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Composite pulses for broadband spin excitation over large ranges of radiofrequency 
field amplitudes and resonance offsets are presented. They are derived according to a 
previously presented method based on the Magnus expansion in the manner of coherent 
averaging theory. It is shown theoretically and in simulations that these composite pulses 
do not introduce a strong dependence of the NMR signal phase on the rf amplitude or 
resonance offset, overcoming a common problem of composite pulses derived by other 
means. Experimental demonstrations include the use of composite x  pulses for refocusing 
transverse magnetization in spin-echo sequences and the use of composite 1r/2 pulses in 
a simple multiple-pulse experiment. Further applications are discussed. o 1985 Academic 

Press, Inc. 

INTRODUCTION 

Beginning with the original work of Levitt and Freeman five years ago, the 
development of composite pulses has been an area of active research in NMR 
(1-12) and in coherent optics (13). Composite pulses are sequences of phase-shifted 
radiofrequency pulses intended, in the case of NMR, to excite nuclear spins over a 
larger range of some experimental parameter than the single ?r or 7r/2 pulses that 
they replace. The experimental parameters considered to date are the resonance 
offset (Z-8), the rf amplitude (1-3, 6, 8-IO), and spin coupling constants (II, 12). 
Several theoretical approaches to the design of composite pulses have appeared, 
including simulations of magnetization trajectories (I, 2), geometric arguments 
based on rotation operators (3, 4, 9), approximations to adiabatic following (7), and 
iterative schemes (10). All of these approaches suffer from a common problem, 
which may be called phase distortion. The meaning and importance of phase 
distortion should become apparent in the following two examples and in Fig. 1. 

Consider a composite 7r/2 pulse designed for broadband excitation with respect 
to the rf amplitude. The composite a/2 pulse will rotate magnetization from its 
equilibrium position aligned with the static magnetic field (z axis) to a position in 
the transverse (xy) plane over a large range of rf amplitudes. However, the specific 
direction in the transverse plane typically varies with the rf amplitude. If the FID 
signal is detected the phase of the signal will be a function of the rf amplitude. If 
appreciable rf amplitude inhomogeneity exists across the sample, then signals arising 
from different locations will partially cancel one another. 

As a second example, consider a composite r pulse, again designed to cover a 
broad rf amplitude band. The composite ?r pulse will rotate magnetization from its 
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(a) (b) 

FIG. I. Phase distortion in composite pulses. (a) As the resonance offset or the rf amplitude varies, the 
net rotation angle and the net rotation axis of a composite 42 pulse change. This is indicated by 
magnetization trajectories on a unit sphere, corresponding to the net rotation produced by a hypothetical 
composite 42 pulse for various values of the resonance offset or rf amplitude. (b) For a composite ?r 
pulse, it is the net rotation axis that changes, even though magnetization may be inverted over a range 
of resonance offsets or rf amplitudes. 

equilibrium position parallel to the static magnetic field to a position antiparallel to 
the field, over a large range of rf amplitudes. For certain experiments, this broadband 
inversion property is all that is required. However, u pulses are also commonly 
used as refocussing pulses, for example in spin-echo experiments. As has been 
pointed out by Levitt and Freeman (3), the phase of the echo signal in a single echo 
experiment employing a composite 7r pulse is typically a function of the rf amplitude. 
If substantial rf inhomogeneity is present, significant cancellation of the echo signal 
may result. 

Radiofrequency inhomogeneity is a particularly important factor in in vivo NMR 
studies using surface coils (Z4) and implanted coils (15). Surface coils may be used 
to achieve spatial localization of NMR signals. If a high degree of spatial localization 
is required, narrowband excitation may be used (16). However, in other applications, 
it is advantageous to excite signal in as large a region as possible in the neighborhood 
of the surface coil, for the sake of improving the signal-to-noise ratio. In such 
applications, broadband composite pulses would be beneficial if phase distortion 
could be minimized. 

Analogous phase distortion problems occur with composite pulses designed for 
broadband excitation with respect to resonance offsets. Resonance offsets due to 
chemical shifts can be a significant factor in high-field NMR spectrometers unless 
high-power rf transmitters and probes are used. In NMR imaging systems, resonance 
offsets on the order of 10 kHz are imposed by static field gradients. The very high 
rf powers that would be required to make such offsets insignificant in a large-scale 
imaging system are impractical. Thus, composite pulses with minimal phase 
distortion should be of general use in imaging techniques that require broadband 
excitation in the presence of field gradients (17). 

