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The effects of selective multiplequantum pulse sequences have previously been 
analyzed by coherent averaging theory. However, convergence of the Magnus expansion 
used for those calculations is questionable in the experimentally important region of 
long cycle times. Exact density matrix evolutions arc calculated here to show when the 
coherent averaging calculations will be reliable. In addition, simple selective sequences 
which cannot be treated by coherent averaging theory are also analyzed. 0 1984 Academic 

Press, Inc. 

In a previous paper (I) (henceforth designated as I) the effects of simple pulse 
sequences for broadband excitation of multiplequantum NMR coherences were 
explored in detail by computer calculations. One important but surprising (from a 
perturbation theory perspective) result is that high multiple-quantum transitions 
(which are simple to analyze for coupling constants (2-d), relaxation rates (5IO), 
and molecular symmetry (II)) tend to be stronger on average than low multiple- 
quantum transitions. Nonetheless, the intensity of any individual transition decreases 
rapidly as the number of coupled spins increases, and this has so far proven to be 
a fundamental limitation of this technique. 

Pulse sequences which selectively excite only a few transitions can largely 
overcome this limitation by enhancing the signal in the selected transitions. 
Experiments with very long pulse sequences (thousands of pulses) have indeed 
shown signal enhancements (12), and average Hamiltonian (coherent averaging) 
theory has been extended to describe these sequences (13-15). But the average 
Hamiltonian expansion is in powers of the cycle time (16, Z7), which is long for 
these complicated sequences. Convergence may therefore be questionable. In addition, 
some very simple selective sequences (which only require a few pulses and might 
therefore be useful in other types of spectroscopy) cannot be treated by this approach. 

In this paper we calculate the exact density matrix evolution of multilevel systems 
under the influence of selective excitation sequences. We find conditions where 
highly compensated sequences are useful (and some where the compensation is 
actually harmful) and produce simple sequences for selective excitation in isotropic 
and anisotropic systems. We believe that our results (together with those contained 

* Present address: Department of Chemistry, Princeton University, Princeton, N.J. 08540. 
t Present address: Technicare Corporation, 29100 Aurora Rd., Solon, Ohio 44139. 

0022-2364184 $3.00 
Copyright Q 1984 by Academic Pres, Inc. 
All rights of rrprcdunion in any form reserved. 

236 



SELECTIVE MULTIPLE-QUANTUM EXCITATION 231 

in I) provide an essentially complete description of the production of homonuclear 
multiple-quantum coherence. 

DESIGN OF SELECTIVE SEQUENCES 

A sequence which is zero-order &quantum selective can be produced from any 
cyclic sequence of pulses and delays, using a technique called phase cycling 
(12-19, illustrated in Fig. la. Assume that the cyclic sequence has a duration A7P 
(called a subcycle) and a propagator UO = exp(-iR’,,AT,) where &“o is the effective 
Hamiltonian (16, 27). At the end of the interval ArP, the sequence is repeated with 
all radiation phase-shifted by C$ = 27r/n about the z axis, giving a new effective 
Hamiltonian 9?‘$ and propagator U,. zd is related to X0 by a rotation of -4 about 
the z axis: 

X4 = exp(if$Zz)Xo exp(-@Z,), 111 

(z&j = Wo)ij m.Ni44W - Mj)), PI 
and U, is related to U. in exactly the same manner. This phase shift is repeated n 
times, creating a cycle with cycle time tc = nAr,. To lowest order the effective 
Hamiltonian for the full cycle is 

131 

This sum scales the matrix element (kr’)ij by (l/n) zyli ei2*pUn, where 
p = WZi - mj; this scaling factor is zero unless p = nk. Therefore, G?!‘(O) is a pure nk- 

FIG. 1. (a) Phase cycling can be used to create &quantum selective sequences, using phase shiks of 
6 = 2r/n. The cycle of n subcycles is more selective by one order in the average Hamiltonian theory 
expansion. (b) The cycle of 2n subcycles formed by phase cycling and symmetrization is more selective 
by two orders. Reproduced, by permission of the publisher, from Ref. (IS). 
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quantum selective operator, and U will only induce transitions between states with 
AA4 = nk to first order in ArP. 

It can also be shown that if &“,, is already j-order selective, then the sequence of 
Fig. la is (j + I)-order selective (14, 15). Symmetrizing the sequence, as in Fig. lb, 
can be shown to make all odd-order correction terms (%‘(2qf’), where q is any 
integer) vanish, permitting one to build a sequence with a specific level of selectivity 
from fewer subcycles than would be required from phase cycling alone. For example, 
a third-order nk-quantum selective sequence can be created by two phase cycles 
and two symmetrizations, for a total of 4n2 subcycles; such a sequence is selective 
up to fourth order in ATE, and is illustrated for the case it = 4 in Fig. 2. 

