here 0^0, is
not present. This is consistent with the fact that we are dea
ing with a decoupling trajectory.

The identification of the appropriate symmetry groups is
a useful step in the solution of nonlinear~though algebraic!
problems like Eq.~8!. An important and extensively explored
example is the quadrature on a sphere in three-dimension
Euclidean space:26,27 We ask how to find a set of discrete
pointsni on a sphere, such that the average of any spheric
harmonic over$ni% vanishes, up to some givenl value @we
already came across this problem in Eq.~14!#. Since any set
$R~ni!% is also a solution if$ni% is a solution, the invariance
group is SO~3! again. To generate a discrete set$ni% ~or $Ri%
in our problem!, one can start from an initial orientationn0,
called the ‘‘seed,’’ and apply a discrete subgroup of SO~3!,
G.26 In this way we build a set, called an ‘‘orbit,’’ as
$ni%5$g~n0!%gPG . The distribution of points is then strongly
constrained, but simple group-theoretical arguments can te
us if Eq. ~14! is fulfilled.26 For instance, whatever the seed,
the tetrahedral, cubic, and icosahedral groups are known
No. 10, 8 September 1995
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3973Llor, Olejniczak, and Pines: Coherent isotropic averaging. I
cancel spherical harmonics up tol52, 3, and 4, respectively.
These limiting values can be increased by a proper choice
n0 with respect to the symmetry axes, or by combining tw
or more seeds, and analytical solutions can be found in
way for maximuml values of up to 17.27

The group-theoretical approach to solve this type
problem generally consists of three main steps: Identifyi
the invariance group, selecting some discrete subgr
which already solves most of the equations, and choosing
appropriate seed to fulfill the remaining conditions. For i
stance, when solving Eq.~8! for isotropic scaling in Sec. IV,
we selected a configuration at some givenv, and applied the
icosahedral group to generate a solution. Incidentally,
should be noted that the icosahedral group contains 60
ments, but the icosahedral sequences~like those we listed in
Table I! contain only 12 configurations, because the seed w
chosen on aC5 axis to obtain a smaller orbit. This specifi
solution using the 12 vertices of the icosahedron can also
considered to be generated by thetetrahedralgroup, starting
from a particular seed to cancel the spherical harmonics
l53 and 4 that are not normally averaged out by the sma
group.

The symmetry arguments can also be applied to our
coupling problem,kl50, which can be seen as a quadratu
over the SO~3! space~instead of over the usual sphere i
three-dimensional Euclidean space!. Accordingly, solutions
we search for are configuration sets defined by orbits gen
ated from a subgroup of SO~3!3SO~3! acting on a seedR0.
If the subgroup is of the typeG3H, where G and H
are subgroups of SO~3!, then the configurations are
$Ri%5$g•R0•h%(g,h)PG3H . If we use theC3Z3C3Z sub-
group of SO~3!3SO~3!, Eq. ~8! gives for l52

^Dmm8
2

~Ri !&5~1/9! (
a,g50,62p/3

eimaDmm8
2

~R0!e
im8g

5d0md0m8D00
2 ~R0!50. ~23!

Decoupling can thus be achieved if we select the seedR0 to
cancel the remaining element,D00

2 , for instance using a ro-
tation byb5um ~the magic angle, cos2 um51/3! around theY
axis. With this trajectory the first-rank tensors are neith
decoupled nor isotropically scaled, because

^Dmm8
1

~Ri !&5d0md0m8D00
1 ~R0!5d0md0m8 /3

1/2Þ0.
~24!

As we shall see in the next section, this trajectory, which
term ‘‘discrete MAS,’’ is the discrete zero-field analog of th
usual, high-field MAS and WHH sequences. A similar traje
tory to decouple second-rank interactions was also explo
within the more restrictive framework of the cubic group.18

In the present formalism, it can be generated by the sa
seedR0, but using the subgroupC4Z3C3Z.

First-rank tensors can be decoupled by applying fo
pulse sequences based on theC2Z3C2Z group, and using a
rotation byb5p/2 aroundY as a seed. In this particular cas
the set of configurations can be identified with the dihed
groupD2 ~identity and threep rotations alongX, Y, andZ!,
and it can also be generated by the subgroupD23$I %, with
the identity as a seed. Aside from a global 2p/3 rotation of
J. Chem. Phys., Vol. 103, N
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the configurations around the magic^111& direction, this tra-
jectory is also identical to thel51 tetrahedral decoupling
sequence~20! described in Sec. IV. As shown by the
discrete-MAS case, however, it is not always possible to r
duce a decoupling sequence to a special case of isotro
scaling.

Another interesting case arises in decoupling both firs
and second-rank tensors. This can be done by a 13-pu
combination of spherical sequences, for instance,
(k1 ,k2)5~21/9,21/9! and~1,1! ~see Fig. 4!. But, as already
shown,18 it can also be performed regardless of the seed
the subgroupT3$I %, whereT is the tetrahedral group. In-
deed, the tetrahedral group is known to cancelall of the l51
and 2 tensors,28 so each constantm8 column of the Wigner
matrix in Eq.~8! is averaged out. Now, in the SO~3! spheri-
cal representation, this set of configurations has 1, 8, an
elements on spheres, respectively, atv50, 2p/3, andp, so it
cannot be reduced to a combination of spherical isotrop
sequences. By a proper selection of the seed, the tetrahe
sequence can also be generated by theD23C3Z subgroup.

