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The multiplequantum (MQ) evolution of anisotropic spin systems with four to eight 
coupled protons is analyzed using a computer for the basic three-pulse sequence. MQ 
intensities are first investigated as a function of preparation time. The concept of time- 
independent intensities is then introduced, and an algorithm for efficient computation 
of these quantities is described. A correlation between the distribution of dipolar 
coupling values and the intensity of highquantum lines is discussed; in many cases, 
these intensities are predicted to be considerably larger than a simple statistical argument 
would suggest. The effect of varying the preparation and detection times independently 
is analyzed as a random walk problem. o 1984 Academic mess, hc. 

INTRODUCTION 

The conventional Fourier transform NMR experiment involves the creation and 
detection of single-quantum (m = 1) coherences. In recent years, however, 
multiple-quantum FI NMR (Z-8) has opened new and uncharted regions of density 
matrix for exploration and development. Various groups have employed this new 
technique to study molecular conformation and motion (9-1Z), connectivities (12), 
relaxation (23-Z8), chemical shielding tensors (2, 19), and CIDNP (20). Additionally, 
MQ NMR has been used to analyze complicated isotropic spectra (22-23) and to 
overcome magnet inhomogeneity (24). Advantages include the ability to simplify 
complex spectra yet retain important structural information and the ability to isolate 
small, “interesting” parts of the Hamiltonian. 

In this paper, we attack the problem of multiple-quantum intensities for coupled 
spin- l/2 systems. These intensities are of interest for several reasons. One is a 
practical consideration: can the higher-order transitions of use in the analysis of 
molecular structure and motion be excited with reasonable or at least detectable 
efficiency. A second reason is the importance of intensities in the determination of 
coupling constants and chemical shifts from experimental MQ spectra. An iterative 
least-squares fitting program (25, 26) can be used to generate multiple-quantum 
frequencies; calculation of the corresponding intensities can then confirm or throw 
doubt on the simulation. Finally, a third reason for studying MQ intensities is to 
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probe the relationship between exact quantum-mechanical dynamics and statistical 
behavior in multispin systems. 

Our focus will be on molecules with four to eight protons dissolved in nematic 
liquid crystal solvents. For these multispin systems, a computer is necessary for 
calculation of the exact spin dynamics because matrices of interest range upward in 
size to 256 by 256 elements. The simplest three-pulse MQ experiment is analyzed 
here in detail. After some mathematical preliminaries and a look at zeroquantum 
selection rules, the growth of multiple-quantum coherence is studied as a function 
of preparation time T and the value of A&C The effect of averaging spectra with 
different preparation times is considered, which leads to a calculation of T- 
independent intensities. Finally, the effect of varying the preparation and detection 
times independently is investigated. 

A subsequent paper (27) will extend this analysis to pulse sequences designed to 
selectively excite particular orders of multiple-quantum coherence. 

BACKGROUND 

Let us begin with the traditional flourish of Hamiltonians. For a system of N 
coupled spin-l/2 nuclei in an anisotropic medium, the Hamiltonian in the rotating 
frame comprises four terms (28): 

where 
PaI 

ZD = g DjJZzJzk - k (I.xJ.xk + Iy$yk)] (direct dipolar couplings) [ 1 b] 
jck 

&“J = 5 JjkIj ’ Ik (indirect J-couplings) [lcl 
j-zk 

(relative chemical shifts) 114 

2?ofl = -AoI, (overall offset frequency). &I 
The energy levels of .%’ are divided into N t 1 manifolds, each corresponding to a 
different value of the Zeeman quantum number M and containing N/(ZV/2 + M)!(iV/ 
2 - M)! states. Splittings within all but the extreme Zeeman manifolds are due to 
the coupling and chemical-shift terms in X”. The number of possible transitions 
drops sharply as Ai%f increases. 

The simplest multiple-quantum pulse sequence contains three pulses (3, 5, 19) 
(Fig. la). Two pulses separated by a time 7 are necessary to create multiple-quantum 
coherences, which then evolve for a time tl. Because these coherences do not 
generate a rotating magnetization, they are not directly measurable. Hence a third 
pulse is needed to transform multiplequantum coherence back to single-quantum 
coherence, which is detected after an additional delay t2. One point is taken for 
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periods remove effects of the offset Hamiltonian, permitting even-odd xkctivity for systems without 
chemical-shift differences. (c) In this TPPI sequence, the incrementation of preparation pulse phase as ti 
is increased separates different MQ orders. No rf frequency offset is then needed during evolution; hence 
a rr pulse can be added to eliminate inhomogeneous line broadening. 

each incremented value oft, ; the resulting MQ free induction decay is then Fourier 
transformed to yield the multiple-quantum spectrum. Different multiple-quantum 
orders (hM = 1, 2, 3, etc.) can be separated in this spectrum by an rf frequency 
offset (2, 5), by time-proportional incrementation of the preparation pulse phase 
(TPPI) (6, 16), by coherence transfer echoes (29), or by combining phase-shifted 
spectra (4, 19). The TPPI sequence is diagrammed in Fig. lc. 

A few assumptions will simplify the analysis of the three-pulse sequence. We will 
assume that l(Z,.fll % 11&“(1, so that the internal Hamiltonian can be neglected during 
pulses. Each pulse can thereby be described in terms of a flip angle fl and an rf 
phase #I. We will deal almost exclusively with 90” flip angles. The first pulse will 
generally be chosen to be a 9Oy pulse (4 = -9O”), rotating L?Iz, the initial reduced 
equilibrium density matrix [fi = (ti~.4kT)(2-~)] to /31,. Additionally, the rf detector 
in the rotating frame will be assumed to measure magnetization proportional to I,. 
We will ignore relaxation effects since T and f2 are generally less than T2 for the 
proton systems of interest. Finally, for simplicity we will assume a perfectly 
homogeneous magnetic field. 
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PROPERTIES OF THE PREPARED DENSITY MATRIX 

Consider the preparation pulse sequence 9Ojk-90~ applied to an initial density 
matrix proportional to I,. The propagator for this sequence is 

U = exp 
( > 

i 5 I, exp(-WT) exp 
( > 

-i 5 Iy = exp(--iflg), PI 

where XX is a rotated Hamiltonian: 

&“, = 5 Djk 
[ 

IxjlX - i (Zyjly + Iljlrk) 1 + 5 JikIj* Ik + g UJxj + AwI~ Pal 
j-zk j-zk j 

-2Yn+ Ct~il,i+AwI,. Pbl 

(Bilinear spin operators are lumped into X=.) The prepared density matrix 
immediately following the sequence is given by 

pp = ugr,ut = ,-i;r*r~I,i~fl. [41 

In general, RX contains zeroquantum, onequantum, and two-quantum operators, 
and the complex exponential can yield matrix elements of P corresponding to all 
multiple-quantum orders. 