The most important strength of this coherent averaging approach is its generality. 
For example, the pulse sequence represented schematically by Fig. la is zero-order 
nk-quantum selective, no matter what the Hamiltonian is, and no matter what the 
exact pulse sequence is for each subcycle. In addition, residual nonselective terms 
can be estimated for nonideal sequences, and this estimation only requires knowledge 
of the norm of the dipolar Hamiltonian llZ’bI/ and the fraction of nk-quantum 
operators in the subcycle effective Hamiltonian (IS). In practice this generality is 
extremely useful, because the most interesting applications of selective excitation 
are to molecules with unknown dipolar couplings and chemical shifts. Even if the 
individual couplings are unknown, ll%bII can be readily estimated from the width 
of the single-quantum spectrum; and if II%bArr,II b 1, the fraction of nk-quan- 
turn operators can be approximately calculated from the results in our previous 
paw (I). 

However, this generality implies several important disadvantages. Even an infinite- 
order nk-quantum selective sequence (which would require an infinite number of 

(a) zero-order sequence (16 cycles) 
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FIG. 2. A schematic comparison of the phases in different orders of pulse sequences for 4kquantum 
selection. For short cycle times higher order sequences are superior. For long cycle times they are not 
(see text). 
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pulses!) need not produce any &-quantum coherences; after all, the null operator 
is by definition &-quantum selective, because it cannot produce non-&quantum 
coherences. A lower limit must be imposed on the cycle time if high-quantum 
operators are desired (15). Even if this requirement is met, an unfortunate choice 
of pulse sequence parameters might produce a subcycle effective Hamiltonian ZO 
with a vanishingly small fraction of &-quantum operators. &“,, cannot be calculated 
without prior knowledge of the coupling constants, no matter what the exact 
sequence is, because bilinear dipolar or J couplings are required to generate multiple- 
quantum coherences. Therefore, appropriate lengths for delays can only be estimated, 
not calculated exactly. 

In addition, any calculation involving coherent averaging theory must be treated 
with caution unless convergence of the Magnus expansion can be shown. When 
convergence is questionable, the results can be completely wrong. As an example, 
consider the two sequences illustrated schematically in Fig. 3. Figure 3a is a zero- 
order 2k-quantum selective sequence repeated twice; the second sequence is first- 
order 2/c-quantum selective, and consists of two phase cycles (or one phase cycle 
and symmetrization). The effective Hamiltonian for the first two subcycles can be 
written as &“, + &#, where Ze is Zk-quantum selective and &“, is non-2k-quantum 
selective (i.e., contains only odd-quantum operators) and t Q 1 is assumed. The 
exact propagator for the first sequence is then {exp[-i(Ze + &‘,,)(~AT,)]}*. The 
effective Hamiltonian for the third and fourth subcycles of the second sequence is 
R’~ - tX,, since this half of the sequence is related to the first half by a phase shift 
of X; therefore the exact propagator for the second sequence is 

exp(-@I?‘~ + L%?~)~AT,) exp(-i(R, - &Yp,)2A~,). I41 

Intuitively, one might expect the second sequence to always be superior to the 
first, since it is selective to higher order in the average Hamiltonian expan- 
sion. Equivalently, expansion of the exponentials in powers of AT, gives U = 1 
- i(4A7,)(&“, + &‘,) + @AT;) for the first sequence, and U = 1 - i(4A~~)(%~) 
+ @AT:) for the second sequence. However, when ]~X;“,AT,]] is large, expansion in 
powers of AT, is invalid. As long as t 4 1, a different expansion can be used (18): 

A.2 #lT AT 20 
b. ATE ATE ATE A7p 

FIG. 3. Two pulse sequences which illustrate that average Hamiltonian theory must be used with 
caution. Part (b) is first-order Zkquantum selective, and part (a) is zero-order Zkquantum selective. The 
sequence in part (b) is more selective if As, is small. The sequence in part (a) is more selective if ATE is 
large (see text). 
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eXp(A + &)jk = (exp(A))jj6jk + CBjk exdA)i, - w(hkk 

Au - A/& 
+ o(Z). PI 

A and B are both written in a basis where A is diagonal, and B is assumed to be 
completely off-diagonal. Using this expansion one finds 