At this point we can compare, on a qualitative basis, th
efficiency of the various sequences we have discussed so
If we disregard the pulse lengths in the first approximatio
the efficiency is given by the number of configurations in
volved in the averaging schemes. Forl51 and 2, Eq.~8!
consists of 9 and 25 conditions, respectively, to be match
with a set of 3N parameters~we assume equal weights on al
of the N configurations!. We can thus expect that 3 or 9
configurations will be needed respectively, and up to 12 co
figurations in the case of a sequence that is isotropic for bo
l51 and 2. In view of this, the discrete-MAS and icosahedr
sequences can be considered as the optimum, whereas
tetrahedral sequences for first-rank tensors appear less
cient.

VI. HIGH FIELD ISOTROPIC SCHEMES

The relationships between high-field and zero-field c
herent schemes were previously pointed out for decoupli
sequences,18 and for the zero-field in high-field NMR tech-
nique ~ZFHF!14 mentioned in Sec. I. These two classes o
high-field methods can be seen as isotropic scalings p
cesses, and in the present section we analyze them as z
field trajectories according to the general theory of isotrop
scaling.

The translation of high-field schemes into zero field in
volves two main steps. First, any NMR experiment can b
viewed, theoretically, as a zero-field process; the static ma
netic field in HF-NMR is a ‘‘very long’’ dc pulse, of many
times 2p, and any high-field coherent technique is then
‘‘windowless sequence.’’ MAS and ZFHF are thus zero-fiel
decoupling, and zero-field isotropic scaling schemes, resp
tively. Second, any physical reorientation of the sample in
zero field can be mimicked by an opposite motion of th
spins with a fixed sample. This is easily seen for all the loc
interactions that are not field dependent~like the dipolar,
quadrupolar andJ couplings!, because the corresponding
Hamiltonians for a rotated sample can be transformed a
cording to
o. 10, 8 September 1995
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H5(
m

~21!mAl ,2m~R~V!!Tlm

5 (
mm8

~21!mD2m8,2m
l

~R!Al ,2m8~V!Tlm

5 (
mm8

~21!m8Al ,2m8~V!Dm,m8
l

~R21!Tlm

5(
m

~21!mAl ,2m~V!R21~Tlm!, ~25!

~where we have used the symmetries of the Wign
matrices25!. This result can also be understood in terms
reference frames: an active rotation of the sample is equ
lent to the opposite passive rotation of the laboratory fra
which defines the spin-quantization axes.

When considering high-field coherent processes, o
may think that the above equivalence of sample and s
motions is not valid anymore because the interactions
truncated. Indeed, the truncated Hamiltonian of the coupl
becomes

H5Al0~V!Tl0 , ~26!

and a sample rotation cannot be transformed into a spin
tation just as it could in Eq.~25!. However, if we consider
the Zeeman field as a part of the coherent process~as a
strong 2kp pulse!, we have torotate it together with the
spins in order to properly imitate the sample motion. In th
configuration space SO~3! the Zeeman coupling generates
loop trajectory, and a rotation of the spins or the lattice
actually represented by a rotation of this loop. The sam
motion can thus be replaced by a reorientation of both
main magnetic field and the spins around the fixed samp

An illustrative example is provided by the MAS trajec
tory in a high field.3,2,7 In MAS, decoupling of second-rank
interactions, like dipolar couplings, is achieved by spinni
the sample around an axis at the magic angle with respec
the magnetic field. The corresponding zero-field version c
sists of rotating the magnetic field around a magic cone,
shown in Fig. 5. The motion must be adiabatic, just as in
standard high-field MAS. In a nonadiabatic version of MA
magic hopping,29 the sample is reoriented by discrete jump
of 2p/3 around the magic direction. This can also be tran
lated to a zero-field version, by applying the field for 2np
periods along theX, Y andZ directions, and adding 2p/3 d
pulses along the magic direction in order to have the sp
accompany the field trajectory~Fig. 5!. A pure d-pulse ver-
sion can be generated when the long 2np pulses are replaced
by three 2p/3 pulses~since they generate, in the first orde
the same truncation of the second-rank interactions!.

Second-rank interactions can also be averaged in a h
field using rf irradiation. In WHH, the spins are nutate
along theX, Y, andZ directions by rf pulses.4,2,7 The Lee–
Goldburg experiment is a continuous version of WHH
where an off-resonance irradiation causes the spins to
cess around the magiĉ111& axis M .7,30 Both of these
schemes can be viewed as zero-field processes. The z
field version of WHH, shown in Fig. 5, is similar to that o
magic hopping, although the 2np pulses are always applied
J. Chem. Phys., Vol. 103, N
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along the same directionZ. When comparing the pured-
pulse versions of the WHH and magic-hopping experiments
~Fig. 5!, we obtain the same sets of nine configurations, al-
though the path exploring them is different. For instance, the
configurations in the discrete WHH and magic-hopping cases
can be written as

RWHH~ i , j !5R~2ip/3,M !•I •R~2 jp/3,Z!, ~27a!

