Cross-polarization efficiency in /S systems using adiabatic RF sweeps
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The theory describing nuclear magnetic resonance cross-polarization using adiabatic sweeps of the
rf spin-lock fields through the Hartmann—Hahn matching condition is extended to small
homonuclear coupled systems of the tyg&. In particular, the connection is made between such
experiments and the associated theoretical limits on polarization transfer—the “unitary bounds”—
demonstrating that these techniques can achieve the maximum transfer of polarization flom the
spins to theS spins, subject to the constraint of angular momentum conservation imposed by
spin-locking. Factors such as permutation symmetry of the spins, imperfect adiabaticity of
individual crossings and fast sample spinning are shown to have no fundamental impact on the
validity of these results. €1997 American Institute of Physids$S0021-960€07)00445-5

I. INTRODUCTION Il. ADIABATIC PASSAGE IN THE [/,S SYSTEM

Cross polarizatioiCP) from high-y nuclei (convention- Before considering the geneilgS system, it is useful to
ally labeled! sping to low-y nuclei (S sping is an essential consider as a specific example the behavior of fisesystem

step in the majority of solid-state nuclear magnetic resonanc'té'nder the Hcor?ditionj_ _Of ;t'eH adiabz_itic palsse;]ge at the
(NMR) experiments. Usually this is achieved by spin- artmann—Hahn conditiogh ) experiment. In the simu-

locking the transverse magnetization, using continuous rf ir!atlon of Fig. 1 the spin-lock field on s fixed (w;/2m

radiation, such that the field strengths on the two spin spe-: 20 kHz), while the rf strength on _thS nucleys s swept

. d " the Hart Hah wchi through the Hartmann—Hahn condition. The time-dependent
Cles, ?n ws, satisfy the Har mann-—ranhn matching st of thes spin rf is given by
condition; |w;|=|wg . Such cross polarization leads to a
sensitivity enhancement of, / y5, which may be increased
further by increasing the repetition rateTif,, of the | spins
is shorter than that of th& spins. The efficiency of the
experiment can be improved by adiabatically sweeping the 2 . A(0)
amplitude of one(or both of the rf fields through the a= - afclan et

Hartmann—Hahn match such that the condition is satisfied at ) ) ] . o
the approximate midpoint of the experiment. This approxi-VNeredestis an estimated dipolar linewidisimply the het-
mately doubles the maximum possible efficiency relative togronuclear couplmg in ahS systen), 7IS _the total contact
simple Hartmann—Hahn matchirtgide infra), as well as re- t'.me’ an.dA(Q)/deSt IS the ratlo_of t.he initial offset to the
ducing the difficulty of achieving the matching condition and dipolar I|n§W|dth. This .tangentlal time-dependence Ensures

. ’ —_— . . that the rf is swept relatively slowly through the approximate

suppressing transient oscillations. This technique has been hi dition: this f onal f : )
successfully applied in liquid-state spectroscopy formatc Ing condition; this functional form Is a compromise

] led BSand i i der th APHH between linear rf sweeps which compensate well for varia-
-coupled systems’and in solids, under the acronym tions in the match conditiéh(e.g., due to rf inhomogene-

(adiabatic passage through the Hartmann—Hahn confiitionyieq) ang other forms which optimize the adiabatidityut
for both stati¢ and spinning samplesOther modifications are less tolerant of mismatch.

of the Hartmann—Hahn matching condition to include qua- |, Fig. 1 there is a single heteronuclear coupling be-
siadiabatic sweeps of the rf have also been repdrfed. tween theS spin and one of thécoupled | spins, and APHH
The theoretical description of the APHH experiment hassyccessfully transfers half tHespin magnetization to the
been presented for isolatd8 spin system&? The current  spin, which is the maximum possible polarization transfer in
paper extends this theory to systems of the fog®, thatis,  this system, cf. Sec. Ill A. Although the homonuclear cou-
systems of isolate® spins coupled tdN | spins, which may pling has no effect on the efficiency of transfer, it clearly
themselves be coupled by the homonuclear dipolar interaanodifies the matching condition; for this example, the homo-
tion. The results are compared with the efficiency ofnuclear coupling exceeds the heteronuclear linewidth, and
Hartmann—Hahn matching experiments and general theorethe polarization transfer occurs in two distinct steps sepa-
ical constraints on the degree of polarization transfer. rated by the homonuclear interaction strength. Note that only
a single crystallite orientation has been simulated and in a
dCurrent address: Laboratoire de tehemie et des Interactions Mole powder sample, this Spll'ttlng Qf the matching condition WI|'|
laires, Ecole Normale Stpieure de Lyon, 46 Alle d'ltalie, 69364 Lyon, D€ Washed out by the orientation dependence of the coupling
France. constants. The variation of the apparent matching condition