{ [eXp(-i(xe + t&“,)(2ATp))]2}jk m eXP(-i~e4AT,)j6jk 

+ t(zr)jk {exp(-i~eW7,))j - eXp(-i~e(4A7p))kk} 

(se)jj - (ze)kk 
7 WI 

{exrWW'e + ~~gWA7p)1 eXp[-i(&", - EZ,)(2Ah7p)J}jk = eXp(-i&",dAT,)$jk 

_ E(xo)jk {kw(-i&“,(2A~,)) - ‘=p(-i~e(2A~,))kk]*) 
(xdjj - (ze)kk 

). 171 

As expected, the first nonselective term in Eq. [6] is proportional to Ar, and the 
first nonselective term in Eq. [7] is proportional to (ArP)2, so when ATE is small the 
first-order sequence is superior. When A7r is large, however, exp(-iZ’J2Arp))j and 
exp(-i+%?~(4A~& are essentially random numbers of magnitude 1; thus, the root- 
mean-squared value of the term in brackets is & in Eq. [6] and 2 in Eq. [7]. 
Therefore the first-order sequence is expected to actually be worse than the zero- 
order sequence for large ArP, where the average Hamiltonian calculation does not 
converge. This problem is by no means unique to selective excitation calculations. 
Any pulse sequence which attempts to retain a large term XL in the Hamiltonian 
while suppressing a smaller off-diagonal term Z’s (for example, a train of echo 
pulses to suppress chemical shifts and magnet inhomogeneity (19) in the presence 
of dipolar couplings) will require I]Y&j] d 1, not the weaker condition ]lZst,I( 
< 1, as shown by this expansion. 

It is useful to confirm selectivity calculations by a technique independent of 
average Hamiltonian theory, because of this convergence problem. For a small 
enough spin system with a given Hamiltonian, the exact effect of any pulse sequence 
can be calculated by solving the density matrix equation of motion on a computer. 
Since no approximations are required, such a calculation allows rigorous testing of 
the important concepts of the theory of selectivity, and in addition can show where 
convergence actually begins to be questionable. For this reason, computer studies 
were initiated. The results generally verify the calculations of Ref. (15) but give 
additional insight into the design of practical experimental sequences. 

PROGRAMMING DETAILS 

The propagator for any pulse sequence can be calculated by multiplying together 
the propagators for each individual pulse or delay. In a system with N spins l/2, 
each propagator can be written as a 2N X 2N matrix. Multiplying together two 
matrices of this size requires 2 3N individual multiplications, so the number of matrix 
multiplications should be kept to a minimum. One way to do this is to use the 
simple relationship [l] between the propagators for different subcycles. Thus, once 
the propagator U0 for the first subcycle has been calculated, the propagator for any 
other phase-shifted subcycle can be calculated with 22N multiplications, no matter 
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how many pulses the subcycle contains. Similarly, calculations for high-order 
sequences involving several phase cycles can be simplified by calculating the 
propagator after the first phase cycle, then using Rq. [l] on it. 

U,, can only be calculated exactly if &” is given. For some of the calculations, 
dipolar coupling constants, chemical shifts, and J couplings are explicitly specified 
in %‘n, GY’~, and ZJ. In other calculations the generality of the average Hamiltonian 
approach is retained by assuming a form for &“o, usually one that has random 
matrix elements of roughly equal magnitude everywhere, subject only to the 
constraint that the matrix be Hermitian. 

All computing was done on a VAX 1 l/780 system with a 2.5 Mbyte memory 
and floating point accelerator hardware. Several different random four-spin and 
five-spin systems were studied. Calculations for a third-order 4kquantum selective 
sequence on an unsymmetrical four-spin system with 125 different values for the 
cycle time required roughly 30 min of processor time; an unsymmetrical five-spin 
system required roughly four hours. 

ZERO-ORDER SELECTIVE SEQUENCES 

Figure 4 shows the effects of a zero-order 4kquantum selective sequence (Fig. 
la) on a four-spin system, starting with a random &“0 and UO. The results from five 
random JYO operators were averaged together. The triangles show, as a function of 
the cycle time, the ratio of a typical 4kquantum selective to a typical non4k- 
quantum selective matrix element of the propagator (the propagator selectivity S,). 
The propagator selectivity is proportional to (t,))’ for small tc, which implies that 
the sequence does in fact have a nonselective (k”‘). When tc is large, the propagator 
selectivity is essentially unity. 

(%(l))nns can be estimated using Theorem II of Ref. (15) 

where nns designates the non-nkquantum selective part. Since there are only four 
subintervals, there are only 10 terms xtit2+Yd(1,J, and the sum of terms with 
t$(t2) = c#@, ) is 4k-quantum selective. If matrix elements for the remaining 6 terms 
add randomly 

where the norm of the n by n matrix ]]AI] is defined as (Tr(A2)/n)‘12. 
Of the 256 matrix elements, 72 are either populations, zero-quantum coherences, 

or four-quantum coherences, so that 

~~e@““‘~~ - (72/256)“211A?o)1 , [101 

s, = (2567; ~~)11211~‘“‘t~ll,ll~~~~trll 

= 5.6~~&pofc~~-‘. Pll 
Figure 4 gives S, = 7.811&“otcll-‘; the agreement is good, as expected since short 
cycle times should give rapid convergence. 
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FIG. 4. The propagator selectivity and coherence sekctivity of one cycle of a zero-order 4kquantum 
selective sequence. Both selectivities are proportional to r;’ for short cycle times, which indicates that 
G??‘(I) does not vanish. 

