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The design and operation of microfluidic analytical devices depends critically on tools to probe micro-
scale chemistry and flow dynamics. Magnetic resonance imaging (MRI) seems ideally suited to this task,
but its sensitivity is compromised because the fluid-containing channels in “lab on a chip” devices occupy
only a small fraction of the enclosing detector’s volume; as a result, the few microfluidic applications of
NMR have required custom-designed chips harboring many detectors at specific points of interest. To
overcome this limitation, we have developed remotely detected microfluidic MRI, in which an MR image
is stored in the phase and intensity of each analyte’s NMR signal and sensitively detected by a single, vol-
ume-matched detector at the device outflow, and combined it with compressed sensing for rapid image
acquisition. Here, we build upon our previous work and introduce a method that incorporates our prior
knowledge of the microfluidic device geometry to further decrease acquisition times. We demonstrate its
use in multidimensional velocimetric imaging of a microfluidic mixer, acquiring microscopically detailed
images 128 times faster than is possible with conventional sampling. This prior information also informs
our choice of sampling schedule, resulting in a scheme that is optimized for a specific flow geometry.
Finally, we test our approach in synthetic data and explore potential reconstruction errors as a function

of optimization and reconstruction parameters.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A multitude of analytical techniques are currently used to probe
microscopic fluid flow, chemistry, and chemical dynamics. With
few exceptions, the most generic of these employ miniaturized
analogs of laboratory-sized analytical devices based on mass spec-
trometry [1,2] or optical spectroscopy. For chemical analysis, the
most frequent incarnations of the latter depend either on fluores-
cence-detected immunoassays or covalent modification of the de-
tected analyte with a fluorescent chromophore. Velocimetry for
flow design and optimization most frequently employs particle
imaging velocimetry (PIV), which also requires exogenous chro-
mophores, to understand microscale fluid dynamics [3-5]. While
several optical spectroscopic techniques, including attenuated to-
tal reflection-fourier transform infra-red (ATR-FTIR) [6] spectros-
copy and surface enhanced Raman spectroscopy (SERS) [7,8],
promise to deliver chemical information from the analytes directly,
they are difficult to apply to complex analytes (e.g. biological mac-
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romolecules, emulsions), difficult to integrate in three-dimensional
imaging schemes without confocal optics, and insensitive to fluid
motion.

We have therefore sought a generic tool that is capable of prob-
ing both chemistry and fluid dynamics without perturbing the ana-
lyte or dynamics that are the subjects of our measurements. In
macroscopic applications, nuclear magnetic resonance (NMR) and
magnetic resonance imaging (MRI) can peer deep within opaque
materials to directly measure their complex constituents without
covalent labeling. NMR is intrinsically sensitive to fluid motion
[9]. It has been used but not limited to studying complex fluid
mechanics in porous media [10-12], living organisms [13-15],
and mixing in microchannels [16-18]. Due to its successful use
in similar applications, there have been significant efforts to inte-
grate NMR spectroscopy and MRI onto lab on a chip devices [19-
22].

Unfortunately, these microfluidic applications of MRI are com-
promised by the conventional geometry of the experiment, in
which an inductive radiofrequency coil encloses the entire sample.
Since the sensitivity of an inductive detector is proportional to the
magnetic flux it encloses, the experiment is inherently insensitive
for microfluidic and microporous structures whose fluid channels
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occupy only a small fraction of the detector volume. Worse, mag-
netic susceptibility anisotropies at the interface of liquid samples
and solid channel boundaries causes line broadening that further
reduces sensitivity and complicates the interpretation of spectra.
As a result, microfluidic applications of MRI and NMR usually in-
volve arrays of microfabricated inductive detectors placed on a
chip at specific points of interest [23,24].