Phase distortion arises from two characteristics of the theoretical approaches used 
to design composite pulses. The first is that attention is directed toward a particular 
initial condition of the spin system, namely thermal equilibrium. The fact that the 
effect of a pulse sequence on a particular initial condition is independent of some 
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experimental parameter does not ensure that the effect on an arbitrary initial 
condition will be independent of that parameter. The second characteristic is that 
generalized performance criteria are used. In particular, a composite 7r/2 pulse is 
taken to be any sequence that rotates magnetization from the z axis into the xy 
plane, without regard for the direction in that plane. Mathematically, the source of 
phase distortion can be seen by examining the general form of rotation operators 
that correspond to composite pulses. Acting on an isolated spin, any pulse sequence 
has the net effect of a rotation operator R of the form 

R = exp(-ia.1) 

where the direction of 01 is the net rotation axis and the magnitude of 01 is the net 
rotation angle. I is the spin angular momentum vector operator. For the special 
case of a composite ?r pulse, R can be written 

R a exp(-il,&) exp(-iZ,r) exp(iZJ3,). PI 
For a composite 7r/2 pulse 

R z exp( - iZ& exp( - iZg/2) exp(- iZ& 131 
The equalities in Eqs. [2] and [3] hold approximately over the range of rf amplitude 
or resonance offset for which the composite pulse is effective. However, within that 
range, /3, or p2 and & are typically not constant. Thus, a! in Eq. [l] is a function of 
the rf amplitude or resonance offset. Phase distortion in composite ?r pulses results 
from a varying net rotation axis; phase distortion in composite 7r/2 pulses results 
from variations in both the net rotation axis and the net rotation angle. Illustrations 
of these effects appear in Fig. 1. 

We have introduced a method for constructing composite pulses that are 
equivalent to constant net rotations (6, 12). The method is based on the Magnus 
expansion in the manner of coherent averaging theory (Z8, 20). It differs from other 
methods in that it treats the overall transformation brought about by a composite 
pulse, rather than treating only a single initial condition. We have already demon- 
strated its usefulness in constructing composite ?r pulses for liquid (6) and solid 
state (12) NMR. In this paper, we present additional composite ‘A and composite 
r/2 pulses that compensate for rf inhomogeneity and for resonance offset effects. 
Specifically, we demonstrate that these composite pulses are free from serious phase 
distortion problems. 

THEORY 

The theory has been presented in detail elsewhere (6, 12). We begin with the 
rotating frame Hamiltonian during an arbitrary pulse sequence 

z = A?&) + v [41 

A?&) = wY[Zx cos 4(t) + Zy sin 4(t)] 

where I$ is the nominal rf amplitude, and 4(t) is the rf phase. For the rf 
inhomogeneity case 

V = h,[Z, cos 9(t) + Zy sin 4(t)] Fal 
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where 6wi is the deviation of the rf amplitude from its nominal value. For the 
resonance offset case 

V = AoI, Wbl 
where Aw is the resonance offset. 

The effect of a pulse sequence of length 7 on a spin system is given by the 
propagator U(7), which can be written 

U(7) = cf(7W7) 171 
U&T) is the propagator for the rf interaction alone, i.e. the case V = 0. It is purely 
a rotation operator. U,(T) is the propagator arising from V in an interaction 
representation with respect to X’,.,(f(t). We make a Magnus expansion (18-20) of 
U,(7): 

U,(T) = exp[-i( V(O) + V(l) + * . . )T] PI 

J,eO) = 1 
s 

T dt f(t) 
7 0 

. 
~(1) = -’ 

T II 
27 s s dt, dtz[h), Al 0 0 

P(t) = &f(t)-’ Vu,(t). PI 
The exponent in Eq. [8] is a power series in Ao or 6wi. If a pulse sequence can be 
found for which the low-order terms in the series are zero, U,(T) will be approximately 
the unit operator for some range of Aw or 6w,. Then, from Eq. [7], the overall 
propagator will be a constant rotation, namely t&(7). This is why the Magnus 
expansion approach leads to composite pulses without phase distortion. 

Composite ?r pulses must satisfy the equation 

u~(7)zzu~(T)-’ = -I*. [loal 
Composite ?r/2 pulses must satisfy the equation 

Tr[ZJ.&(~)Z,U~(~)-‘1 = 0. [lObI 
Consider a general sequence of N pulses. Vtn) in Eq. [8] is a function of the 
N phases and N pulse lengths in that sequence. We wish to set I’@) = 0 for 
0 G n d M . In addition, we wish to satisfy Eq. [ lOa] or [lob]. We therefore have a 
system of simultaneous (nonlinear) equations, with the variables being the pulse 
lengths and phases. Note that I/ (n) = 0 consists of three component equations, 
corresponding to Z,, I,,, and I,. We choose N to be large enough that a solution to 
the required equations exists. 