Figure 4 also shows the ratio of the magnitude of a typical fourquantum 
coherence in the final density matrix to the magnitude of a typical one-, two-, or 
three-quantum coherence, as a function of the cycle time. This ratio will be called 
the coherence selectivity. The coherence selectivity is experimentally observable if 
the signal-to-noise ratio is sufficiently good, so it is more useful than the propagator 
selectivity. However, it cannot be readily calculated from coherent averaging theory. 
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Even if the effective Hamiltonian %’ is completely known, the coherence selectivity 
requires calculation of exp(-i&,)1, exp(z%‘t,), which is difficult to evaluate by 
hand for any reasonably sized system unless Il%,II is small. 

Fortunately, the coherence selectivity is usually larger than the selectivity of the 
effective Hamiltonian. This can be readily seen by expanding p in powers of tC: 

p = I, - it&%, I,] + O(tZ), [=I 
t131 

A4j - Mk is larger for the four-quantum transition than for any other transition, 
so the coherence selectivity is strengthened in the lowest order term. In fact, since 
there are 8 three-quantum transitions, 28 two-quantum transitions, and 56 one- 
quantum transitions, (AM),,, = 1.48, and the 44 coherence selectivity should be 
roughly 2.7 times larger than the effective Hamiltonian selectivity on the average. 
(In Fig. 3 the ratio for small tC is 2.95, but this value depends on the choice of 
matrix elements for UO.) Thus, since the selectivity from coherent averaging theory 
provides an underestimate for the coherence selectivity, it is still a useful test for 
convergence. 

SIGNAL INTENSITIES 

Figure 5 shows the observable signal intensity for the four-quantum transition 
(the square of the coherence magnitude, as noted in I) as a function of the cycle 
time, in units of fl = (2)-N(ho0/kT). The total available signal p Tr(ll) = 168, and 
there are 256 matrix elements, so the expectation value (from a statistical model) 
of the signal from nonselective excitation is 0.06258. As shown in I, an exact 
calculation would give between 2 and 6.5 times more signal. The theoretical 
maximum is 4.00& corresponding to a complete transfer of the largest equilibrium 
population difference into this single coherence (15). The largest signal from Fig. 
5a, however, is 2.22 when (I.~?‘(~)t~l( = 2.1. At the peak, the computed propagator 
selectivity is only 3.40; the comparatively large values of tC required to pump four- 
quantum operators make the selectivity disappear before the true maximum can be 
reached. This is not surprising: since the first maximum corresponds to a selective 
90” pulse between the two extreme levels, the coefficient of the four-quantum 
operator in 2(O) must be at least 7r/4. We then expect Ilk(“‘tCll b (a/4)(72/16)i’* 
= 1.67 if all 72 4kquantum operators are pumped equally, and IIXotCI( - 3.14. 
This is well outside of the range of convergence; in fact, the computed propagator 
selectivity is only 1.74 for this cycle time. 

Several approaches can be taken to improve the selectivity. The first, and simplest, 
is to decrease the cycle time and increase the number of cycles. For convenience 
define T, as the number of cycles times the cycle time; T, is then the total duration. 
If two cycles are used, for example, Il&“oT,II - 3.14 for the whole sequence when 
Il~o~cll - 1.57 for each cycle. Thus larger signals should be attainable, as illustrated 
in Fig. 5b; the maximum is now 3.19 at IlXoT,jI = 2.75. 

The signal can be further increased by adding more cycles. With 16 cycles, the 
signal follows a sin* curve for several oscillations, as shown in Fig. 6. The maximum 
gain is achieved when Il%‘&f,II = 3.2, with a signal of 4.008. This sin* pattern is 
expected, since the four-quantum sequence creates an effective two-level system 
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FIG. 5. (a) The signal produced by one cycle of a zero-order 4kquantum selective sequence as a 
function of the cycle time. The maximum attained signal is 2.228, which represents a gain of 36 relative 
to the statistical prediction for nonselective excitation. (b) The signal produced by two cycles of a zero- 
order 4kquantum selective sequence. The maximum attained signal is 3.19j3, which represents a gain of 
5 1 relative to the statistical prediction for nonselective excitation. 

between M = +2 and M = -2. Thus llX’J,ll = 3.2 is a selective 7r/2 pulse for this 
choice of X0; ~I&“JJ = 6.4 is a selective ?r pulse, which inverts the populations of 
the two extreme states. The oscillations die away as the selectivity disappears; if 
enough cycles are applied, however, they can be prolonged indefinitely. 