Consider now a system with no chemical shifts. If Aw = 0 (either by setting the 
rf frequency to the center of the spectrum or by adding a 180’ pulse in the middle 
of the preparation period, as in Fig. lb), then 

flp = ,-iX~fl~zNiZti. PI 
The propagator contains only even-quantum matrix elements and hence only even- 
quantum coherences can be prepared (19). Similarly, the sequence 90x-7-90~ 
applied to pZ= (equivalent to a 9OF7-90~ sequence applied to the singlequantum 
operator PI,,) prepares only oddquantum coherence. 

When Aw # 0, the prepared density matrix oscillates between even- and odd- 
quantum selectivity. Since [R’,, IX] = 0, the propagator in Eq. [4] is separable and 

@P= e- in;ne-iAoI*rar=ei~t~ei~~ [6al 
= cos Awr ePiXM/3Z,eiXfl - sin Awr e-iKxrr/3Z,&Xn, WI 

where the first term in Eq. [6b] is even-selective and the second is odd-selective. 
It is also of interest to investigate the effect of a spin-inversion operator on P. 

Define II as C’*‘“, the propagator for a 180x pulse. Z, commutes with XX, so 
ntpn = e-i~flntzznei~fl 

=e -i.y -QeWfl 

=- P. 

In terms of a single matrix element, 

qk = ($jld$k) = -($jlntPnl$k) = -(fl$jIPln#k)* 

[71 

PI 
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In certain cases, III$k) will itself be an eigenstate &r) of 3’. Two such cases are as 
follows: 

(1) When the internal Hamiltonian is purely bilinear (A?’ = &“n + A?.J, it 
commutes with II. For all $~k, 

mwk) = wwk). 191 
(2) For any Hamiltonian, the effect of II on the lone it4 = N/2 eigenstate 

I+++* * * +) is to flip all the spins, creating the lone M = -N/2 eigenstate 
I---...-). 

The frequency okk of a spin-inversion transition is independent of any bilinear 
term in the Hamiltonian (8). Thus in a system with no chemical-shift differences, 
each transition lk) to Ik) occurs with frequency (Mk - Mi)Ao, simply a multiple 
of the effective rf offset. For N spins, these spin-inversion transitions [also called 
class 1 coherences (I6)] lie at the center of the (N - 2n)quantum spectra (n = 0, 
1,2* * . ) and provide no information on AYinkmd. Moreover, in these systems the 
spectrum of each MQ order is symmetric about its center at AMAw, since 
(Ojk - AMAW) = -(w&j - AMAW). 

A second property of spin-inversion transitions concerns the phase of the prepared 
density matrix element Pa following a 909-7-90~~ or 90x-~-90~ sequence. From 
Eq. [8], if spin-inversion pairs exist, then Pjk = -P;k. In particular, for a spin- 
inversion transition jk) to ]k), P& = -Pkk. Since P is Hermitian, Pkk must always 
be purely imaginary, no matter what the value of T. In any system, therefore, 
statement (2) above implies that the highest quantum coherence is quantized along 
one axis of the complex plane, and its evolution is characterized by pure amplitude 
modulation (3, 16). In systems without chemical-shift differences, each eigenstate 
with M # 0 belongs to a spin-inversion pair, so the number of coherences restricted 
to one axis is 

f PNl for N odd, 

i[2N - (;2)] forNeven. 

ZERO-QUANTUM SELECTION RULES 

Spin-inversion properties give rise to additional selection rules for zero-quantum 
transitions between M = 0 states when N is even and A?’ contains no chemical-shift 
differences. Then eigenstates of X’ and Z, can be chosen to be eigenstates of II as 
well, with eigenvalues of +l (gerude) or -1 (ungerude) (30). Since (Icj.]fi$k) 
;re-~$~~+k). t ransitions between M = 0 states with the same eigenvalue of II 

It should be stressed that these spin-inversion selection rules depend on the flip 
angle B of the second preparation pulse. We have focused thus far on B = 90”. 
When B = 45”, however, it is possible in systems with no chemical-shift differences 
to select either the g * u or the g e g, u w u M = 0 zero-quantum transitions 
merely by adjusting the rf phases. 
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Consider first the preparation pulse sequence 45x-7-452 applied on resonance to 
such systems. (The flip angle of the first pulse is set here at 45” to simplify the 
analysis; experimentally, a 90” pulse would be used to maximize the MQ signal.) 
The effective preparation Hamiltonian for this sequence is 

[lOal 

J<k 
zd5 commutes with II; if 

bp = e-iX45rpzpiZ45s, 

then II+PII = -P, as in Eq. [7]. 

Wbl 

[Ill 

In comparison, the pulse sequence 45&7-45X is equivalent to the previous x, X 
sequence acting on an initial density matrix proportional to Z,. In this case, 

pp = e-iY45rfi~xi-T45r [Ql 
and 

ntpn = e-i~4sqt~x~eiX45r = pa iI31 

Thus the first sequence prepares transitions between M = 0 states with different 
eigenvalues of II, whereas the second sequence prepares transitions between M = 0 
states with the same eigenvalue of II. Note that because ,X45 contains both even- 
quantum and odd-quantum operators, neither sequence results in the even-odd 
selection described earlier for 90” pulses. 

Figure 2 displays the gerude-ungerude selectivity in the zero-quantum spectrum 
of oriented benzene (D12 = -8 17.1 Hz). For the spectrum in Fig. 2a, the pulse 
sequence used was 

90x-i ~-180x-; s-45~-&45~-; T- 180x-i 7, 

where the ?r pulses simply remove any Aw offset. For the spectrum in Fig. 2b, the 
45x pulses were changed to 45~ pulses. In each case, magnitude spectra corresponding 
to seven different values of T between 4 and 16 ms were averaged together. The 
magnet homogeneity was sufficiently poor that only zeroquantum transitions 
appeared as sharp lines (4); hence, no special techniques were needed to separate 
MQ orders. 

Lines present in both spectra are due to zero-quantum transitions between states 
with M # 0. Lines which appear solely in the first spectrum are due to g c* u 
M = 0 transitions; the g * g and u t-* u transitions show up in the second spectrum. 
The simulations accompanying the experimental spectra are exact calculations for 
the actual values of T that were used. 