RMH~ i , j !5R~2ip/3,M !•I •R~2 jp/3,ZYX ~ i !!, ~27b!

where i and j are integer indices running from21 to 1,
R~a,n! denotes the configuration given by rotationa around
axisn, andZYX ( i ) is the axisZ, Y, or X depending on the
value of i . Equation~27b! can be rewritten as:

RMH~ i , j !5R~2ip/3,M !•R~2 jp/3,ZYX ~ i !!

3R~2ip/3,2M !•R~2ip/3,M !,

5R~2 jp/3,Z!•R~2ip/3,M !, ~28!

FIG. 5. Construction of thed-pulse, zero-field versions of some common
high-field trajectories that decouple second-rank tensors@MAS ~Ref. 3!,
WHH ~Ref. 4! and magic hopping~Ref. 29!#. The sample rotation in a fixed
high magnetic field,~a!, is transformed into a motion of the magnetic field
around a fixed sample: either adiabatically for MAS,~b!, or by sudden
reorientations combined with pulses for magic hopping,~c!. The WHH se-
quence is readily transformed as in~e!, since it does not involve any sample
motion. All these sequences can be transformed into theird-pulse equiva-
lents as in~d! for MAS and magic hopping or~f! for WHH, since the
truncation effect of second-rank interactions by a static field can be obtained
with three 2p/3 rotations. These discrete MAS sequences are equivalent and
consist of nine configurations generated by the discreteC33C3 subgroup of
SO~3!3SO~3! ~see Sec. V!. They cannot be reduced to spherical sequences.
o. 10, 8 September 1995
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which is now clearly identical to Eq.~27a! by exchanging the
rotation axes,M andZ, and the indicesi and j . These argu
ments show how all the high-field decoupling experime
~like MAS, WHH, and magic hopping! display the same gen
eral C`3Cn symmetry ~which can, eventually, be dis
cretized intoC33C3!. The main Zeeman interaction gene
ates an averaging through theC` group, and the decouplin
process is completed by a spin or lattice motion throughC3
~WHH, magic hopping! or C` ~MAS!.

As shown in the previous sections, isotropic scal
schemes cannot be generated usingC`3Cn symmetries. The
isotropic scaling schemes in a high field, such as ZFHF,
thus more complex than the decoupling techniques. The
plest ZFHF trajectory can be described as a window
zero-field sequence, involving only six 2p pulses along the
C5 axes of an icosahedron.14 This corresponds to straigh
radial paths in the SO~3! space, as shown in Fig. 6, and t
icosahedral symmetry yields isotropic scalings for first- a
second-rank couplings, according to the arguments of
IV. The scaling factors are just the averages overv50 to p
in Eqs.~13!, and give (k1 ,k2)5~1/3,1/5! as plotted in Fig. 4
From this sequence, where the magnetic field is always
plied, sequences in a highstatic field were designed14 by
replacing the magnetic-field reorientation by a sample
tion synchronized with the proper pulse sequence, accor
to the general principles of equivalence between high-
zero-field schemes. For practical purposes, however, th
quences effectively used in a high-field are not based on
icosahedral scheme;14 still this approach shows that isotrop
scaling is indeed completely achievable in a high field. T
icosahedral six-pulse sequence still plays a central rol
pulse compensation of zero-field sequences, as shown i
next section.

FIG. 6. The configuration trajectory of the simplest zero-field in high-fi
NMR experiment, or ZFHF~Ref. 14!, consists of six straight lines along th
C5 axes of an icosahedron in the SO~3! space~thick lines!. In fact, the lines
become loops because of the folded structure of SO~3!. ZFHF sequence
isotropically scales first- and second-rank interactions by 1/3 and 1/5
spectively. This generic sequence provides an isotropic path connecti
the concentric icosahedral sets of configurations. For instance, by intro
ing stops at the spheres defined byv50 andv5p ~large points at the cente
and the vertices of the icosahedron!, the rank-selective decoupling sequen
~35! in the text can be generated. The icosahedral symmetry ensure
isotropic character of the sequence, even with finite pulses.
J. Chem. Phys., Vol. 103, N
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The general question of high-field isotropic schemes c
be discussed within the theoretical framework of zero-fie
isotropic scaling. In high-field schemes, both sample ro
tions and spin irradiations are adiabatic compared to
main Zeeman frequency,vZ , and this translates in the SO~3!
configuration space by a succession of slowly rotatingp
loops. The configurations along such a path are given by

Rlattice
21 ~ t !•R~vZt,Z!•Rspins~ t !, ~29!

where the time modulation of the spin and lattice parts
much slower than the Zeeman frequency. This adiabatic
proximation makes it legitimate to average independen
overa5vZt and over the lattice and spin configurations, a
the isotropic conditions become

K K (n Dm8n
l

~RLi
21!einaDnm

l ~RSi!L
a
L
i

5^D0m8*
l

~RLi !D0m
l ~RSi!& i5kldm8m . ~30!