The potential signal gain from lowerquantum selection is smaller (25) but still 
substantial. As an example, Fig. 7 shows the signal obtainable from Skquantum 
selection or 4kquantum selection on a five-spin system. The five-quantum signal 
follows the normal sin* pattern of M-quantum selection in an N-spin system; the 
maximum signal is equal to the value of /9Zz for the extreme states, which is 6.258; 
and the gain is N2N = 160 relative to the statistical model (15). The maximum 
signal attained from four-quantum selection is O.SO& which corresponds to a gain 
of 20.5. The average signal from IIx&II = 10 to IIXJ,II = 20 is 0.40& for a gain 
of 10.3. The estimated gain from Ref. (15) for (N - 1)quantum selection is 14.5. 
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FIG. 6. The siial produced by 16 cycles of a zero-order 4kquantum selective sequence. The signal 
follows a sir? pattern for several oscillations, and reaches the theoretical maximum of 4.00@ for a gain of 
64 relative to the statistical model for nonselective excitation. 

HIGHER-ORDER SELEC’fIVE SEQUENCES 

Another approach to improving selectivity is to use high-order selective sequences. 
Two different principles (nesting phase cycles and symmetrizing phase cycles) were 
used to design j-order nkquantum selective sequences for arbitrary j; if j is odd, 
such sequences require (2n)(j+i)‘* subcycles. Thus, the higher the order of selectivity, 
the longer the cycle time. This makes average Hamiltonian calculations much more 
complicated. For example, a third-order 4kquantum selective sequence has a cycle 
time 16 times longer than a zero-order 4kquantum sequence, so it is not obvious 
that )l~!?(~)t&,~ for the former is always smaller than Il~Wt,ll,, is for the latter. In 
fact, it was shown earlier that high-order selection is useless if tC is large. If tC is 
small, however, higher-order selection must be beneficial, in this example, the first 
nonselective operator in the propagator for the zero-order sequence is proportional 
to tz, but the first nonselective operator for the third-order sequence is proportional 
to tz. Thus an important question is how large tc can be before high-order selection 
becomes useless. 

Figure 8 compares the propagator selectivity of two cycles of zero-order 4k- 
quantum selection with one cycle of first-order 4kquantum selection for a four- 
spin system. As expected the first-order sequence is far superior for short cycle 
times. At ll~?‘J’,lI = 4.0 the two curves cross, and for all later times the zero-order 
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FIG. 7. The signal per transition produced by 4kquantum selection (circles) or Sk-quantum selection 
(triangles) on a 5-spin system. The gain for Skquantum selection is much larger than the gain for 
4kquantum selection. 

sequence is superior. However, the theoretical position of the first maximum (from 
Fig. 5) is smaller than this critical value, so the improved selectivity of the first- 
order sequence near that maximum produces a larger four-quantum signal (3.508 
versus 3.198 in Fig. 5b). For larger values of Il&“J,II both the first-order and the 
repeated zero-order sequence have little selectivity, so the repeated zero-order 
sequence is never significantly superior. By contrast, Fig. 9 shows the signal from a 
third-order 4kquantum selective sequence. This should be compared with 16 cycles 
of a zero-order sequence, shown in Fig. 6. Again the high-order sequence is much 
more selective for short cycle times; the selectivities S, are equal at 8.1 when 
IlflOtCI) = 14.7, and the zero-order sequence is superior after that. At the first 
maximum, the propagator selectivity of the third-order sequence is 1103 (Fig. 9), 
compared to only 44 for the zero-order sequence. However, both of these numbers 
are fairly large, so the signals are very nearly equal. (For larger spin systems the 
improved selectivity is much more important.) At the second maximum the 
selectivities are 21.3 and 12.0, and these numbers are small enough to make the 
third-order sequence somewhat better. At the third maximum the selectivities are 
almost equal. After the third maximum the selectivity of the third-order sequence 
dies away rapidly, but the repeated zero-order sequence remains partially selective 
for several oscillations. 

Figure 10 shows the propagator selectivity of the third-order sequence, plotted on 
a log-log scale. For small values of tc (IlSY&(I B 5) the selectivity is proportional to 
tc4 (the solid line in the figure) as expected when *c4) is the dominant nonselective 
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FIG. 8. The propagator selectivity of two cycles of zero-order 4kquantum selection, versus one cycle 
of first-order 4kquantum sekction. The first-order selection is superior for short cycle times. 

term and %‘(O) is the dominant 4kquantum selective term. The selectivity begins to 
deviate from the line around (IX&ll - 6. The initial deviation is in the favorable 
direction, which must reflect another selective term, presumably pF2’. In fact, the 
selectivity between IIX’otCII = 10 and I~z’~~JI = 20 is proportional to ti2 (the dotted 
line in the figure), which would be expected if the dominant selective term were 
2c2). For IIS?‘otcII > 20 the selectivity falls off rapidly, which probably indicates that 
G@@ and higher-order nonselective terms cannot be neglected. 