For short sequences, expressions for I’(‘) and Y(l) as functions of the pulse lengths 
and phases are easily derived. If the expressions are simple, composite pulses may 
be found by hand. In general, it is easier to write a computer program that evaluates 
the desired I-‘(“) for any N-pulse sequence and conducts a search through possible 
pulse lengths and phases to find the best solution to the simultaneous equations. 
The resulting sequences, or composite pulses, are then not always exact solutions 
to the equations, but can be made very close. In this paper, we present composite 
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pulses, with Y(O) = 0 (zeroth order) and with both Y(O) = 0 and V(I) = 0 (first 
order). Throughout the paper, composite pulses are described by the standard 
notation, (f&,(0&, * * * (&),,,, where Bi and $i are the flip angle and phase of the 
i* pulse in degrees. Although we treat rf inhomogeneity and resonance offsets 
separately below, it is possible to derive composite pulses for broadband excitation 
with respect to both 6wi and Aw simultaneously by taking V to be the sum of the 
right sides of Eqs. [6a] and [6b]. 

COMPENSATION FOR RADIOFREQUENCY INHOMOGENEITY 

Composite R Pulses 

We have already suggested the sequence 1 800 1 80,zo 1 800 for broadband inversion 
with respect to the rf amplitude (6). For this sequence, T/(O) = 0, exactly. Levitt has 
suggested the sequence 9003601~0900, among others (9). For 900360120900, 
Y(O) = -6wiZ,l&. Surprisingly, the two composite a pulses give identical spin 
population inversion as a function of the rf amplitude. In both cases, the inversion 
is given by the expression -cos3 0 + 3 sin2 e( 1 - cos 0)/4, where 8 = ?r(w? + 6wl)/ 
WY. As usual, inversion is defined to be the negative of the final z component of 
magnetization, assuming an initial unit magnetization aligned with the positive 
z axis. 

Although their inversion properties are the same, the results of using the two 
composite ?r pulses as composite refocussing pulses in a 7r/2--7-7~7 spin-echo 
experiment are quite different. If the rf amplitude of the composite refocussing pulse 
is varied between 0.6 and 1.4 times its nominal value, or equivalently if the pulse 
lengths are misset between 0.6 and 1.4 times their nominal lengths, the magnitude 
of the echo will be practically constant. However, the phase of the echo varies over 
a range of 224” with the 9003601~~90~ sequence. With the 18001801201800 sequence, 
the phase varies by only 3 1 O. This result is demonstrated in Fig. 2. 

A somewhat better composite ?r pulse is the sequence 18001801051802,036059, for 
which Y(O) = 6w1(-0.00161, + O.O007Z,J and V (I) = (6w,)2(0.0004Zz)/o~. In Fig. 3, 
we show plots of inversion as a function of the rf amplitude for 18001801201800 and 
1 800 1 80ios 1 8021036059. As anticipated, the inversion bandwidth increases in going 
from a zeroth-order to a first-order composite pulse. When the first order composite 
pulse is used as a composite refocussing pulse, the phase of the echo varies over a 
range of only 16” when the rf amplitude varies from 0.6 to 1.4 times its nominal 
value. Thus, either 1800180120180~ or 18001801051802,036059 may be used as a 
composite refocussing pulse in the presence of substantial rf inhomogeneity without 
serious phase distortion problems. In the notation of Eq. [2], 8, = 240” for 
l8Ool8Oi2ol8Oo; 81 = 105” for 1800180~0~1802~036059. 

Composite T/Z Pulses 

In Figs. 4a and 5a, we show plots of the signal magnitude following excitation by 
composite 7r/2 pulses as a function of the rf amplitude. Results for two composite 
7r/2 pulses are shown. The first, 900180,0S180~,5, has Y(O) = -6w1(0.0071ZX). The 
second, 2700360169 1 803, 1 80178, has Y(O) = 6w,(0.0001ZX - 0.00021,) and 
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FIG. 2. The phase of the echo signal in a spin-echo experiment using a composite rr refocusing pulse, 
as a function of the ratio of the miscalibration of the rf amplitude (&I,) to the nominal rf amplitude 
(wy). Results are shown for two composite rr pulses: 18001801201800, with experimental data in dots and 
simulations in the solid line, and 900360120900, with experimental data in triangles and simulations in the 
dashed line. Although the two composite pulses invert longitudinal magnetization equally well, their 
performance in refocussing transverse magnetization is markedly different. The experiments were 
performed on a small HzOe, sample by misseting pulse lengths to mimic the miscalibrations of the rf 
amplitude. 