As a favorable alternative to this approach, we have previously
demonstrated the application of remotely detected MRI [25,26] in
microfluidic devices [27-31]. In this method, a conventional induc-
tive coil encloses the entire microfluidic chip and is used to encode
spatial, chemical, and velocimetric information. This information is
then stored longitudinally and transported with the fluid to a sin-
gle, optimized detector located at the device outflow. Since the vol-
ume of this detector is matched with the volume of the
microfluidic features of interest, we are able to detect the informa-
tion with orders of magnitude greater sensitivity than with the
enclosing volume coil [32]. Fourier transformation of these data
then yields the multidimensional image and a correlated time of
flight parameter that reflects transport of fluid from the encoding
region to the detector. Our results indicate that MRI spatial resolu-
tions of ~10 pm and temporal resolutions of ~20 ms are possible
in generic microfluidic devices [27,30]. The time-varying flow is re-
solved here only in the case of steady-state flow, and the time res-
olution refers to the resolution of the time of flight dimension, not
the speed at which images can be acquired. The resolution of the
time of flight dimension is limited by the stroboscopic detection
speed, which is dictated principally by the residence time of the
fluid in the microcoil detector.

There are still considerable opportunities to accelerate the
acquisition of remotely detected microfluidic MRL In our initial
study, we noted that microscale systems in which remote detec-
tion is most likely to be useful are sparse because their interesting
features occupy only a small fraction of the image field of view. We
thus employed compressed sensing [33,34], now also being intro-
duced in clinical MRI to acquire and reconstruct images from a
fraction of the data ordinarily recorded in an exhaustively sampled
experiment. These algorithms rely on a transform to a domain in
which the image is sparse (i.e. the wavelet domain) and a nonlinear
reconstruction whose objective maximizes the sparsity of the im-
age such that it agrees with experimental data. Previously, we have
achieved subsampling factors of 8-16 with phase-sensitive veloci-
metric data, and up to 32 with absolute-valued intensity data.

Here, we introduce an improvement to this method which uses
our a priori knowledge of the flow geometry to improve the robust-
ness of the reconstruction process with even fewer data. Similar to
the approach in [35], our reconstruction minimizes the 11-norm of
the compressed representation of the reconstruction to optimize
for sparsity while both maintaining consistency with data and
enforcing the a priori constraint on the image. We expand this
technique and apply it in remotely detected MRI of microfluidic de-
vices, achieving subsampling levels of 128 x. We incorporate prior
knowledge in the optimization (a) through a soft outline mask out-
side of which any image intensity is penalized in the constraint
function (b) effectively enforcing an irregular field of view:

min [[ym|, @)

s.t. |[Fm — k|, + s[|M;m], (b)

Here, ¢ is set to a fraction of the noise level to force agreement
with the data, M; is the image space a priori mask, s is the image-
mask compliance multiplier. This image-mask compliance multi-
plier, s, is a weighting factor that biases the reconstruction towards
the real space a priori mask. The compressive transformation is the
wavelet transform, y, and the data is manipulated in Fourier space,
F, minimizing the reconstructed data, m, while ensuring agreement

with the acquired data, k. The relative weighting of the two con-
straints in (b) is adjustable through the image mask compliance
multiplier s, which is empirically optimized to minimize the error.
Furthermore, reducing € improves agreement with the data while
increasing reconstruction time. We also show that prior informa-
tion about the microfluidic chip geometry alters the optimal k-
space sampling scheme, resulting in one that is specific to the fea-
tures of the image. Specifically, the distribution of sampled points
in k-space can be modified to minimize reconstruction errors and
tailor the acquisition based on prior information. While our mask
contains no details of the internal structure of the fluid channels,
we show in simulations and experiments that its inclusion in the
objective function and in the k-space sampling optimization im-
proves the fidelity with which these internal details are
reconstructed.

Using this method, we are able to accurately reconstruct six-
dimensional MRI images (three spatial and three vector velocity
dimensions) of a serpentine microfluidic mixer from an MRI data
set that is undersampled by a factor of 128. Since knowledge of
flow pathways is a generic feature of all fabricated microfluidic de-
vices, we anticipate that this method will be useful in any MRI
experiment in a lab on a chip device.

2. Methods
2.1. Remote detection data acquisition

NMR experiments were performed on a 7 T Oxford Instruments
superconducting magnet mated to a Varian console probe and gra-
dient coils. Imaging experiments were conducted using magnetic
field gradients with nominal maximum values of 100 Gauss/cm
along all axes, also produced by Varian, and encoding was per-
formed using a 40 mm Varian volume imaging probe.