A convergence criterion was derived in Ref. (15) by finding the value of the cycle 
time which would make the first nns term from a j-order &quantum selective 
sequence (in this case, (1%(4)llnns) equal to the first nns term of a (j - 2)-order 
sequence repeated 2n times. This intercept point was calculated to be IlSY&II - 6.8 
for 4/c-quantum selection. The propagator selectivity of eight repetitions of a first- 
order 4k-quantum selective sequence intercepts the selectivity of this third-order 



248 WARREN, MURDOCH, AND PINES 

. :. Third-order 4k-quantum 
. 

. One cycle 
. 

. . . 
. 

. . .-. . . : ‘. 
. .  l 

.  
.  .  

.  .  .  

.  .  .  

. . . . . . . . . . . l .: l .*.* 
l . . . . . . . . ...**** . 

IO 20 30 40 

Ilal,T,II 

FIG. 9. The signal produced by one cycle of third-order 4kquantum selection. Comparison with Fig. 6 
( 16 cycles of zero-order selection) shows that the high-order sequence is somewhat superior for short cycle 
times but inferior for long cycle times. 

sequence at ]]Z’&]I = 5.1. The agreement is good, particularly since the convergence 
criterion is merely an estimate based on random addition of nonselective terms 
(similar to Eq. [9]) and a four-spin system is fairly small for such an assumption. 
In fact, this convergence criterion is a conservative estimate; the selectivity is still 
around 100 when I]sY~J = 6.8. 

High-order selective sequences are of course also useful for (N - l)-quantum and 
lower-quantum transitions. In fact, the calculation of the selectivity in Ref. (1.5) 
does not depend on the number of spins in the system. Computer calculations 
verify that the number of spins is not important. For example, the propagator 
selectivity of a third-order 4kquantum selective sequence on benzene deviates by 
less than 10% from the selectivity in Fig. 10 throughout the region of convergence 
]lX,,t,(I Q 5. The signal from a third-order 4k-quantum sequence on a five-spin 
system is identical to the signal from 16 zero-order 4kquantum sequences (shown 
in Fig. 7) through the first maximum; is slightly larger on average through I]zJ,II 
- 12.8, where the propagator selectivities of both sequences are equal; and is 
smaller on average for larger values of T,. 

Thus, high-order selective sequences can increase the signal in the selective 
experiment. They are expected to become even more important for larger systems, 
where the required selectivity for maximum signal is greater. Since the agreement 
between average Hamiltonian theory and exact calculations is extremely good for 
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FIG. 10. The propagator selectivity of a third-order 4kquantum selective sequence. The selectivity is 
proportional to T? for short values of the cycle time. Deviations from this line occur in the region 
predicted by the convergence criteria of Ref. (15). 

the systems in this section, it is very likely that the average Hamiltonian calculations 
are valid for larger systems that cannot be exactly analyzed. 

EXACT CALCULATIONS FOR SIMPLE SEQUENCES 

In all of the computer calculations discussed so far, the exact form of X0 was 
assumed, not calculated. Thus, some unspecified pulse sequence creates multiple- 
quantum coherences with a propagator UO and effective Hamiltonian X0, and these 
two operators contain equal amounts of multiplequantum operators corresponding 
to all values of AM. The experiments in Ref. (22) were done with time-reversing 
sequences (20). For such sequences equal intensities would be the best guess for 
Zo. However, time-reversal sequences involve thousands of pulses, and this generally 
implies problems with sample heating and stability of the pulse trains. In addition, 
there are important applications in which perfect time reversal is not even theoretically 
possible, such as in isotropic systems. 
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In this section, the assumption of time reversal will be discarded. Specific pulse 
sequences will be applied to systems with known Hamiltonians. These Hamiltonians 
sometimes correspond to specific molecules, and sometimes are random. These 
calculations show that time reversal, while useful, is not essential to the design of 
selective sequences. 

The simplest possible cyclic pulse sequence for X0 would be two pulses with a 
delay between them. If the pulses are assumed to have phase y and v and flip angle 
7r/2, then &“O = zX, where zX is the operator which generates multiple-quantum 
coherences in the nonselective experiment and was analyzed in I. It only has O- 
quantum, l-quantum, and 2-quantum operators; in the nonselective experiment 
high-quantum operators are generated by the complex exponential in the propagator. 
However, higher-quantum operators must be present in X0 if zero-order selection 
is to work. Thus, a zero-order 4k-quantum selective sequence is not expected to 
produce much four-quantum signal. 