This equation, an analog to Eq.~8!, was already explored,14

and we shall only give the corresponding area of allow
scaling factors. By taking the trace of Eq.~30!, we obtain the
scaling factors as

kl5^D00
l ~RSi•RLi

21!& i /~2l11!, ~31!

so they depend upon the Legendre polynomials of cosbi

only, wherebi is the second Euler angle of the combine
spin and lattice rotationRSi•RLi

21. For first- and second-rank
interactions this gives

k15^cosb i /3& i , ~32a!

k25^~3 cos2 b i21!/10& i . ~32b!

Just as in the general isotropic case, it can be proved that
scheme at constantbi can be built using the icosahedral sym
metry again. The set of allowed scaling factors in a high fie
is thus defined by

21/3<k1<1/3, ~33a!

~27k1
221!/10<k2<1/5, ~33b!

which is shown in the (k1 ,k2) plane in Fig. 7. In any case
the scaling factors are limited by

21/3<k1<1/3, ~34a!

21/10<k2<1/5. ~34b!

In practical situations, the sample motion is almost a
ways restricted to a steady, high-speed rotation aroun
single, fixed axis. The set of allowed scaling factors is th
reduced even further, and many important properties of
timal isotropic trajectories are lost. For instance, isotrop
behavior may hold for second-rank couplings, but not f
first-rank ones. The trajectories also lose their icosahed
symmetry.
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VII. FINITE PULSE COMPENSATIONS: AN
EXPERIMENTAL EXAMPLE USING THE ZFHF
TRAJECTORY

Experimentally, the finite length of the pulses is the m
important limiting factor for coherent averaging schemes
systems displaying strong couplings, such as dipole–dip
interactions between protons in solid-state samples. It is
worthwhile to analyze more carefully the possibilities
icosahedral sequences in that respect. By pulse compens
we mean the removal of any residual anisotropic interac
due to the finite length of the pulses, although chan
~hopefully small! of the isotropic scaling factors are tole
ated. We shall review three main possibilities: icosahed
pulse compensations, spherical windowless trajectories,
the zero-field-in-high-field path. We shall also give an e
perimental example of this last possibility.

The configuration trajectory for an icosahedral seque
with finite pulses does not display an overall icosahed
symmetry, as shown in Fig. 3, so it is not compensated
the pulse lengths. A theoretically simple solution to the pro
lem is to restore the icosahedral symmetry by using pu
corresponding to all of the 30 different edges of the icosa
dron. However, since each vertex is connected to the ot
by an odd number of edges~five!, the whole path would need
to have at least 60 pulses. It should also be noted that du
the pulses the explored configurations are not confined
constantv sphere, because they are on the shortest path f
one vertex to the next. In any case then, the scaling factor

FIG. 7. The set of allowed combinations of first- and second-rank sca
factors for isotropic high-field sequences. As in Fig. 4, scaling factor co
binations are represented by points in the (k1 ,k2) plane, and the dark-grey
area@given by Eqs.~33!# is the set of allowed values. For comparison, t
set of allowed scaling factors for unrestricted isotropic schemes is give
light grey ~see Fig. 4!. The outlined points are the optimum combinations
scaling factors, for decoupling and time reversal: A: 2nd-rank decoupl
1st-rank scaling between21/~3A3! and 1/~3A3!; B: 1st-rank decoupling,
2nd-rank scaling between21/10 and 1/5; C: optimum time-reversal scalin
for 1st-rank interactions,k1521/3, 2nd-rank scaled byk251/5; D: optimum
time-reversal scaling for 2nd-rank interactions,k2521/10, 1st-rank decou-
pled; F: the simplest zero-field in high-field NMR sequence, or ZFHF~Ref.
14!, gives the maximum scaling factors for first- and second-rank inte
tions, withk151/3 andk251/5.
J. Chem. Phys., Vol. 103, N
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the pulse-length compensated sequences will be slightly di
ferent from those of the originald-pulse versions.

Based on the icosahedral distribution of configurations
it is also possible to design some spherical windowless se
quences. For this, it is just necessary to connect all the ve
tices by a single path, in such a way that, for each point o
the trajectory, there are eleven other points on the trajector
to form an icosahedron. This can be simply done by reori
enting an icosahedron while following its vertices, for in-
stance, using 2p rotations around two of theC5 axes, as in
Fig. 8. The whole path can be fully traced just once by a
continuous trajectory since there is an even number of line
connected to any vertex. The sequence can be shown to co
sist of successive periods of constant-speed precessions
the field around various fixed cones, with matching condi-
tions between the cone angles, the precession speed, and
field strength.

Although these methods are conceptually simple and e
ficient as far as scaling factors are concerned, the corre
sponding magnetic-field trajectories are rather involved. Th
magnetic fields are generated by coils wound around th
sample, with their appropriate power supplies controlled
from a pulse programmer, and the simplest design involve
three coils to create the orthogonal coordinates of the field
With this kind of experimental setup, it is rather difficult to
calibrate the very general pulse directions and angles need
in icosahedral sequences, especially when about 60 of the
are threaded and expected to yield no final rotation. For th
windowless trajectories the calibration procedure would be
even more tedious, given all the specific synchronization
conditions between the magnitude, precession speed and p
cession angle of the field.