A complete description of the remote detection experiment and
hardware appear elsewhere [27]. Briefly, water flows from a regu-
lated pressure-driven flow apparatus to the chip, which is enclosed
by a volume imaging coil through which RF pulses are applied to
accomplish spatial and velocity encoding. The encoded spin infor-
mation is then stored as long-lived longitudinal magnetization, and
it travels to a microsolenoid NMR probe for detection. The micro-
fluidic serpentine mixing chip is etched in glass and consists of
three channels that terminate in two inputs and one output. The
glass microfluidic chip was fabricated by etching a rectangular
channel, ~150 # 10 pm in width and 90-120 pm in depth, limited
by manufacturing tolerances. While scanning confocal microscopy
would have been capable of resolving the precise shape of this
channel, no such experiment was attempted here, and hence, infor-
mation about the cross sectional, or through-plane, dimension was
not included in the mask which constrains the image to the known
geometry of the chip. The chip outlet was connected to a microcap-
illary (150 um) through which its contents reached the microcoil
detector, a 16-turn microsolenoid wound around a tube that en-
closes the capillary. Pressure-driven flow of water, doped with 2%
isopropanol to prevent bubble formation, was maintained with a
driving pressure of 10 psi for the duration of these experiments.

The NMR pulse sequence for the remote detection experiment is
illustrated in Fig. 1. Following slice-selective excitation of only the
region of interest, phase encoding of spatial and velocity informa-
tion is performed in the context of a spin echo, as detailed in [27].
We employ gradient moment nulling to cancel the phase accrued
due to the motion of spins during their spatial encoding. The infor-
mation is then stored as long-lived longitudinal magnetization by a
terminal 7/2 pulse and detected stroboscopically after flow to the
detector. During transport to the detector, a gradient pulse is
applied to dephase any residual transverse magnetization that
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Fig. 1. Pulse sequence for remotely detected MRI with velocity encoding. Radio-
frequency pulses for encoding and detection are applied in two separate encoding
and detection coils, as indicated. Magnetic field gradients (Gx, Gy, Gz) are used for
phase and velocity encoding in each of three spatial dimensions. Transverse
magnetization is first created in a region of the sample by a frequency-selective
pulse applied concomitantly with a slice selection gradient (Gz) in the longitudinal
direction. Next, phase (PE) and velocity (vel) encoding gradients are applied in the
context of a spin echo refocusing period. Encoded information is then stored as
long-lived longitudinal magnetization and detected in a separate coil stroboscop-
ically with a series of pulses.

persists due to imperfections in the storage pulse, and the pulses
are phase cycled to eliminate the contribution of any unencoded
signal.

In the following experiment, a three-dimensional velocity en-
coded image was acquired with 128 x 128 points in the plane of
the chip and 16 points perpendicular to the plane of the chip. How-
ever, because the image acquisition was undersampled by a factor of
128 (vide infra), we recorded only 4096 points instead of the 524,288
points that would be required for each exhaustively sampled hyper-
complex image. These images were encoded with velocity informa-
tion in a separate dimension in which the velocity encoding gradient
was switched between positive and negative phase to generate a
phase contrast proportional to the velocity. For each point, the total
time for the encoded volume to flow through the detection region
was 2 s, with each of the 50 stroboscopically acquired FIDs lasting

Input Image 2x subsampled

¢ - no apriori constraint
d - constrained
e - overconstrained

Fig. 2. Illustrative example of sample data reconstruction scheme. A 64 x 64 Cal
logo containing a grid and noise (1%, see text) (a) was Fourier transformed and 2 x
subsampled (b). The subsampled data are then reconstructed using a soft mask
(upper left of Fourier Transformed image) to incorporate a priori constraints on the
geometry. The mask is applied with different weights during the reconstruction.
The illustration shows the effect of increased mask scaling starting with no prior
knowledge (c), constrained with s =2 (d), and overconstrained with s =32 (e).

40 ms. A separate set of 3D images were acquired for each of the
three velocity components: x, y, and z.

2.2. Image reconstruction

Images were reconstructed using software implemented in
MATLAB and the 11- minimization was implemented with an iter-
ative optimizer [36], called from within MATLAB. Following their
apodization with a decaying exponential, we transformed and inte-
grated the primary data around the position of the water resonance
to yield 50 FIDs for each k space point, constituting a time of flight
curve weighted by the k-space interferogram. The data were then
arranged into a multidimensional matrix of 128 x 128 x 16 k-
space points for each of two velocity-encoded dimensions. The
points in the conjugate space that were not sampled were initially
replaced with zeros.