The general form of &+(j) can be calculated readily from coherent averaging 
theory. Since all operators in XX are at most bilinear, %‘(l) involves at most three 
spins, and cannot have four-quantum operators. @‘) can have four-quantum 
operators, so a second-order or third-order 4k-quantum selective sequence might be 
useful. Unfortunately, short cycle times imply a small G?(~), and G?(O) does not 
vanish. If the cycle time becomes long enough to make 1@‘(2’7’cll - 1, then 
((%‘(‘)T,I( % 1 and the Magnus expansion does not converge. As a result, even high- 
order selective sequences are not expected to provide much signal enhancement 
with this form for X0, as was confirmed by computer calculations. 

The convergence problem can be solved by using a line-narrowing sequence for 
X0 (15, 21) (i.e., a sequence whose zero-order average Hamiltonian G%‘(O) is very 
small). For example, the WAHUHA (16) sequence ( T-90i- T-90,-2 T-90,~T- 
90,-T) gives G?(O) = 2(‘) = 0 for all purely dipolar terms. Since the first useful 
term is then P(2) it is clear that the coherent averaging expansion will converge 
slowly, and then predictions based on computer calculations are more trustworthy. 

Figure 11 shows the effect on the selectivity of varying Tin a WAHUHA sequence 
for zo. The sequence is incorporated into a zero-order 4k-quantum selec- 
tive sequence on a four-spin system, When T is small, the largest term in z. is 
%@$ = (-1/3)(X ai(Zxi + Zyi + Zzi)); zero-order selection suppresses the nonsecular 
part of this, but creates a non-selective 2 (I) Thus, the coherence selectivity goes to . 
0 as ATE - 0; the propagator selectivity becomes very large because of the secular 
terms in 2(O), but these terms will not produce coherences. If T is small, the largest 
nns operator in +Vo is *(I), proportional to T; the largest 4k-quantum selective 
operator is &n(‘), proportional to T2, so the selectivity is proportional to T. Contrast 
this result with all the examples shown earlier in which the selectivities were 
proportional to negative powers of T, and grew very large as T, - 0. As T is further 
increased, %‘(‘) becomes the dominant nonselective term and the selectivity falls off 
as T-‘. 

Figure 12 shows the signal produced by this sequence. When T is small, the 
signal is proportional to T6 because U - exp(i%“2’Tc) produces coherences 
proportional to T3. When llZDTll - 1, the selectivity is good and the signal is 
large; in fact, the maximum signal (2.98/3) is substantially larger than the maximum 
achieved by one cycle of 4k-quantum selection using time reversal (Fig. 5a). Yet 
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FIG. 11. The selectivity for one cycle of zero-order 4kquantum selection using a WAHUHA sequence 
for ZO, The selectivity is proportional to T for short cycle times, because @‘) is nonselective and k(*’ 
has 4kquantum operators. In the region of interest Il82)II % ~~2’(‘~~~, I19°)ll. 

this sequence requires only 16 pulses, so sample heating and pulse instability are 
much less troublesome. 

The maximum signal can be increased by using high-order selection or increasing 
the number of cycles. Figure 13 shows the effect of fixing T at 120 PS and 
incrementing the number of cycles; the familiar sin* pattern appears. (In this four- 
spin simulation the average dipolar coupling is 400 Hz.) The period of the 
oscillations is proportional to T3, since the dominant term in %‘o is 2:‘. For this 
reason, the maximum may be hard to find in systems with unknown dipolar 
couplings. 

Since 2g’ has no operators with AM > 4, high-quantum selection must rely on 
higher-order terms, and zero-order selection is ineffective. In such cases a different 
line-narrowing sequence may be helpful. A 12-pulse sequence which has $$) as its 
leading dipolar term is (T-9o~-T-90~-27-9o,-T-9~~-~T-~~~-T-~~~-~T-~~~-T-~~~- 

2T--90y-T--9of--2T-!%$j-T--90,-T). 

Computer calculations show that this sequence can be used for X0 if 6kquantum 
selection is desired. It is most useful when the chemical-shift differences are small; 
if this is not the case then the simplest modification is to insert a 180” pulse in the 
middle of each delay. Each of these inserted pulses should be 180” out of phase 
with the 90” pulse which precedes it, to minimize rf inhomogeneity effects. Clearly, 
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the larger the number of quanta to be selected, the more complicated %o becomes, 
and this will be a practical limitation to the technique. Nonetheless, the advantage 
of very low duty cycles makes the use of line-narrowing sequences an attractive 
option for low-quantum selection. 