A much simpler path, joining the vertices while preserv-

ng
-

e
in
f
g,

c-

FIG. 8. The configuration trajectory for a spherical windowless scaling se
quence based on an icosahedral set of configurations in SO~3! ~v has an
arbitrary fixed value and the outline of thep sphere is not shown!. The lines
are obtained by rotating the icosahedron in Fig. 3 around twoC5 axes. Each
point on the curve can be associated with eleven other points to form a
icosahedron. Since this trajectory is a loop joining all the nodes, which ar
evenly branched, it can be fully explored in just one run. In order to obtain
an isotropic scaling, the circles are explored at a constant speed, and t
sequence must stop at each of the four outlined points for the same amou
of time otherwise needed to explore a complete circle.
o. 10, 8 September 1995
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3977Llor, Olejniczak, and Pines: Coherent isotropic averaging. I
ing the icosahedral symmetry, is provided by the zero-field
high-field trajectory~ZFHF!,14 introduced in the previous
section. Since it consists of six 2p pulses along the vertex
directions of an icosahedron, the ZFHF trajectory conne
all the vertices of icosahedra lying on all the possible sphe
of constantv, as shown in Fig. 6. Owing to its icosahedr
structure, the trajectory provides paths from one vertex to
next, via the identity point, that are intrinsically compensat
for finite pulse lengths. Any combination of scaling facto
can thus be generated by appropriately splitting thep
pulses and adding free-evolution periods~see Fig. 6!. The
pulses contribute to the scaling factors by 1/3 and 1/5
first- and second-rank tensors, respectively, so the ZFHF
jectory can be considered as a central point in the set
allowed scaling factors~see Fig. 4!, i.e., it is obtained by
averaging the spherical sequences over all possiblev values
with a constant weight. Furthermore, as already mentione
Sec. IV, any spherical or near-spherical sequence invol
initial and final pulses from identity to some configuration
the selectedv; to compensate for the finite lengths of thes
pulses, it would thus be necessary, in general, to add sup
mentary paths to the identity, a feature already taken i
account by the ZFHF trajectory.

We carried out an experiment using a ZFHF-based
quence to average out first-rank tensors while preserv
scaled second-rank tensors. This technique can be usef
applications where the residual magnetic fields cannot
properly compensated and distort the zero-field spectr
generated by local interactions. We used a 12-p-pulses se-
quence according to the general scheme described ab
stopping at thev50 andv5p configurations~as shown in
Fig. 6! to generate the highest possible scaling factor for
second-rank tensors while still decoupling the first rank. T
sequence can thus be written as

@~t2p i23t22t82p i ! i51,6#n , ~35!

wheret8 is the length of thep pulses, andi labels the six
icosahedralC5 axes. This sequence is compensated for fin
pulse lengths and the second-rank scaling factor is

k25~2t1t8!/5~t1t8!, ~36!

which is always between 1/5 and 2/5. The sequence w
applied to the proton spins of CH2Cl2 dissolved in a
disordered smectic-E liquid crystal~5%–10% wt in a
50%–50% wt mixture of 4-n-butyloxybenzylidene-
48-n-octylaniline and 4-n-octyloxy-48-n-cyanobiphenyl!.
The pure zero-field spectrum of this sample was alrea
reported31 and, as shown in Fig. 9~a!, it consists of three
transitions at 0.2, 1.4, and 1.6 kHz, arising from the resid
anisotropic dipolar coupling between the two protons. Wh
a small residual field is present, the lines broaden and a sh
parasitic peak at the zero frequency appears@see Fig. 9~a!#.
Eventually, for residual fields strong enough, the transitio
cannot be distinguished any more and only the central p
remains. This is shown in the spectrum of Fig. 9~b!, obtained
as the zero-field spectrum in Fig. 9~a!, but with a stronger
residual field applied by deliberately setting the zero-fie
shimming coils in our spectrometer far from the optimal va
ues ~'10031027 T along theY axis and a gradient of
J. Chem. Phys., Vol. 103, N
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'5031027 T along Z over the sample height!. With the
same inhomogeneous residual field, but using the icosahe
l51 decoupling sequence~35! during the free evolution of
the system, the spectrum recovers most of its usual zero-fi
features, as shown in Fig. 9~c!, although all the frequencies
are scaled by about 1/3. The residual central peak of
usual zero-field spectrum, due to uncompensated resid
fields, is fully removed, although the third- and higher-ord
terms in the average Hamiltonian, the pulse transients,
the eddy currents induce a broadening and a distortion of
spectrum. The expected 200 Hz fine structure of the tran
tions around 1.5 kHz is thus obscured by poor resolution

The experiment was carried out on a modified version
our zero-field spectrometer.32 The sample polarization was
prepared and monitored using field cycling with a samp
shuttling system,11,32 and the zero-field evolution was initi-
ated and terminated by the sudden switching of a magn
field ~along the mainZ axis! stronger than the local
interactions.11 Three class A, dc to 1 MHz, 2 kW amplifiers
were interfaced to the 0.1ms resolution pulse programme
via 12-bit digital-to-analog converters. They provided up
7531024 T in three orthogonal coils,X, Y, andZ, around the