AN EXPRESSION FOR MULTIPLE-QUANTUM INTENSITY 

Before discussing our computer results, we will first rewrite the prepared density 
matrix in a form more convenient for computation. The pulse sequence to be 
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(a) 90x, 45x 

(b) 90 x, 45 y 

I II I I 
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FIG. 2. Gerade-ungerade selectivity in the zero-quantum spectrum of oriented benzene. Each spectrum 
is an average over Seven T values from 4 to 16 ms, as are the accompanying simulations. (a) An on- 
resonance 90x-~-45x preparation sequence excites g ++ u M = 0 transitions. (b) In contrast, an on- 
resonance 90x-7-45~ sequence prepares g * g and u ++ u transitions. Zero-quantum lines involving 
states with M # 0 appear in both spectra. 

considered is 90~-+90y-tl-90~-t2. The density matrix at the moment of detection 
may be written as 

dh ; 7, t2) = e 
-i~tze-i(r/2)I~e-iKI~ei(~/2)I,,-~~ 1 

BH 
i;Pre-i(*/2)lyei~fIei(*/2)Iyei~12 * [I41 

If R is the orthogonal transformation (or matrix of eigenvectors) which diagonahzes 
x”, 

&“=RERt (E diagonal), [I51 

we may define X = RtIxR as Z, expressed in the basis set of 2, and A = Rt 
X exp(-i(*/2)I,))R as the pulse propagator in the basis set of 2. X and A are both 
real matrices and X is symmetric. With these definitions, 

P(tl ; 7, t2) = ~Re-‘E’2Ae-‘E~~Ate-‘E’Xe’E’Ae’E’1Ate’E’2t. 1161 

The signal s(t, ; 7, f2) equals Tr{pl,}. Now introduce P(T) as the prepared density 
matrix and Q(t2) as the “devolved detection matrix”-Z, taken backwards in time 
to the start of the detection period. We write both in the basis set of SE 

p = Ate-iErXeiErA [17al 
Q = AteiE’2Xe-iEY2A* [17bl 
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In terms of these matrices, 

s(tl; 7, t2) = /3 Tr{e-iEflPe’E”Q} = @ 2 Pj&,ei(Ek-‘)f’e 1181 

Fourier transforming with respect to the evolution time tl yields the multiple- 
quantum spectrum: 

s(W; 7, f2) = fl 2 PjkQk$(O - ukj). 

j,k 
[191 

The intensity of each multiple-quantum line is thus determined by the product 
of the two complex matrix elements, with 

pik = 2 AjtdYabAbgiWbr 
a,b 

WI 

and 

(B, a real matrix, is different for each transition lj) to Ik). For convenience though, 
we will not include an explicit j, k label.) Because X is a single-quantum operator, 
IMl - k&,1 = 1 and the frequencies 6&o correspond to symmetry-allowed single- 
quantum transitions. These dephase during the preparation period and rephase 
during the detection period. 

When r = t2, Pj&) = f&&2) and the intensity and phase of a transition 1 j) to 
Ik) are given by 

This quantity is in general a complex number (except for spin-inversion transitions, 
for which Sk/; is always real and negative); thus the multiple-quantum spectrum 
contains lines with many different phases (Fig. 3a). In comparison, the intensity of 
a single-quantum transition in the usual m experiment iS fixjfk; barring eXpeIimentd 

misadjustments, all lines have the same phase. 
With a more complicated pulse sequence, it is possible, at least in theory, to 

generate a multiplequantum spectrum with all lines in phase. If r were made equal 
to -t2 by some time-reversal sequence (31) applied during preparation, then Pjk 

would equal @j and for all transitions I j) to Ik), 

sjk = 8lekl’* La 
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a Fourw transform of sIgnal 
(two buffers) 

b Magnitude spectrum 
(one buffer) 

n=O n=I n=2 n=3 n=4 n=5 n=6 

FIG. 3. The multiple-quantum spectrum of oriented benzene (14 wt% in Eastman nematic liquid crystal 
#15230) at 24.0’ with 7 = I2 = 10 ms and Aw = 500 Hz. The wide range of MQ phases apparent in (a) 
makes analysis difficult. The magnitude spectrum in (b) shows only slight broadening and is much more 
informative. 

Time reversal (which may involve literally hundreds of pulses) is fortunately not 
necessary in many cases. Lines in the proton spectra of molecules dissolved in 
liquid crystals are narrow (3- 10 Hz) in the absence of exchange and do not overlap 
in the interesting higher-quantum regions. A magnitude spectrum can therefore be 
calculated as in Fig. 3b (creating some line broadening due to dispersive tails) or 
each line can be phased individually. For tz = r, the resulting intensity of each 
transition 1 j) to Ik) is again @IPjkl’. We therefore will focus on magnitude spectra 
obtained without time reversal. In solids, however, the existence of intermolecular 
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dipolar couplings gives rise to a continuum of transitions, and significant cancellation 
of intensity will occur if time-reversal sequences are not used (32). 

COHERENCE MAGNITUDE AS A FUNCTION OF PREPARATION TIME 

From EZq. [ 191 it is apparent that the intensities of multiple-quantum lines depend 
on the values of T and t2. For example, the calculated multiple-quantum magnitude 
spectra of oriented benzene for T = t2 = 0.25, 5, and 100 ms are displayed in Fig. 
4. Lines appear and disappear as the preparation and detection times are varied. To 
avoid missing a line due to an unfortunate choice of 7 and t2, magnitude spectra 
for different values of T and t2 can be averaged together, as in Fig. 5. Parameter- 
proportional phase incrementation (PPPI) (33) or comparable techniques (34, 35) 
can be used to quickly find an optimal set of 7 values. 