SELECTIVITY IN ISOTROPIC SYSTEMS 

For the reasons discussed in our previous paper I, multiple-quantum coherences 
are produced more slowly in isotropic systems than in anisotropic ones. In fact, 
]lXJA~,]l - 1 will be required to give XU multiple-quantum coherences. &“J cannot 
be time reversed by wideband pulses; however, %‘= can be reversed, and since 
~]x,J % Il&pJII an appropriately chosen sequence will give selection. For example, 
consider the sequence in Fig. 14 where the first three pulses are the first subcycle. 
Let PX = -C UiZxj + Ci,j JgIi* Ij, created by the sequence 90,T-90?; and let 
&“-X = C UjZxi + &,j JoIi* Ij created by the sequence 90,-T-90,. An average 
Hamiltonian expansion will not converge rapidly for II&“JII - 1, since then 
ll%‘~‘ll % 1. But the propagator can be expanded, using Eq. [5]: 

U = exp(-i&“,T) exp(-iR-,T) 

= (exp(-i(-2 UiZxj + CJ~Z~iZ*)T) + A)(exp(-i(z UiZxi + CJoZ,Z,j)T) + B) 

= exp(-2i C JijZxiZ,iT) + A exp(-i( C UiZxi + CJiiZxiZ,i)T) 

+ exp(-i(- 2 UiZxi + ~JijZ~jZ,i)T)B + AB, [ 141 

where 

{exd-it-2 Uiz~i + C JijZxiZxj)T)}kk-N 

Ak/ = (c Jij(zzilzj + zyizyjyi))k/ 
(-c uizxi + 2 Jijzxizxj)kk-[/ ’ t15a3 

{wt-CZ UiZxi + C JijZxiZxj>U>kk-0 

Bkl = <I= Jij(zzilzj + zyizyj))k/ 
(2 UiZ.Q + 2 JijZ~jZ~)~-/~ * I1 5b1 

(A&-,, is short for MM - Ml,.) 
Since IlXJll %- 1, llktll - @]I - llzJll/ll%“,ll B 1 if the system is first order, 

and therefore U is close to 1. Since this sequence is cyclic, the usual ansatz 
U = exp(-i*(2T) can be made, and then 11%(2T)ll 3 1. Thus this sequence may 
produce a usable zO, but the poor convergence means that this argument is not 
rigorous. 

180x l8Oy 180x 180 
Y 

FIG. 14. A simple pulse sequence for 4kquantum selection in isotropic systems. The sequence for Z,, 
is 9O,T-180,-T-94; the echo pulse causes partial refocusing of the chemical shifts. 
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Figure 15 shows the selectivity of a first-order 4kquantum selective sequence as 
a function of T; the molecular parameters correspond to methanol at 270 MHz 
(21). The selectivity is expected to be an extremely complicated function, because 
k changes as T changes. Still, there is a region where the selectivity is good and 
IlZ’,,)l is small; if T is chosen from this region, the first-order sequence can be 
repeated several times to give a large signal, as shown in Fig. 16. For example, one 
sequence which will produce a large fourquantum signal is 3 cycles of first-order 
selection with T = 12.0 ms. The total duration of the sequence is 576 ms, which is 
short enough to neglect relaxation effects (as is implicitly done in all of these 
computer calculations). Higher-order selectivity is of course possible in isotropic 
systems as well, when relaxation times are long enough to allow many subcycles. It 
should be noted, however, that isotropic selective sequences are not as easy to 
design as anisotropic ones, and that relaxation times provide a serious constraint 
for protons. The J couplings are larger with other nuclei (for example, 13C and 19F) 
and therefore selectivity is simpler in those systems. 

CONCLUSIONS 

Computer calculations have been presented which verify the average Hamiltonian 
theory calculation of earlier work. The selectivity and signal intensity have the form 
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FIG. 15. The coherence selectivity of a first-order 4kquantum selective sequence for isotropic methanol 
at 270 MHz. The pulse sequence is a symmetrized version of Fig. 14. 
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FIG. 16. The signal produced by fixing T at 12.0 ms and incrementing the number of cycles, for 
4kquantum selection on methanol at 270 MHz. 

expected from those calculations. In addition, these calculations show that the 
region of convergence of the Magnus expansion agrees with earlier estimates, and 
that the selectivity is still good near the limits of convergence. Simplified pulse 
sequences for isotropic and anisotropic systems have been shown to provide signal 
enhancements. Since these computer calculations are exact (to the extent that the 
spins follow the density matrix equation of motion in the absence of relaxation) it 
may be concluded that selective sequences provide a practical technique for signal 
enhancement. 
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