FIG. 9. Proton zero-field spectra of CH2Cl2 dissolved in a randomly ori-
ented smectic-E liquid crystal:~a! with optimal shimming conditions of the
zero-field region of the spectrometer;~b! with the presence of an inhomo-
geneous, randomly oriented, residual magnetic field in the 0.231024 T
range;~c! in the same conditions as~b!, but recorded using a rank-selective
icosahedral sequence that decouples first-rank couplings but isotropic
scales second-rank interactions by about 0.33. The residual fields in
spectrometer distort the zero-field spectrum: at low fields a parasitic pea
zero frequency appears, and at higher fields the structure of the whole z
field spectrum is obscured. By using the decoupling sequence, some o
original structure of the zero-field spectrum is retrieved and the central p
is suppressed. Pulse imperfections and nonvanishing high-order terms in
averaged couplings introduce distortions, which make it difficult to reso
the high-frequency lines.
o. 10, 8 September 1995
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3978 Llor, Olejniczak, and Pines: Coherent isotropic averaging. I
zero-field region of the spectrometer. The homogeneity
the orthogonality of the coils over the sample~0.6 mm diam-
eter and 0.7 mm height! were better than 0.5%. Using nuta
tion experiments on a water sample, the amplitudes of
three coordinates of the icosahedralp pulses were adjuste
from their theoretical values to account for the nonlineariti
imbalances and transient effects in the three power amp
ers. Pulse transients are due not only to the finite rising
falling times of the currents in the coils, but also to the d
ferences in rising and falling times if the pulses are not o
alongX, Y, or Z. We refer to the latter effects as orientatio
transients, which are analogous to phase transients in h
field NMR.7 The nutation adjustment ensured that, even a
a train of many hundred cycles, the sequence did not ge
ate any residual rotations that would have distorted the s
trum in the form of an effective Zeeman coupling. Symm
ric cycles with opposite pulses were alternated with
standard cycle to suppress the second-order ave
Hamiltonian,7 and to reduce the effects of pulse inhomog
neities and eddy currents in the metallic parts around
zero-field region. The experimental parameters were as
lows: pulse lengthst852 ms, time intervalst53.6ms, cycle
time 134.4ms, acquisition dwell time 43134.4ms5537.6
ms. These values yield an ideal scaling factor of 23/70'0.33
according to Eq.~36!.

The distortions observed in the spectrum of Fig. 9~c!
allow us to estimate the duration of the pulse transients
the amplitude of the eddy currents. We estimated the chan
in k1 andk2 using a simplified model for the pulse transien
~described by constant slopes, equal for the rising and fal
edges! and for the eddy currents~described during each evo
lution period by a constant field along the orientation of t
last applied pulse!. Under these conditions, the 12p paths
defined by the sequence in SO~3! ~see Fig. 6! are no longer
explored at uniform speeds, and the scaling factors du
the pulses are perturbed. The detailed calculations that
be given elsewhere33 show that the first-rank scaling facto
of the sequence~35! is not affected at all by the finite tran
sient times or the eddy currents. The sequence is thus ra
robust with respect to its decoupling capabilities. In contra
for second-rank tensors the scaling factor is reduced both
the finite transient times and by the eddy currents. For
stance, the effective scaling factor obtained in our exp
ment in Fig. 9~c! is about 0.28, i.e., 84% of the theoretic
value of 23/70'0.33. A numerical evaluation of the pulse
transient effects shows that, at the worst, the scaling fa
would be k250.31 for transient durations of 2ms ~which
then means that, since the pulse length is also 2ms, the pulse
shape is triangular!. On the other hand, the observed redu
tion of the scaling factor is obtained if the amplitude of t
eddy currents is around 6.3% of the pulse amplitude. Ac
ally, both pulse transients and eddy currents are present
they combine to yield the observed reduction ofk2. These
estimates clearly show the importance of the experime
imperfections. It is not surprising then, that the fine struct
of the original spectrum in Fig. 9~a! is distorted or lost unde
the decoupling sequence. Additional errors also arise fr
the third-order term in the average Hamiltonian7 whose order
of magnitude may be as high as 100 Hz, as evaluated f
J. Chem. Phys., Vol. 103, N
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the cycle time and the highest frequency present in the sy
tem.

Despite the pulse-calibration difficulties and the puls
distortions, the ZFHF trajectory could be regarded a usef
tool in designing icosahedral pulse-compensated schem
However, the scaling factors averaged over the pulses
such sequences are positive and non-negligible, compared
the optimum time-reversal scalings:~1/3,1/5! vs ~21/3,1/5!
or ~1/6,21/4! in the (k1 ,k2) plane ~see Fig. 4!. Since the
total duration of the pulses must be much smaller than th
cycle time, it becomes impractical to use this kind of com
pensation method for time-reversal sequences applied
strong local couplings, such as dipole–dipole interactions b
tween protons in a solid sample. On our spectrometer, f
example, thep pulses on protons were 2ms long, giving a
total of 24ms for the six 2p-pulses needed in a ZFHF se-
quence. By combining these pulses with configurations o
the cosv521/4 sphere for optimum second-rank time rever
sal, we would get a modest scaling factor of21/20 for a total
cycle time of 48ms. This is quite unacceptable for dipole–
dipole interactions between protons that usually fall in the 5
kHz range. We have therefore explored other possibilities
avoid the difficulties associated with sequences of icosah
dral type. An important class is provided by the cubic
sequences,18 where the set of configurations is restricted to
those generated by combinations ofp/2 pulses along the
three axes. A companion article is devoted to this topic.34