We have also computed, again for oriented benzene, the average prepared 
coherence magnitude fllPjkl for each multiple-quantum order as a function of T. To 

(a) T = 0.25 msec 

(b) T = 5 msec 

Cc) 7 = IOOmsec 

I .,r,llr,. Al&. I L/I I I , I 
0 I 2 3 4 5 6 

AM 

FIG. 4. Three calculated magnitude spectra for oriented benzene. The molecule was assumed to be 
hexagonal, with rapid reorientation about the C, axis. 012 was chosen to be -817.1 Hz, and isotropic J- 
coupling values were used. In the top spectrum, T and I* are too short for higher-order transitions to be 
prepared or detected. 
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AM=0 AM=l AM=2 AM=3 AM=4 AM=5 AM=6 

a) 

k 
IL 

b) 

0 AW ZAlAl 3Aw 4Aw 5AW 6Aw 
Frequency 

FIG. 5. The multiple-quantum spectrum of oriented benzene, averaged over four values of T = tz (4, 6, 
8, and 10 ms). (a) Experiment, (b) simulation with broadening, (c) stick simulation. [Spectrum (a) 
reproduced, by permission of the publisher, from W. S. Warren, D. P. Weitekamp, and A. Pines, J. 
Chem. Phys. 73,2084 (1980).] 

avoid even-odd selectivity, the two preparation pulses were chosen to differ in phase 
by 45”. Three such plots are displayed in Fig. 6. For the lower-quantum orders with 
many allowed transitions, the averaged coherence magnitude per transition is largely 
independent of 7 after an initial “incubation” period [given roughly by (2x7) 
X (average dipolar coupling D in hertz) = 7r/2 or 7 w (4B))’ = 570 PS in this 
case]. The single six-quantum coherence naturally shows greater oscillation but is 
also more intense on the average than a lower-order transition, as will be discussed 
later. 
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FIG. 6. Average prepared coherence magnitude PIP& as a function of 7 for oriented benzene. The 
preparation sequence contained two x/2 pulses with a relative phase of 45”, and Ao was assumed to 
be zero. 

The normalized short T behavior of prepared benzene coherence is presented in 
Fig. 7. (Again the two preparation pulses differ in phase by 45” to avoid even-odd 
selectivity.) For T = 0, only single-quantum coherence can be created; as 7 increases, 
other orders of coherence appear. Higher-quantum transitions, in a sense more 
forbidden, require more time to be pumped. This dependence on 7 can be quantified 
by expanding the prepared density matrix in a power series and evaluating 
commutators, as detailed in Ref. (36): 

1241 

(p. can be /31Z or PI,, depending on the phase of the preparation pulses.) Alternately, 
one can expand Eq. [20] and use the computer to calculate the (Pjk)n terms: 

Pjk = (Pj/JO + i(Pj/J 17 - 5 (Pj/J*T* + ’ ’ * VW 

a& 
The first nonzero commutator or (Pjk)n term in the expansion determines the growth 
of coherence magnitude for short 7 values. The exponents describing the 7 power 
dependence of prepared coherence magnitude for different values of AM are listed 
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0 
r (psec) 

600 
FIG. 7. Average prepared coherence magnitude at short values of T for oriented benzene, with the same 

type of pulse sequence as in Fig. 6. The height of each curve has been nonnaked, and the T power 
dependences calculated for the coherences match the values in the last column of Table 1. All orders of 
coherence are present when 2rlblr = r/2 or 7 = 570 1s. 

in Table 1. The 7 power exponents for MQ spectral intensity in a t2 = 7 experiment 
would be double these numbers, since the effects of both preparation and detection 
must be included, 

As an added feature of Table 1, the anisotropic spin systems we have been 
considering are compared with isotropic liquid systems. The fundamental difference 
between the two is the existence of nonscalar dipolar couplings in anisotropic 
systems. These couplings greatly facilitate the creation of multiple-quantum coherence; 
not only are they roughly 100 times larger than the J-couplings present in liquids, 
but their very form is such that lower powers of 7 are sufficient to produce coher- 
ence (36). 

STATISTICAL-LIMIT INTENSITIES 

We turn now to the question of line intensities in the limit of a spectrum averaged 
over all possible values of 7. Such a spectrum should contain the “intrinsic” 
intensity for each line, free from the distortions due to a limited range of 7 values. 

The simplest estimate of T-independent intensities is to assume that in the limit 
of long preparation times each symmetry-allowed coherence in the prepared density 
matrix will have the same magnitude but random phase. In this statistical limit, all 
symmetry-allowed transitions are excited equally (19). Figure 8a displays the 
statistical-limit multiple-quantum magnitude spectrum for benzene. Such spectra 
are easy to calculate but ignore the fact that some transitions are inherently stronger 
than others. In particular, these spectra often underestimate the intensity of higher- 
quantum lines, as will be discussed later. 
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TABLE 1 

Dependence on r of Multiple-Quantum Coherences Produced by the Sequence 90+-r-90~ 

Initial r power dependence 

AM qj zz -90”” 4 = 00” Q = -45”h 

Anisotropic systems 0 2 1 1’ 
1 1 0 0 
2 1 2 1 
3 3 2 2 
4 3 4 3 

n (even) n-l n n-l 
n (odd) n n-l n-l 

Isotropic systems 0 2 1 1 
1 1 0 0 
2 3 4 3 
3 5 6 5 
4 I 8 I 

n (even) 2n - 1 2n 2n- 1 
n (odd) 2n - 1 2n 2n- 1 

(1 For systems without chemical-shift differences, d = -90” is even-selective and 6 = 0” is 
odd-selective when Aa = 0. 

b Q = -45’ is equivalent to a superposition of 6 = -90” and 6 = 0” results. 
‘In systems without chemical-shift differences, only even-selective terms can prepare zero- 

quantum coherence. For these systems, the appearance of zero-quantum coherence is therefore 
proportional to r*. 

For the 7 = t2 MQ experiment, the total magnitude spectrum intensity plus the 
sum of the squares of the associated populations is given by 

j,k 

Since the trace is invariant to unitary transformations, 

Tr{P’} = Tr{lZ} = N2CN-2). [271 

The number of density matrix elements is 22N (coherences plus populations). The 
statistical-limit intensity per transition in multiples of @ is thus IIC?-‘~‘~’ and the 
statistical-limit value for coherence magnitude lpjkl is just the square root of this 
number. 

The integrated spectral intensity per order is merely the intensity per transition 
times the number of allowed transitions. For nonsymmetric systems, the number 
of N-quantum transitions is given by the following expressions (13): 

for AM # 0, 

for AA4 = 0, 
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a) Statrstlcal model 

bl Ultimate Taverage 

AM=0 AM=l AM=2 AM*3 AM=4 AM=5 AM=6 

FIG. 8. Two T-independent spectra calculated for oriented benzene. (a) The statistical-limit spectrum, 
in which every allowed transition is weighted equally. (b) The ultimate T average spectrum. 

or roughly 

for AM # 0. 

The integrated statistical-limit intensities per order in nonsymmetric four-, six-, and 
eight-spin systems are listed in Table 2. It can be seen that the statistical model 
suggests that simple nonselective excitation of highquantum transitions will be very 
difficult to achieve. 

For systems with symmetry, a more accurate approach is to calculate the 
statistical-limit intensity for each representation, equal to the initial magnetization 
B Tr(l$) available to the representation divided by the number of elements in its 
reduced density matrix. This procedure is appropriate because each representation 
is in essence a separate system and evolves independently. 