Y(l) = -(60,)2(0.00031&w1 ‘. Again, the excitation bandwidth increases in going 
from a single 7r/2 pulse to a zeroth-order composite a/2 pulse to a first-order 
composite ?r/2 pulse. 

Plots of the signal phase as a function of the rf amplitude for the two sequences 
are given in Figs. 4b and 5b. The sequence 2700360169180331801,8 is particularly 
free of phase distortions, with the signal phase remaining within a range of 15” for 

I 
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I I I I I I I I I 
-0.8 -0.4 0 0.4 0.8 

FIG. 3. The extent of the inversion of magnetization, or of spin populations, as a function of the 
relative miscalibration of the rf amplitude for a single XT pulse (simulations in the dotted line), the zeroth 
order composite r pulse 1800180,,,1800 (experimental data in triangles, simulations in the dashed line), 
and the first-order composite * pulse 180,l 80,0s 1 802,036059 (experimental data in heavy dots, simulations 
in the solid line). The inversion bandwidth increases with the order to which rf amplitude miscalibration 
effects are canceled in the theory. 
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FIG. 4. The signal magnitude (a) and phase (b) following spin excitation by the zeroth-order composite 
r/2 pulse 90,,180,,,51803,5, as a function of the relative rf amplitude miscalibration. Experimental data 
appears in dots and simulations in the solid lines. For comparison, the signal magnitude following a 
single r/2 pulse is shown in the dashed line. 

rf amplitudes between 0 and 2 times the nominal value. For 9001801051 803r5, 
fiz = 60” and & = 0” in the notation of Eq. [3]; for 2700360,~~180~~180,~~, LIZ 
= 110” and & = 180”. 

Composite 7r/2 pulses with larger excitation bandwidths may be constructed by 
other means, in particular the recursive expansion procedure of Levitt and Ernst 
(10). For example, they suggest the sequence 900902709009090901 8090909009090. That 
sequence gives better than 0.99 times the maximum signal magnitude for rf 
amplitudes between 0.5 and 1.5 times the nominal value. However, over the same 
range, the signal phase varies by 7 1 O. 

COMPENSATION FOR RESONANCE OFFSET 

Composite r/2 Pulse 

Freeman and Hill have shown that a single 7r/2 pulse already compensates for 
resonance offset effects to a large extent, at least for the purpose of rotating 
longitudinal magnetization into the transverse plane (21). The amplitude of the FID 
signal following a single ?r/2 pulse remains within 0.99 times its maximum for 
resonance offsets between 0.9wy and -0.9&. There is a phase distortion of 80” over 
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FIG. 5. Same as Fig. 4, but for the first-order composite x/2 pulse 270,,360,6918033180,7s. The amount 
of phase distortion decreases significantly as the theoretical order increases. 

that range, but the phase is very nearly a linear function of AU and is therefore 
easily corrected in the spectrum resulting from a single pulse. However, there are 
applications in which 7r/2 pulses are required to do more than rotate longitudinal 
magnetization into the transverse plane. Examples include multiple-pulse line 
narrowing (20, 22, 23) and time reversal (24, 25) experiments. In such experiments, 
rf pulses act on spins far from thermal equilibrium. More commonly, the pulses 
are thought of as rotations acting on the internal spin Hamiltonian, making it time 
dependent in the manner of Eq. [9]. If the net rotation of a composite ?r/2 pulse 
varies with the offset, there is no general way to incorporate it into multiple-pulse 
techniques. However, small errors in single pulses due to the offset accumulate over 
long trains of pulses. Thus, if a line narrowing or time reversal sequence is performed 
in an inhomogeneous static field, as in a solid state NMR imaging experiment (26), 
it may be desirable to use composite 7r/2 pulses that are equivalent to constant 
rotations over a range of resonance offsets. 