VIII. CONCLUSIONS

We have shown theoretically that isotropic coherent ma
nipulations~decoupling, time reversal! are possible in zero-
field NMR on powder samples, and we have discussed t
limits and the main features for optimumd-pulse sequences
in homonuclear spin systems. Both the first-rank interaction
~such as residual fields! and the second-rank interactions~di-
polar or quadrupolar couplings! can be isotropically scaled.
The scaling factors of a given isotropic scheme can be d
ferent for the two types of interactions, although they are n
completely independent. In any case, the first-rank scalin
factors are between21/3 and 1, whereas those for the
second-rank fall between21/4 and 1. Due to experimental
limitations the application of those techniques was shown f
one simple case only, and more practical schemes based
p/2 pulses are developed in the second paper.34

The potential applications of this work will be primarily
in further expansion of ZF-NMR methods.18,19Two cases of
isotropic scaling can be considered particularly useful: d
coupling and time reversal. In the homonuclear case, the d
coupling according to the rank of the interactions allows u
to eliminate the usually disturbing effects of nonzero residu
fields. The decoupling is also useful in the heteronucle
case, because various local interactions can be made to
have as tensors of different ranks due to different values
the magnetogyric ratios.18 Time reversal is probably the most
interesting of the new possibilities, because it allows us
design a zero-field analogue of the HF-NMR techniqu
called multiple-quantum NMR.10 This technique that we
shall call ‘‘multipolar zero-field NMR,’’ should yield simpler
o. 10, 8 September 1995
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3979Llor, Olejniczak, and Pines: Coherent isotropic averaging. I
spectra for many-spin systems by reducing the numbe
transitions~like in multiple-quantum NMR!, while still pre-
serving the isotropy of spectra.

Another closely related spectroscopy that may pr
from the isotropic techniques is nuclear quadrupolar re
nance~NQR!. Apart from the problem of isotropic manipu
lation, which is identical to the ZF-NMR case, NQR crea
yet another difficulty: The local interactions are usually t
strong to allow the excitation of the whole spectrum by c
rently available magnetic-field pulses. Radiofrequen
pulses are thus applied to excite and observe the vicinit
some transitions only. The effect of such pulses can be c
sidered similar to that of dc pulses but truncated so as
retain the matrix elements corresponding to the transi
under study. This truncation effect of the excitation field
the local interaction is orientation dependent. In contras
the zero-field situation where a dc pulse generates a rota
independent of the crystallite orientation, the allowed m
nipulations in NQR are not rotations and are not isotrop
The configuration space and the trajectories are so comp
that generating coherent averaging schemes with such
seems hopeless. However, in the case of a spin 1 or 3/2
instance, it is possible to ‘‘untruncate’’ an rf pulse by simu
taneously applying a matched dc pulse in the same direc
Thus reducing the effect of the global pulse to a simp
isotropic rotation of the spins is possible, and any isotro
technique based on rotations can be used. Though such m
ods would be rather demanding experimentally, potential
plications of decoupling, multipolar analysis, or even ima
ing, would be important.

An interesting theoretical question is that of the class
systems that can be time reversed.9 Intuitively, it could be
argued that this is possible on two-dimensional systems o
as in the previously known examples from HF-NMR whe
the truncation formally restricts the coherences to the tra
verse plane. The problem was raised twenty years ago9 and is
still unsolved, but we have now, with the negative isotro
scalings, added a new broad class of systems which are
sically three dimensional. Thus it seems that the dimens
ality is certainly not a limiting factor and that probably few
if any, restrictions exist for time reversal of spin coupling
provided one has some appropriate experimental mean
manipulating the coherences.

APPENDIX: CALCULATION OF THE MAGNETIC-FIELD
PULSES IN ICOSAHEDRAL SEQUENCES

We assume that the configurations representactiverota-
tions of the Hamiltonians, in aright-handed reference
frame.25 This assumption is not important for the gene
theory of icosahedral sequences as given in Secs. III an
~passive rotations are just opposite to active rotations,
the icosahedral sequences always contain opposite con
rations!. However, it is an important point to explicitly com
pute the pulse characteristics, because the trajectory obta
by reverting the pulses of an icosahedral sequence is
necessarily icosahedral.

The question whether rotations are active or passiv
seldom important in HF-NMR,1,7 because the Hamiltonian i
truncated and the pulses are confined to the transverse p
J. Chem. Phys., Vol. 103, N
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Then, the transformation from active to passive pulses can
accounted for by a simplep phase shift of the transmitter.
This is not the case in ZF-NMR, and to avoid any confusion
the pulses will be given as the active rotationsthat are de-
duced from the configurations using Eq.~2!. To translate the
spin rotations into magnetic field pulses in the spectromete
all the possible inversion sources must also be taken in
account: signs in the Shro¨dinger equation, the Hamiltonians,
and the magnetogyric ratio, and polarities of the pulsed co
around the sample. Assuming apositive magnetogyric ratio
and a right-handed positive system of pulsed coils, the
Hamiltonian and the propagator in the spin space for a d
pulse are1,7

H52gI–B, ~A1a!