As an example, the A, representation of benzene contains thirteen states-one 
with M = 3, one with it4 = 2, three with M = 1, and three with A4 = 0, plus 
equivalent totals for M < 0. Hence 
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TABLE 2 

Integrated Statistical-Limit Intensities vs Multiple- 
Quantum Order for Systems without Symmetry 

in Multiples of fi = (hudkT)(2-N) 

Ah-f 8 spins 6 spins 4 spins 

49.21 10.08 1.688 
89.38 18.56 3.500 
62.56 11.60 1.750 
34.13 5.156 0.500 
14.22 1.541 0.063 
4.315 0.281 
0.938 0.023 
0.125 
0.008 

Tr(lZ) = 2[1 e(3)’ + 1 l (2)2 + 3~(1)~] = 32, m 
and the symmetry-adjusted intensity per Ai transition is 

& /3 = 0.1898, 

8.08 times the simple statistical-limit value of 0.0235/3 for a six-spin system. 
In general, the number of symmetry-allowed coherences drops considerably when 

the overall density matrix is partitioned according to representation. As a result, the 
intensities of all remaining transitions are several times greater than the simple 
statistical-limit value of /3ZW (‘v+2). Different representations often have different 
average intensities, but for a given molecule these intensities vary by less than a 
factor of two or three. Hence, when plotted to the same height, the simple and 
symmetry-adjusted statistical-limit spectra for oriented benzene are comparable in 
appearance. The major difference is that the E-representation lines are smaller in 
the symmetry-adjusted spectrum, especially the E2 lines. 

ULTIMATE T AVERAGE INTENSITIES 

Another way to generate T-independent intensities, for t2 = 7, is to actually 
average the T-dependence contained in the expression for the magnitude of a given 
line. This “ultimate” T average can be derived as follows. From Eq. [22], 

(IS’,d), = P(lPjk12), = P(VWQ)12 + bU’jd12),. 1301 
Using Eq. [20], 

and 

Re(Pjk) = 2 Bab COS Wba7 
a,b 

Wal 

Illl(Pjk) = C &b sin &&7; 
a,b 

Plbl 
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= @ 2 & + P c' c' &t&w, ~321 
a,b o,b o’,b’ 

where the second set of summations is restricted: Wba must equal ~ti,+ and Bib terms 
are excluded. 

Except for accidental degeneracies, there are only three circumstances for which 
single-quantum frequencies &&a and wb laS would be expected to be equal. The first is 
the case of degenerate eigenstates in multidimensional irreducible representations, 
such as the doubly degenerate El or E2 states of benzene. Calculations indicate, 
however, that the sum over all Bafiolp terms associated with the transitions between 
two sets of degenerate states is always zero. 

The second cause for overlap of single-quantum frequencies is the existence of 
spin-inversion states. In this case w& = tibn and 

(@j/cl), = @ 2 Bib + @ c &d&a. 1331 
4 o,b 

Bcb can be shown to equal Bab for AA4 even and -&b for AA4 odd; hence 

for even-quantum transitions (ISj,J), = 2/3 C Bzb, 
oh 

P4al 

for odd-quantum transitions (I$&, = 0. WI 
This result is merely a manifestation of the even-quantum selectivity of the 90+- 
90~ preparation sequence applied to systems with purely bilinear Hamiltonians. 
With the more general sequence 

90jk-904-t,-90~-T (6 = p + 4), 

the dependence of the ultimate T average on the phase of the second and third 
pulses for these systems is as follows: 

for even-quantum transitions (IS& = 2/3 cos’ f$ C Bzb, 

for odd-quantum transitions (I.!$& = 2j3 sin2 4 k Bzb. Wal 
a.6 

To avoid the effect of even-odd selectivity when analyzing systems with no chemical- 
shift differences, we will choose 4 = 45”, for which simply 

(ISjA), = B C Bib* [361 
a,b 

The third al%? for overlap of frequencies &b and wvaS is the extra single-quantum 
degeneracy in certain highly symmetric systems, such as DZ or Go four-spin systems 
with D = 0 or with no J couplings. Only for these special cases must the sum over 
Ba&pw terms actually be calculated to obtain the correct intensity. 

When the BJlasb terms can be ignored in Eq. [22], the computation of ultimate 
T average intensities is greatly simplified. If we let AI,,, = A?, and XI,,, = Xg, the 
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r-averaged intensity of any transition 1 j) to Ik) is given by a matrix element 

This calculation requires no more multiplication than the calculation of S’k for a 
single value of 7: roughly 2 l 22N + 2 * 23N real-number multiplications for a general 
N-spin system once A and X have been computed. {As a comparison, the use of 
Eq. 1361 for every transition would entail [(22N - 2N)/2] - [2 * 23N] or approximately 
25N multiplications.} The ultimate r average spectrum for most systems can thus 
be generated much more quickly than an average over a number of discrete r 
values. 

Figure 8b displays the ultimate T average spectrum of benzene. Although both 
this spectrum and the statistical-limit spectrum simulate the general features of the 
experimental results, the ultimate r average approach more correctly predicts the 
intensity of individual lines. All transitions are not pumped equally; in particular, 
the lone six-quantum transition is appreciably stronger than an average isolated 
lower-quantum transition. 

Figure 9 compares the experimental MQ spectrum of an eight-proton cyanobi- 
phenyl liquid crystal (kindly supplied by Steven Sinton) with statistical-limit and 
ultimate T average simulations. Of the two, clearly the ultimate T average spectrum 
more accurately models such experimental features as the bimodality of the one- 
quantum region, the side peaks of the twoquantum region, and the enhanced 
intensity of the higher-quantum lines. That these latter transitions are in fact more 
intense than the ultimate 7 average calculation would predict reflects a choice of 
experimental r values fortuitous for the creation of high-quantum coherence. 

Ideally, ultimate r average intensities should match those obtained experimentally 
by averaging over a very large number of discrete T values, but three possible 
problems with the ultimate method should be noted: (1) Overlapping transitions 
always add coherently as a sum of magnitudes rather than incoherently as a sum of 
complex values. (2) In the derivation of Eq. [32], it was assumed that each 
cos* wbar and sin2 wbpr term is averaged to l/2, which will not be the case 
experimentally if cobaT: d 1. (3) The effect on intensities of a ?F pulse in the 
evolution period for a system with chemical shifts cannot be included. Nonetheless, 
these simulations can be used to quickly estimate the intrinsic strength of transitions 
and provide an efficient way of exploring intensity as a function of coupling and 
chemical shift parameters. 