Details of our reconstruction scheme for sparse data in the ab-
sence of prior information constraints have been described else-
where [31] and will only be treated briefly here. First, sampling
tables were determined by choosing an optimal distribution from
among many randomly generated k-space distributions, each
weighted toward the center of k space. The reconstruction uses
an iterative algorithm that constrains the difference between the
image and the measured data and maximizes its sparsity in the
transform (wavelet) domain by minimizing the 11 norm as dis-
cussed earlier. It was implemented in Matlab using the Wavelab
v.8.02 [37] package and spgl1 v.1.7 [36] for 1;-norm optimization.
Geometric data about the flow geometry were used as added
constraints to this minimization, expressed weakly (with the
image-mask compliance multiplier) in the objective function by
an outline mask outside which image pixel intensities are con-
strained to lie below a threshold value. By “outline mask,” we
mean that the mask is a geometrically weak constraint; in that, it
is completely homogeneous with respect to the internal structure
of the fluid channels and only serves to constrain the edge topology
of those channels within the field of view.

2.3. Synthetic data reconstruction

Reconstruction fidelity is dictated by the strength of this image-
mask compliance multiplier. We therefore explore the possible re-
gimes of scaling in silico by constructing a model image that is
internally structured on several length scales: a 64 x 64 image of
the University of California, Berkeley, logo, divided into an inter-
secting line grid, and subsampled in the Fourier domain by a factor
of two. We simulated experimental noise in the test image by add-
ing normally distributed noise set to 1% of the maximum image
intensity. Next, the mask corresponding to this was a similar logo
that was homogeneous in its internal structure. During the recon-
struction, the image-mask compliance multiplier (s) was applied as
noted in the aforesaid equation and varied for eight different val-
ues ranging from 0 to 32.

2.4. Experimental data reconstruction and processing

Experimental data in the microfluidic mixing chip were recon-
structed separately for each time of flight point. Boundary con-
straints that incorporate a priori information about the chip
geometry were imposed in the form of an image space mask gen-
erated from a processed photograph of the chip (Fig 3a) and
aligned to a low-resolution scout image. Contrast between the
channel and the glass in the photograph was created by injecting
dye into the channel. The chip geometry boundaries were deter-
mined from the photograph in MATLAB. The channel was identified
by thresholded pixels above the average glass pixel value, and
assigning these a value of 1. Values below the threshold were



16 T.Z. Teisseyre et al./Journal of Magnetic Resonance 216 (2012) 13-20

a
e
~ P =
| 1
— L) st U
I |
I 30 mm I
c
120 \
100
80
60
40
20
20 40
60 go =

100 430

10 mm

b2
100
80

60

40

20

60 80

100 120

120 \
100
80

40
20

20 4

\

%080 100 45

Fig. 3. Comparative figure illustrating benefits of a priori masking. Image of the microfluidic serpentine mixer (a), image resulting from direct Fourier transformation of
subsampled data (b), applied mask generated from serpentine chip photograph (c), and reconstructed surface of the chip geometry in which the mask was used during the
reconstruction (d). All surfaces were cropped to include only the first 90 points along the longitudinal direction to avoid image wrapping from the outlet capillary.

assigned to zero. Lastly, the image was Gaussian filtered in k-space
to accommodate for registration imperfections. Artifacts were
manually removed from the mask photograph, and the 2D section
was replicated across all 16 slices of the acquired image dimension.
The reconstruction was carried out at moderate image-mask com-
pliance value, s = 2, to control relative weighting of compliance to
the a priori mask and data. The inequality constraint for the I-
norm constraint was determined by taking a fraction of the aver-
age noise value from an early TOF point at which no encoded signal
had yet reached the detector. A schematic illustration of this pro-
cedure is shown in the Supporting information.

We next extracted vector velocity information from the recon-
structed data. For each component of the velocity, the phase differ-
ence between positive and negative gradient acquisitions was
determined for each voxel. The data were corrected by subtracting
a linear phase in the Z dimension that persists even in a static
phantom. Finally, the phase data were converted to velocity units
and plotted on a 3D surface as velocity vectors (Fig. 5).