P5exp@2 iHt #5exp@ igI–Bt#5exp@ iaI–n#, ~A1b!

whereB is the magnetic field vector along directionn, anda
is the pulse angle. The operatorP is an active rotation by
anglea along direction2n @or a passive rotation~a,n!#. This
just means that spins of positive magnetogyric ratio prece
counterclockwisein a magnetic field.

The icosahedral pulse sequences~18! and ~19! are de-
fined by 12 vertices of an icosahedron drawn on a sphere
constantv inside the configuration space SO~3!. This is
shown in Fig. 3, where we chose the icosahedron to be e
bedded in the reference frame withC2 symmetry axes along
X, Y, andZ. The rotation axes of the configurations are the
given by the normalized vectors

ni56S 6A52A5
10

,0,A51A5
10

D &c.c., ~A2!

where c.c. stands for the cyclic permutations (Z,X,Y) and
(Y,Z,X). This choice of the reference frame will simplify the
calculation of the pulses, provided that we choose, as in F
3, aC3-symmetric trajectory along thê111& magic direction
~it can be seen that this is the highest possible symme
available for a 12-pulse path!. The path shown in Fig. 3 is the
only one that displays such a symmetry and joins the neig
boring vertices of the icosahedron.

The pulse lengths and directions are deduced from E
~2! according to the formulas giving the angle and axis fo
the combination of two~active! rotations25

R~a,n!5R~a2 ,n2!•R~a1 ,n1!, ~A3a!

cos~a/2!5cos~a1 /2!cos~a2 /2!

2~n1•n2!sin~a1 /2!sin~a2 /2!, ~A3b!

n sin~a/2!5n1 sin~a1 /2!cos~a2 /2!

1n2 sin~a2 /2!cos~a1 /2!

2~n13n2!sin~a1 /2!sin~a2 /2!. ~A3c!

If we select forn1 andn2 the vertices labeled 1 and 2 in Fig.
3, as given by Eq.~A2!, we find the pulse
o. 10, 8 September 1995
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P1→25R~a,n!5R~v,2n2!•R~v,n1!, ~A4!

according to Eq.~2!. From Eq.~A3! and after some elemen
tary transformations we find the pulse angle and directio

cosa5
~32A5!cos2 v14 cosv1~A522!

5
, ~A5a!
e

u
th
lg

e

h

ry
.

J. Chem. Phys., Vol. 103, N
n1→2 sin~a/2!5S 2A52A5
10

sin v,
1

A5
~12cosv!,0D .

~A5b!

n1→2 is thus confined to theXY plane, and its orientation can
be described by an angleu, according to
n1→25~u1 ,v1 ,w1!5~2cosu,sin u,0!5S 2A51A5
2

A 11cosv

41A51cosv
, A31A5

2
A 12cosv

41A51cosv
,0D . ~A6!
t

,

All the pulses between the vertices in Fig. 3 can be d
duced from that between 1 and 2 using the appropriate ro
tion that brings the~1,2! edge to the (i , j ) edge. For~2,3!,
~3,4!, and ~4,5! we use rotations by22p/3 around face
~1,2,3!, 2p/3 around~1,1,21!, and 2p/3 around face~1,4,5!,
respectively. Owing to theC3 symmetry of the trajectory, the
remaining eight pulses are found by applying cyclic perm
tations of the coordinates. Using explicit expressions for
rotations, and after some elementary, though lengthy, a
braic manipulations, we found that

n2→35~u2 ,v2 ,w2!5S 2
1

2

A511

4

2
A511

4
2

A521

4

2
A511

4
2
1

2

D S 2cosu
sin u D ,

~A7a!

n3→45~u3 ,v3 ,w3!5~sin u,0,cosu!, ~A7b!

n4→55~u4 ,v4 ,w4!5S A511

4
2

A521

4

A521

4
2
1

2

1

2

A511

4

D S 2cosu
sin u D .

~A7c!

Above certain value ofv, the distances between th
neighboring vertices on the trajectory of Fig. 3~measured as
the pulse length! may become larger than those between t
opposite vertices. This happens whena.2~p2v!, and using
Eq. ~A5a! this is equivalent to

cosv,2
41A5
11

, ~A8!

or v'124.54°. Above this value, a more efficient trajecto
~preserving theC3 symmetry! is 1,2,8,11,5,6,12,3,9,10,4,3
The ~2,8! and ~11,5! pulses are both of angle 2~p2v! and
along the2n2 and 2n11 directions respectively, while the
~8,11! pulse again is deduced from the~1,2! pulse by a rota-
tion of 22p/3 around face~6,9,10!
-
a-

-
e
e-

e

n8→115~u38 ,v38 ,w38!5S 2
A521

4

1

2

1

2

A511

4

A511

4
2

A521

4

D S 2cosu
sin u D .

~A9!

Specific pulse values for some useful scaling factors
have been explicitly computed using Eqs.~A5a!, ~A6!, ~A7!,
and ~A9!. The results are summarized in Table I.
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