One composite 7r/2 pulse with that property is the sequence 3850320L8,,250, for 
which V(O) = Aw(O.O026Z, + O.O026Z,) and Y(l) = -(Ao)2(0.0026ZX)/w~. A simple 
example of its performance in a multiple-pulse experiment is shown in Fig. 6. The 
experiment consists of applying a train of 7r/2 pulses separated by delays, with the 
signal being sampled once in the center of each delay. This is a commonly used 
technique for calibrating and adjusting rf amplitudes (27). When the pulses are 
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FIG. 6. Signal traces generated by applying a train of closely spaced 7r/2 (a, b) and composite x/2 
(c, d) pulses to a small bulb of HrO(,,, with the signal sampled once after each n/2 pulse. The composite 
7r/2 pulse is 3850320i80250, designed to be free of resonance offset effects to first order in the theory. In a 
and c, the pulses are applied on resonance with an rf amplitude of 3 kHz. In b and d, the pulses are off 
resonance by 450 Hz. The signal trace in b exhibits an obvious offset dependence; the trace in d is largely 
unaffected by the offset, due to the absence of appreciable phase distortion in the composite x/2 pulse. 

applied on resonance, a characteristic signal pattern of three lines results. In Figs. 
6a and b, it is apparent that the signal pattern deteriorates considerably at resonance 
offsets of 0.15~~ when single ?r/2 pulses are used. This is primarily due to phase 
distortion in the 7r/2 pulses rather than free precession during the delays, since long 
7r/2 pulses (84 PS) and short delays (20 ps) were used. When composite 7r/2 pulses 
are substituted for the single 7r/2 pulses, the signal pattern is much less sensitive to 
resonance offsets, as shown in Figs. 6c and d. Again, 20 PLS delays were used, but 
the length of each composite 7r/2 pulse was 688 ps so that the signal patterns in 
Figs. 6c and d actually represent a longer time than those in Figs. 6a and b. 

Composite ?r Pulses 

Composite ?r pulses that compensate for resonance offset effects have already 
been described (6). A zeroth-order sequence is 90027090900, with Y(O) = 0 exactly. 
This sequence was derived earlier by Levitt and Freeman (3), using a different 
theoretical approach. We note that V (‘) = 0 for any inverting sequence of the form 
O,el,eo satisfying 8’ = 2n?r - 0 and cos 4 = cos e/(cos 0 - 1). A first-order sequence 
is 33602461801090742,010902461803360, with I’(‘) = A.w(O.00051, + 0.00101,) and 
Y(l) = (A~)~(O.O0021, - 0.00011, + O.OOO1lz)/o~. These composite ?r pulses may 
be used as refocussing pulses without introducing large, offset-dependent phase distor- 
tions. In an echo experiment, the first-order sequence contributes less than 1” to 
the variation in the phase of the echo for resonance offsets between -0.60? 
and 0.6~7. As defined in Eq. [2], /3, = 135” for 90027090900; 8r = -27” for 
336o246,~o10~742,,,109o246,~o336o. 
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DISCUSSION 

As we have emphasized above, the novel feature of the composite pulses presented 
in this paper is their lack of large phase distortions. The impact of phase distortions 
varies from experiment to experiment, so that the decision of whether to use these 
composite pulses or composite pulses derived by other means must be made after 
a careful analysis of the experiment to be performed. In some cases, phase distortion 
is inconsequential, for example in the use of composite ?r pulses for inversion- 
recovery measurements of spin-lattice relaxation times (I, 2), for heteronuclear 
decoupling (5, 28), and in certain two-dimensional heteronuclear chemical-shift 
correlation experiments (29). In those cases, the phase of the signal that is eventually 
detected is independent of the phase of the rr pulse. In other NMR techniques, 
distortions inherent in individual composite pulses can be made to cancel if multiple- 
composite pulses are used. This approach has been demonstrated in composite 
pulse versions of Carr-Purcell sequences (3) and quadrupole-echo experiments (I I). 
Levitt and Ernst have given a detailed treatment of the incorporation of multiple- 
composite pulses into INADEQUATE experiments in such a way that most of the 
phase distortions in the individual composite pulses approximately cancel (30). In 
addition, they give general suggestions for designing composite pulse versions of 
similar experiments. Composite pulses can not be blindly substituted for single 
pulses; rather, they must be cleverly chosen and matched. Even so, phase distortions 
do not entirely disappear. Although they prevent phase distortion effects from 
accumulating over several composite pulses, Levitt and Ernst’s prescriptions typically 
leave behind the distortion of the final composite pulse. Thus, particularly in 
situations of rf inhomogeneity where signal cancellation can occur, the problems 
arising from phase distortion are not eliminated. 

Phase distortions may be inconsequential if composite pulses are used to overcome 
a m iscalibration of the rf amplitude or a single resonance offset value, rather than 
true rf or static field inhomogeneity or a range of chemical shifts (31). In such a 
situation, the rotation produced by the composite pulse will be constant throughout 
the sample, since the rf amplitude or resonance offset does not vary. 