Fig. 4. Images of the serpentine mixing chip 128 x subsampled and reconstructed
without (a) and with prior information (b). Priori information was a mask during
the reconstruction with an optimized scaling parameter. The three-dimensional
image is displayed here as a projection along the orthogonal dimension, not
illustrated.

This same experimental data were used for comparison with
equivalent reconstructions conducted without the benefit of flow
information. Two-dimensional projections from the three (spa-
tial)-dimensional data were acquired by summing the intensity
information across the through plane dimension. These 2D projec-
tions images were displayed for an image-mask compliance multi-
plier reconstruction of s = 0 (no mask) and s =2 (Fig. 4).

2.5. Reconstruction and k-space sampling optimization

Lastly, we produced an optimized sampling schedule by varying
both the random Gaussian sampling distribution and image-mask
compliance (s) multiplier. The Gaussian sampling distribution,
used to determine the k-space gradient values in an experimental
subsampling acquisition, was varied by it's relative weighting
toward the center of k-space. Ideally, k-space sampling captures

100 —

80 A e
100 120

Fig. 5. Three-dimensional, vector velocity field superimposed on an image of the
chip surface. All planes of the velocity field are displayed for this perspective of the
3D volume. The three-dimensional surface model, reconstructed from intensity
data, is shown in red. Arrows correspond to velocity vectors and are show in blue.
The spacing of the velocity vectors is dictated by a grid corresponding to the
acquired voxels. There is asymmetric flow in each inlet due to differing lengths of
capillary tubing that supply the chip from a source at common pressure (a). The
velocity direction changes at each turn in the chip (b). The average linear velocity
for the straight segments of flow in the microfluidic chip was 19.04 cm/s with a
standard deviation of 1.82 cm/s.
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both high- and low-frequency components. However, with signifi-
cantly fewer sampled points, the relative distribution of the points
should be optimized to yield minimal reconstruction error and try
to match the statistics of the data. Additionally, a priori information
about the reconstructed geometry changes the optimal sampling
scheme by providing additional information in the reconstruction.
Second, the image-mask compliance multiplier (s), which dictates
the relative adherence of the data to the apriori mask, was also
optimized to generate minimal reconstruction error. Both variables
were tested in a sample reconstruction of a synthetic data set that
resembles the experimental microfluidic chip. First, a synthetic
three-dimensional data set was generated from the experimental
data as described earlier for generating the mask. Voxels inside
the channel were given a value of 1 and voxels outside the channel
were given a value of zero. The resulting synthetic data resulted in
a three-dimensional image that was, like the experimental data
128 x 16 x 128 pixels. Unlike the apriori mask, the synthetic sam-
ple data only occupied four slices of the 16 slice three-dimensional
data set. Normally distributed noise was then added to the data set,
as described previously. The data were Fourier transformed and
subsampled with five different 128 x subsampled randomly gener-
ated k-space distributions with various weightings toward the cen-
ter of k-space. The errors from the best and worst reconstructions
were analyzed in detail. The two corresponding sampling schemes,
which result in the lowest and highest reconstruction errors, are
illustrated in the left column of Fig. 6 as two-dimensional slices
of a three-dimensional k-space sampling scheme. The k-space sam-
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pling scheme at the upper panel of this figure, which corresponds
to the reconstructions in Fig. 6a and b, was more weighted toward
the center of k-space. The scheme illustrated in the bottom panel is
a more diffuse distribution with more points weighted to sample
higher-resolution points in k-space. Each sampling table was re-
stricted to fully sample the centermost points of k-space. The
reconstructions were calculated with the same a priori mask which
outlines the channel geometry as in the experimental reconstruc-
tion. An intermediate value of image-mask compliance (s) was
used. Each of the reconstructed data sets is quantitatively analyzed
to determine the error resulting from 128x subsampling and
reconstruction. Reconstruction errors were determined by compar-
ing the reconstruction to noiseless input synthetic data. Because
our reconstruction algorithm scales the data due to a Fourier trans-
form function convention, the reconstructed image was first nor-
malized, rendering it on same scale as the input data. The errors
were calculated by subtracting the normalized reconstructed im-
age from the noiseless fully sampled input synthetic data. For per-
centage calculations, this error was normalized to the noiseless
fully sampled input synthetic data. The sampling scheme that
yielded the smallest average reconstruction error in the channel
was determined to be the optimal sampling schedule. We then
investigated the errors resulting from varying the image-mask
compliance variable(s) for a data set subsampled with this opti-
mized sampling scheme. As with the Cal logo, reconstructions were
calculated for eight different image-mask compliance multipliers
(s), ranging from 0 to 32. Reconstruction errors were determined
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Fig. 6. Subsampling mask optimization and error calculations by reconstruction of synthetic three-dimensional 128x subsampled data. Reconstructions were done without
(a) and with (b) prior information for an optimized sampling schedule. Sampling optimizations were done by varying the weighting toward the center of k-space (c). Errors
are illustrated in one slice of real space images (middle column) for the entire region. A quantitative error assessment of the interior of the channel is shown in histograms
(left column). Percentage error is binned and shown on the vertical axis of each histogram. The percentage of pixels within each error bin is shown on the left vertical axis and
the cumulative percentage is shown with a red line referenced to the right vertical axis. Each histogram also contains a reference line showing the cumulative percentage of