HIGHER QUANTUM SELECTIVITY IN THE ULTIMATE ‘T AVERAGE 

It is worthwhile to study the ultimate 7 average intensity per transition as a 
function of multiple-quantum order. Results for a number of molecules are listed 
in Table 3. In each case, the integrated intensity per MQ order decreases as Lt4 
increases, but the average intensity per transition is greater for larger U. This 
increase in intensity per transition is most pronounced for systems possessing a high 
degree of symmetry or for systems whose dipolar couplings are similar in value, for -- 
which the quantity d = Dijl(D$)“* is close to 1.0. 
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a) Experiment 

b) Ultimote T overage 
simulation 

c) Stotstlcol model 

AM:0 I 2 3 4 5 6 7 8 

FIG. 9. (a) The proton TPPI MQ spectrum of a nematic n-pentyl-di,-cyanobiphenyl liquid crystal. Six 
individual spectra with 7 values ranging from 4 to 14 ms were averaged together. The eightquantum line 
does not appear due to the choice of TPPI parameters, and the center line in the seven-quantum region 
is a TPPI artifact. (b and c) Two r-independent simulations assuming 0, spin symmetry. In all three 
spectra, the strongest zero-, one-, two-, and four-quantum lines have been clipped to better emphasize 
the overall lineshape. [Spectrum (a) reproduced, by permission of the publisher, from Ref. (II). The 
entire figure also appears in Ref. (S).] 

To understand further the nature of this inherent highquantum enhancement, 
consider the case of N magnetically fully equivalent spins in an anisotropic 
medium-an example would be the fluxional ten-spin molecule bullvalene dissolved 
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TABLE 3 

Ultimate 7 Average Intensity vs Multiple-Quantum Order for Various 
Molecules in Multiples of j3 = (h,/k~2-N) 

Benzene 
Cyclo- Cyclo- 2,5-Dichlore 4,4’-Disubstituted 

propan pcntadiene’ acetophenone’ biphenylb 

D /(P)“? II t, 0.777 0.567 0.028 0.225 0.519 0.080 

AM=0 
1 
2 
3 
4 
5 
6 
7 
8 

AM=0 
I 
2 
3 
4 
5 
6 
7 
8 

4.354 5.006 6.632 6.917 
17.08 17.36 17.56 Il.32 
11.72 12.19 11.83 11.58 

6.007 6.002 5.820 6.039 
3.289 3.020 2.602 2.388 
0.909 0.642 0.625 0.640 
0.605 0.379 0.164 0.126 

Intensity per transition 

0.109 0.132 0.060 0.05 I 
0.147 0.152 0.072 0.060 
0.148 0.158 0.073 0.063 
0.177 0.177 0.075 0.069 
0.274 0.252 0.093 0.075 
0.455 0.32 I 0.104 0.080 
0.605 0.379 0.164 0.126 

Integrated intensity 

33.06 29.69 
83.89 83.92 
62.62 63.16 
36.59 36.87 
20.09 20.49 

6.920 6.782 
3.25 I 3.083 
0.594 0.432 
0.354 0.223 

0.029 0.020 
0.038 0.029 
0.040 0.03 I 
0.043 0.034 
0.053 0.043 
0.060 0.048 
0.108 0.086 
0.148 0.108 
0.354 0.223 

u Coupling constants from Ref. (28). 
b Coupling constants from Ref. (II). 
‘Coupling constants courtesy of G. Drobny, private communication, for the all-rrans configuration. 

in a liquid crystal (37). For such a system with unique dipolar coupling constant D 
and indirect spin-spin coupling constant J, d = 1.0 and 

The second term describes scalar coupling between equivalent spins and has no 
effect on the spectrum (38). The remaining terms commute with 12; hence the 
eigenstates can be separated into representations labeled by the value of Z(Z + 1). 
As an example, the states of a four-spin system of this type divide into one quintet, 
three triplets, and two singlets (39). The number of allowed transitions is thus 
greatly reduced. In particular, there can be no zeroquantum transitions. 

Line intensities can be calculated using the effective preparation Hamiltonian 
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The two terms of XX commute, so 

/3P = fl{exp( -i g Or s ZxJ,.k)}ccos Awr Z, + sin Awr Zy) 
j<k 

This expression can be evaluated using the relationships 

. [401 

and 

The prepared N-quantum coherence, given by the coefficient of n:, Z+i, is 

(- g(cos Awr)[ sin( T)r-” 

(9 (sin Awr)[ sin( y)l@-” 

for N even, 

for N odd, 

The T-averaged intensity for the N-quantum transition is 

(2N - 2)! 
BN2(k)2N+’ (N - l)!(N - l)! * 

Wal 

Wbl 

t431 

Table 4 presents these T-averaged Nquantum intensities for several different values 
of N. Also included are computer-calculated values of T-averaged integrated intensity 

TABLE 4 

Integrated Ultimate 7 Average Intensities vs Multiple- 
Quantum Order for Equivalent-Spin Systems 

in Multiples of fl = (hwJ~T)j2-~) 

AM 8 spins 6 spins 4 spins 

0 0 0 
76.95 16.10 3.125 
47.61 9.580 1.750 
36.33 6.504 0.875 
27.18 4.770 0.625 
12.73 1.395 
10.21 1.107 
1.998 
1.676 
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for lower multiplequantum orders of these equivalent-spin systems. When N = 8, 
note that the integrated onequantum and Nquantum intensities differ only by a 
factor of roughly 46; for a general eight-spin molecule, the difference would be a 
factor of 11,440 in the statistical limit. 

Now return to the problem of a general N-spin system with arbitrary Dij’s. Let D 
be the average value of the N(N - 1)/2 dipolar couplings. The dipolar Hamiltonian 
can be written as 

where the second term preferentially pumps higher quantum transitions. In going 
from a symmetric to a nonsymmetric system, this term will become less important 
and the integrated intensities of these higher quantum spectral regions will drop. 
However, the number of allowed lower quantum transitions increases rapidly as the 
symmetry is reduced, especially in the one- and two-quantum orders. Thus the 
T-averaged intensity per transition is greater for large AM, even in completely 
general systems. 