With the above exceptions in m ind, phase distortions do have important conse- 
quences in some of the simplest NMR experiments when a range of rf amplitudes 
or resonance offsets exists. The simplest experiment involving composite pulses is 
to give a single composite 7r/2 pulse and collect the ensuing FID. If rf inhomogeneity 
is significant, as is the case in in vivo experiments using surface coils, and if the goal 
is to generate the largest possible signal from the largest possible spatial region, then 
m inimal phase distortion is essential. Only slightly more complicated than a single 
pulse experiment is a 7r/2--7-7~7 echo experiment. It is conceivable that a composite 
7r/2 pulse and composite r pulse pair with mutually canceling phase distortions can 
be found. However, no such pair has yet been proposed. Thus, if composite pulses 
are to be substituted for both the 7r/2 and the ?r pulse in an echo experiment, as 
would be likely in the presence of rfinhomogeneity, they should both have m inimal 
phase distortion. If compensation for resonance offset effects is required, it may be 
best to use a single 7r/2 pulse and a composite ?r pulse. Assuming that the composite 
?r pulse contributes negligible phase distortion, the remaining distortion in the echo 
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arises only from the r/2 pulse. The usual linear phase correction in the spectrum is 
then sufficient. 

Identical considerations apply to 2D echo experiments, i.e., 2D J-resolved 
spectroscopy (32, 33), and to other techniques in which echo sequences appear, 
such as DEPT (34). If DEPT is used to transfer polarization from proton spins to 
a carbon-l 3 spin, phase distortion effects due to composite pulses applied to the 
protons can be removed by the method of Levitt and Ernst (30). The detected 
carbon-13 signal will still be susceptible to phase distortion if composite pulses are 
applied to the carbon-l 3 spin, however. The same remarks apply to polarization 
transfer by INEPT (35). In general, other 2D techniques are open to phase distortion 
problems as well. These techniques include homonuclear and heteronuclear chemical- 
shift correlation spectroscopy (33) and 2D cross relaxation spectroscopy (36). Phase 
distortion in composite pulses would also affect signals detected in multiple-quantum 
NMR experiments (37). 

The composite pulses derived from the Magnus expansion approach often involve 
unusual rf phase shifts; that is, phase shifts other than the common multiples of 
90”. In our experiments, the phase shifts were usually accomplished with a digitally 
controlled phase shifter based on a commercial Daico unit, capable of 360”/256 
phase increments. Alternatively, the rf phases can be set by inserting delay lines of 
the appropriate length into a quadrature generation circuit. Simulations indicate 
that the composite pulses can typically tolerate 5 or 10” deviations from the quoted 
phase shifts without a serious degradation of performance. Thus, a phase shifter 
that produces rf phases in 15” increments would be sufficient. Similar phase shifting 
capabilities are necessary for other NMR techniques, notably multiple-quantum 
spectroscopy (3 7). 

It is possible that composite pulses that produce constant net rotations may be 
found by other means. For example, such composite pulses could be found by a 
computer search through all possible N-pulse sequences. For each possible sequence, 
it would be necessary to compute the transformation produced by the sequence 
acting on a complete set of independent initial conditions. In the case of compensation 
for rf inhomogeneity or resonance offsets, this means that the effect of the pulse 
sequence on initial density operators of both 1, and 1, would be calculated. 
Additionally, the calculations would have to be repeated for many values of rf 
amplitude or resonance offset to determine whether the transformation was inde- 
pendent of that parameter. On the other hand, with our approach it is only necessary 
to check Eq. [lo] and evaluate I’(‘) and Y(l) Thus, from a practical standpoint, our . 
approach is computationally more efficient. It should also be realized that the low- 
order terms in the Magnus expansion in Eq. [8] must be nearly zero for any pulse 
sequence that corresponds to a constant net rotation, regardless of how that pulse 
sequence is discovered. 

To conclude, we have demonstrated a unique property of composite pulses 
derived with the Magnus expansion, namely their lack of phase distortion. New 
composite ?r and 7r/2 pulses with compensation for rf inhomogeneity or resonance 
offset effects have been introduced. We have pointed out the need for composite 
pulses without phase distortion in several NMR techniques, including some of the 
simplest and most widely used. With the minimization of phase distortions, 
composite pulses are likely to have a greater impact on in viva and NMR imaging 
studies as well as the more traditional liquid and solid state experiments. 
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