pixels that fall within 20% error.
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Iteration 5

Iteration 1

Iteration 50

Fig. 7. Iterative reconstruction with prior information of a 64 x 64 2x subsampled University of California, Berkeley logo. Each of the three images illustrates iterations in the

thresholding and masking algorithm which eventually converges to a final solution.

as described earlier, and the optimal image-mask compliance value
was selected to be the reconstruction with least average error
within the channel.

2.6. Iterative thresholding of synthetic data

Because this kind of reconstruction is computationally inten-
sive, we also implemented an iterative soft thresholding scheme
with a priori information. This scheme has been introduced previ-
ously and shown to be equivalent to 11-norm minimization, but
can potentially be much faster to compute [38-40].

In our implementation of this technique, the data are multiplied
by the image space a priori mask to enforce the prior knowledge
constraint. In the sparse, wavelet domain, the data is then soft
thresholded by a threshold value 1, here empirically determined,
as defined by the following function:

!//m - %7
0, lym| <t

(ym), = { vl > )

Finally, the image is transformed into the conjugate k space, and
any data points that were removed by thresholding but which
were determined experimentally are replaced by their measured
values. This sequence is then repeated until the reconstruction
converges. For reconstruction of the University of California logo,
we used 50 iterations to complete the reconstruction. These results
are shown in Fig. 7.

3. Results and discussion
3.1. Sample data reconstruction

To investigate the effects of varying the image-mask compli-
ance multiplier on the fidelity of reconstruction, we used a syn-
thetic image consisting of an internally structured feature placed
upon a blank image field, as described in Fig. 2. Direct Fourier
transformation of the subsampled k-space representation of this
image (Fig. 2a) resulted in unacceptable artifacts (Fig. 2b). This lin-
ear transformation was not expected to be an acceptable solution
of the inherently ill-posed inverse problem, and indeed the result-
ing artifacts distort the internal structure at all spatial wavelengths
and similarly obscure the background.

Next, utilizing a compressed sensing reconstruction without a
priori information (Fig. 2c) improves the reconstruction quality
significantly. Both the vertical and horizontal high-density grid
lines become more apparent, but the upper left grid is unclear.
The image also exhibits characteristic wavelet artifacts and signif-
icant noise in the image background.

The imposition of geometrical constrains in the reconstruction
dramatically improves the result, at least within an appropriate
range of weighting parameters (Fig. 2b). Near the optimal

image-mask compliance scaling, Fig. 2¢, middle, the entire grid is
accurately reconstructed at all wavelengths, and the background
is also correctly rendered. For high mask-image compliance scaling
multipliers, however (Fig. 2c bottom), we note a degradation in
reconstruction quality. In the case, the reconstruction overempha-
sizes agreement with the mask relative to the acquired data. In
particular, incoherent artifacts (noise) are folded into the region
of interest and distort its internal structure.