To illustrate this, we have calculated ultimate 7 average intensities for nonsymmetric 
four-spin systems as a function of fi, the average value of the dipolar coupling. For 
each system, six dipolar couplings were generated randomly between +-lo00 Hz, 
and a constant value was added to each to fix the proper D. Figure 10 displays the 

.E 0.6/3- 
C 
z 
E 

I- 
z a 
A 

C 
E 0) 

5 0.3p- 

F 
2 
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b 
al 
is zn 
E “1 

.- 
5 --, 

OP 
-2500 0 E 

Average Dipolar Coupling (Hz) 
10 

FIG. 10. Ultimate T average intensity per transition for each MQ order as a function of the average 
dipolar coupling b in random four-spin systems. The arrow marks the statistical-limit intensity per 
transition (the same for all orders and all values of 6). Maximum range of D,k values for each system: 
2000 Hz. 
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resulting intensity per transition for each MQ order as the contribution of the 
average dipolar operator is varied. When D grows large compared to the range of 
dipolar couplings, the average four-quantum intensity naturally approaches its 
equivalent-spin value of 0.6258, or ten times the statistical-limit prediction. The 
average zero-quantum intensity drops toward zero. When d = 1000 Hz, yielding 
dipolar couplings in the range from 0 to 2000 Hz, the four-quantum line intensity 
is 6.5 times greater than the statistical-limit value. 

Curiously enough, even when B equals zero, the four-quantum ultimate T average 
intensity in Fig. 10 is still roughly twice as large as the statistical model would 
predict. This selectivity is due to other residual symmetry effects. For example, the 
r-averaged four-quantum intensity of a hypothetical four-spin C’,, system with no 
chemical shifts or J couplings can be shown, after straightforward but lengthy 
evaluation of the appropriate matrices, to be given by the following formula (40): 

(I&&G”) = ; P ‘:;tr;: I ;;;; 1 ;;y;) , 

where 2) = Di2 = D13 = D23 and w = D14 = Dz4 = Ds4. When b = 0 (u = -w), the 
4Q intensity is 0.3248, or 5.18 times the statistical value. Some of this selectivity 
carries over to general four-spin systems with D = 0. 

Even greater enhancement occurs when the number of spins increases. For 
N = 6, the ultimate T average intensity of the six-quantum transition in a general 
system when B is comparable to the range of dipolar couplings is 27 times greater 
than the statistical-limit intensity per transition. The average five-quantum transition 
intensity is 3.9 times larger than the statistical value. For N = 8, the comparable 
enhancements are 150 and 13. 

To summarize, nonselective excitation of high-quantum lines is, surprisingly, not 
so hopeless a procedure as the simple statistical-limit picture would imply, especially 
for systems with similar dipolar couplings. Even in completely general molecules, 
the residual selectivity of highly symmetric systems carries over and results in often 
sizeable improvement. This bodes well not only for ensemble-averaged MQ spectra 
but also for total spin coherence transfer echo experiments (24) and for symmetry 
selective NMR (35, 41). 

AVERAGE INTENSITIES IN ISOTROPIC SYSTEMS 

Ultimate r average intensities in isotropic systems have also been briefly investi- 
gated. Here Xi, = 0 and thus J couplings are the sole source of spin-spin interaction. 
If multiple-quantum coherence is to develop, there must be chemical-shift differences 
as well; otherwise only single-quantum transitions can be prepared. (This can be 
seen by rewriting Eq. [6b] with XXX equal to zJ: 

PP = cos Awre-iXP@I~ei*fl - sin AwrePiXfl@IJei~” 

= cos AwT/~I~ - sin AwrflI, 

since [XJ, ZJ = [XJ, Iyl = 0.) 

MaI 

Wbl 

The degree of higher-quantum excitation depends on the relative sizes of the J- 
coupling constants and the chemical-shift differences. In the first-order limit 
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([Uj - ukl % Jjk), the N-quantum coherence magnitude can be shown (36) to be 
given by the following: 

i 6 C COS(AW - gj)T fl sin(Jjkr/2) 
j k+j 

i B c sin(Aw - fli>T fl sin(&7/2) 
j k+j 

for ZV even, 

for N odd. 

WI 

Wbl 

(Eq. [47a] reduces to the formula in Ref. (42) for two-quantum coherence in an 
AX system.) The r-averaged N-quantum intensity calculated from these expressions 
is exactly the statistical-limit value. Note, however, that for N-quantum coherence 
to develop after a reasonably short time 7, there must be at least one spin j with 
healthy couplings Jjk to all other spins. (This “cluster coupling” condition is not 
necessary for the creation of N-quantum coherence in anisotropic dipolar-coupled 
systems.) As for lower-quantum lines, computer simulation of first-order systems 
has shown that all transitions are on the average excited equally, in complete accord 
with the statistical model. 

In contrast, for the Strong-COUpling limit (& > JUj - a&, the same sort of higher- 
quantum enhancement occurs as in anisotropic systems. Again the effect is 
most pronounced when the bilinear coupling constants (here the Jjk values) are 
nearly equal. 

TOTAL SPECTRAL INTENSITY WHEN 7 DOES NOT EQUAL tz 

Thus far, only the case of t2 = r has been considered. We will now examine the 
effect on signal intensity of varying 7 and t2 independently. Figure 11 is a calculation 
of the total intensity of the magnitude MQ spectrum of oriented benzene as a 
function of t2 for two different values of 7. Figure 12 displays the total magnitude 
spectrum intensity for benzene over a range of 7 and t2 values. Clearly, there is 
something special, but not spectacular, about t2 = 7. A simple argument follows to 
explain why there is a maximum in total spectral intensity there and why this 
maximum is about 1.27 times the t2 # 7 “baseline.” 

Recall from Eq. [ 191 that the magnitude of a given MQ line can be written as 

Isjkl = @lPjk(T)Qkj(fZ)l- 1481 

The ratio 5 of the total intensity at t2 = 7 relative to the “baseline” is 

[491 

Both numerator and denominator involve the summation of many transition 
intensities for one value of 7. We will assume that the same ratio holds if we look 
at a single MQ transition but average over many values of 7, in a sense substituting 
a time average for an ensemble average. That is, we assert that 
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0 5 
t2 (msecl 

FIG. 11. Total magnitude spectrum intensity as a function of t2 for oriented benzene, divided by the 
number of allowed transitions. In each plot there is a bulge when t2 = T. 

1501 

and concentrate on just a single line. (IP$), is just the ultimate 7 average intensity 
of the transition: 

(IPj2kl), = C B:b. [511 
o,b 

On the other hand, 
(( IPjk(~)Qkj(tdI)n)r = (IpikI)r( IQkjI)tz 

= (I&l),’ 
and hence 

5 = ( Ipik12)7/( Ipjkl)S 
=&+ 1, 

where Cjk is the relative standard deviation of IPjkl. 

[54 

PW 

Wbl 
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0 
t2 (msec) 

5 

FIG. 12. Total magnitude spectrum intensity as a function of both T and t2 for oriented benzene. 

For simplicity, rewrite Pjk as 

pjk = 2 Babeiu~T r 2 pteiwm. 1541 
4 I 

lPj/J is the magnitude of the sum of complex numbers with fixed real lengths Pl and 
varying phases 41 = W/T. In general, the single-quantum frequencies WI are unequal, 
so as r varies these components fan out in the complex plane like different hands 
on a clock. The r-averaged probability density associated with a given component 
is simply 

m(r) = W - PtJ- WI 

For a fixed value of 7, Pjk can be thought of as a complex plane random walk of q 
steps, where q is the number of components. The r-averaged probability density of 
Pjk is difficult to compute exactly, but can be approximated using the central limit 
theorem as a two-dimensional Gaussian: 

p(r) = --$ edr21a2. 

With this approximation, 

(IPJ2), = 7 = r p’ r2p(r)rdrd$ = a2, 

(IF& = ? = r p’ rp(r)rdr& = ; v&x, 

7 4 
[ = (r32 = ; w 1.27. 

Wal 

[57bl 

[57cl 
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Thus for a given line, the average over 7 of the transition intensity for t2 = r should 
be 1.27 times the average intensity when 7 and t2 are varied separately. 

The averaging is somewhat different for Ik) to Ik) transitions. It was shown 
previously that Pk~ is always purely imaginary. For such transitions, Bhu = -Buh, 
and 

PAL = 2i 2 Bob sin wb$ = i C cl sin w17. 1581 
a<b I 

Each component of Pkk now oscillates only along the complex axis with a T-averaged 
probability density given by (43) 

P/(Y) = b [cf - y7-‘/2 (y2 G c:>. 1591 

For a fixed value of T, PAL can be thought of as a one-dimensional random walk; 
averaged over r its probability density will again be assumed to be a Gaussian: 

p(y) = (21r)-q&-Yw~2~ WI 
In this case, 

n- 
=-a 

2 
1.57. El1 

Because spin-inversion transitions are at most a small percentage of the total 
number of transitions, they do not contribute much to the total magnitude spectrum 
intensity. Thus, as stated earlier, this total intensity at t2 = T should be about 1.27 
times larger than the intensity when t2 # 7. 

The ratio l was calculated for the totally symmetric A, transitions of oriented 
acetaldehyde by averaging over 200,000 values of 7; results are listed in Table 5. 
For this molecule, the four-quantum line is the only Ai spin-inversion transition 
and 5 for it is 1.585. The average value of f for all other transitions is 1.271. Both 
numbers are very close to the random-walk values. 

TABLE 5 

[ as a Function of Multiple-Quantum 
Order (A, Transitions) 

AM Benzene Acetaldehyde 

0 1.290 1.298 
1 1.218 1.256 
2 1.223 1.271 
3 1.225 1.283 
4 1.253 1.585 
5 1.239 
6 1.441 
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Also in Table 5 are similar results for the A, transitions of oriented benzene, 
obtained by averaging over 20,000 T values. The average ratio for odd-quantum 
orders (for which there can be no spin-inversion transitions) is 1.22, not far from 
the predicted ratio for two-dimensional random walks. The ratio for the spin- 
inversion six-quantum line is 1.44. Though smaller than the prediction of the simple 
1-D random walk model, this value is at least closer to 7r/2 than 4/n. 

Actually, the value of 5 relates back to the value of d, the ratio of the average 
dipolar coupling to the rms coupling. For systems with d x 0, the Bob elements 
which comprise Pki and which constitute the step lengths of the random walk are 

I quantum 

20000 T values 

3 quantum 

6 quantum 

250000 T values 

0 2P 
Coherence Magnitude 

FIG. 13. Probability distribution for the average prepared coherence magnitude of A, transitions in 
oriented benzene, obtained by averaging over many values of T. Ideally, the top two curves are profiles 
of two-dimensional Gaussians; the third is ideally half of a one-dimensional Gaussian. 
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roughly comparable in size. The central limit theorem with its prediction of a 
Gaussian probability density should be especially accurate and [ should be close to 
a/2. In contrast, when d = 1, a few Bab elements are far larger than the rest, 
generating a few “giant strides” in the random walk. The central limit assumption 
is thus less valid, and [ is expected to lie between 7r/2 and its value for the single- 
component probability density of Eq. [59], namely r2/8 = 1.234. For benzene, d 
is 0.776 and t = 1.44 as noted above. 

In addition to the calculation of 5 values, the actual distribution of lPjkl for each 
multiple-quantum order was computed for both the benzene A, transitions and 
acetaldehyde A, transitions by again averaging over many values of T. In Fig. I3 
p(r) vs r is plotted for benzene with AA4 = 1, m = 3, and AA4 = 6. Figure 14 
displays p(r) vs r for acetaldehyde. In each case except the benzene six-quantum 
transition, the distribution indeed appears Gaussian. 

To summarize, it can be seen that choosing t2 equal to T is advantageous but not 
crucial in the three-pulse multiple-quantum experiment. When magnet homogeneity 
is good, one may, for optimal signal-to-noise, sample the magnetization at many 
values of t2. One can then average together the magnitude MQ spectra associated 
with each value of t2 (36), or take the two-dimensional transform (3, 4) and 
compress the resulting magnitude spectrum along the multiple-quantum axis. When 
magnet homogeneity is bad, however, echoing pulses (44, 45) must be added to the 
pulse sequence at 7/2 and during the detection period. Under these circumstances 

I quantum 

3 quantum 

2 quantum 

\ 

4 quantum 

2P 
Coherence Magnitude 

FIG. 14. Probability distribution for the average prepared coherence magnitude of A, transitions in 
oriented acetaldehyde. The coupling constants used in the calculation are those in Ref. (24). 
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(or when data storage capacity is insufficient for a 2-D experiment), the magnetization 
can be measured at only a limited number of points in the detection period, and 
one might as well choose t2 = r as one of them. 

CONCLUSIONS 

In an analysis of the basic multiplequantum experiment, we have calculated 
average coherence magnitudes as a function of preparation time T and found that 
in general the growth of kquantum coherence in an anisotropic system is proportional 
to rk-‘. Ultimate T average intensities were then introduced as an efficient way of 
generating r-independent MQ spectra. High-quantum transitions were found to be 
more intense than a simple statistical model would suggest, an encouraging result 
for future experimental work. This enhancement is most pronounced when the 
average dipolar coupling constant is comparable to the rrns value. Finally, the 
-25% bulge in total spectral intensity when t2 = 7 was explained in terms of a 
random walk model. 
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