3.2. Serpentine mixing chip imaging

To probe the limits of our technique, we applied it to multidi-
mensional velocimetric imaging of a serpentine microfluidic mixer
(Fig. 3a). We have acquired velocity-encoded images and, from
them, derived intensity images by summing the absolute values
of these velocity-encoded data. Fig. 3 illustrates the directly Fourier
transformed three-dimensional image (b), corresponding three-
dimensional mask (c), the image reconstructed with our algorithm,
including the imposition of a known geometrical constraint (d).
The reconstructed three-dimensional image, illustrated as a sur-
face layer, is an accurate qualitative depiction of the overall chip
geometry, including the proportions of the rectangular channels.
The image has relatively few artifacts considering the degree of
subsampling involved. This reconstruction is also illustrated as a
two-dimensional projection along the orthogonal direction
(Fig. 4). The two-dimensional image is shown for both the recon-
struction performed without any mask biasing the results towards
a known geometry (Fig. 4a) and with the optimal mask and image-
mask compliance multiplier (Fig. 4b). The image reconstructed
with the mask clearly shows reduced artifacts and an improved
representation of the chip geometry.

3.3. Three-dimensional velocimetry in three spatial dimensions

Fig. 5 shows the three-dimensional surface with a three-dimen-
sional velocity vector field superimposed. The input volumetric
flowrate is biased more heavily to the lower branch (Fig. 5a), a con-
sequence of an asymmetry in the flow pathway leading to the
microfluidic chip. In this image, the overall direction of flow is con-
sistent with our expectations, including at turns and channel
boundaries (Fig. 5b). The mean linear velocity within the straight
region of the channel is 19.04 cm/s with a standard deviation of
1.82 cm/s. This closely matches previously published results [31],
as well as the expected linear velocity for a rectangular channel
125 pm x 150 pum with a volumetric flow rate of 250 pL/min. This
is the expected volumetric flow rate at 10 psi for this system.

3.4. Reconstruction error and sampling mask optimization

The manner in which a fixed number of data points are distrib-
uted in the conjugate space significantly impacts the reconstruc-
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tion quality. We therefore optimized the sampling distribution
with a three-dimensional synthetic data set resembling the micro-
fluidic chip. Reconstruction fidelity was calculated quantitatively
by comparing the reconstruction with the synthetic input data.
In Fig. 6, we show the results of image reconstruction in a three-
dimensional synthetic data set subsampled by a factor of 128 in
the Fourier domain, illustrating only the center slice (128 x 128)
of the full data set (128 x 16 x 128). Synthetic data were created
using five different 128-fold k-space subsampling schemes, two
of which are shown in the left column. We display both differences
in intensity as a function of reconstruction parameters (with and
without noise) and quantify these errors by means of histograms,
illustrating that reconstructions without (Fig. 6a) and with prior
information (Fig. 6b) are dramatically different. Reconstruction at
this high subsampling ratio yields images with significant artifacts
outside the channel and large errors within the channel, unless
prior information constraints are used (Fig. 6b). In this case, the
majority of pixels are included within 10% error and over 90% of
pixels fall within 20% error. This is in contrast to Fig. 6a, where less
than 60% of pixels are within 20% error.

The sampling table optimization is also illustrated in Fig. 6b and
¢, which differ qualitatively in the degree to which the sampling is
biased toward the center of k-space. Biasing the sampling toward
the center of k-space increases reconstruction error. In this case,
the high-resolution components, which are important to sparse
microfluidic acquisitions, are lost. While our optimization here is
empirical, our results illustrate the potential of achieving higher
levels of subsampling by rigorous optimization of the sampling
scheme to take advantage of the prior information about microflu-
dic geometry.

3.5. Iterative thresholding

Lastly, we demonstrate in Fig. 7 the results of the iterative
thresholding reconstruction scheme with a priori masking, which
was used as an alternative but substantially equivalent reconstruc-
tion scheme. The results in Fig. 7 illustrate equivalent convergence
after 50 iterations of the algorithm.

4. Conclusions

We have demonstrated a method to acquire and reconstruct
MRI images of microfluidic devices for which there is some prior
knowledge of the flow geometry. Logical extensions of this tech-
nique include the encoding of chemical information in microfluidic
chemical assays. In those cases, prior knowledge about the NMR
spectrum may be similarly integrated into the reconstruction to al-
low for a higher degree of subsampling. In all cases, we have not
yet exploited this prior information in the optimal design of sam-
pling schedules or the devices themselves, and this may result in
further savings in acquisition time.
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