A(t) = (Us(t) W= desttan a

’ O<t= 1
E t \t\Ty ( )

@
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number(F,+S,). Assuming that all spins are spin-1/2, this
results in four diagonal blockgF,+S,)=+1/2,+3/2. The
—S8 isolated X 1{F,+S,)*3/2 blocks can be ignored as they
0.8} ] will not lead to evolution of the initial density matrix, leav-
- ing the two 3x 3 blocks corresponding tgF,+ S,) = + 1/2.
Removing the diagonal terms i, , which are proportional

& 067 to the identity matrix and therefore not important in describ-
g ing the dynamics of the system, these blocks are given by
S 0.4 ~
—D/AF A2 d,/2 d,/2
d./2 D/A*=A/2 D/4 ) (6)
0.2¢ d,/2 D/4 D/A=A/2

. . The adiabatic passage occurs in the eigenbasis of these
-2000 0 2000 4000 Hamiltonians. In the limit ofA>D,d, which is the case at
RF offset/ Hz the beginning and end of the rf sweep, E6). is diagonal-
ized straightforwardly giving the eigenvalues and eigenvec-
FIG. 1. Simulations of the APHH experiment for a statjS system. The  tOrs:
hetero- and homonuclear couplings are 500 and 1500 Hz, respectively. The
polarization is initially on the spins and the rf offset\/27, is swept from

a positive value through the Hartmann—Hahn conditiam, right to left in (i)
the figure. The parameters used to set the shape of the tangential rf sweep,

cf. Eq. (1), were w|/27'r:20 kHz, des{ZW:].ZOO Hz, A(0)/2m=7200 Hz (”) +A/2+DJ/2 (O 1/\[2 1/‘f2) (7)
and7=30 ms. - ' ' '

0
-4000

¥A/2-D/4  (1,0,0,

(i) *A/2 (0,—1W2,1W2).

with orientation requires that both the initial rf offset(0), Applving the similarity ¢ f tion defined by th
and the width over which the rf is swept slowly, be increased . bplying the simiianty transiormation defined by the
if the adiabaticity conditions are to be satisfied. eigenvectorgi)—(iii) to Eq. (6),

Clearly, the homonuclear coupling must be included in

any theoretical analysis of this system. In the doubly rotating —D/4a+A/2 d,/2 +d_/2

tilted frame(in which the quantisation axig, for both spins d./2 D/2xA2 0 |, )
lies along the spin-lock fieldshe Hamiltonian for thd ,S *d_/2 0 =A/2

system is

whered.. =(d; = d,)/vV2.

H(t):H”(t)JFQSSXJFEi: QilXi+2§i: dibaSy The density matrix following the initial £/2), pulse, is

+D(2lglo—lyslyo—lal ), 3) proporti.onal toF, in the tilted ro'tatir}g frgméassuming the
B usual high temperature approximatjofhis commutes with
Hi(D) = o) (11 +122) + 05()S,, @ the similarity transform of Eq(7), which fulfills the first

whereQg and(); are the chemical shifts of spand thel  criterion for an adiabatic exchangé?i.e., that the density
spins respectively,w,(t) and wg(t) denote the time- matrix must commence in a pure state of the Hamiltonian. If
dependent rf on thé and S spins, respectivelyd; is the  H(t) changes sufficiently slowly, then the eigenstates of the
(orientation dependenheteronuclear coupling constant be- density matrix will smoothly follow the eigenstates of Eq.
tween theS spin and thel; spin, andD is the (similarly  (8), i.e., no transitions are induced between eigenstates. Fig-
orientation dependenhomonuclear coupling between the ure 2 plots these eigenvalues as a functiompfevealing
spins. which initial eigenstates cross into which final states. Unless
It is convenient to keep one spin-lock field constant, sayd andd_ are both zerdin which case cross polarization is
o, , and sweep th& spin field through the Hartmann—Hahn impossiblg state(i) will cross over into statéii) or (iii ). The
condition, i.e., wg(t)=w,+A(t) where A(t) is the time- choice of final eigenstate depends on which crossing is en-
dependent offset from match. Hence the rf contribution tocountered firstwhich in turns depends on the signdf and

the Hamiltonian can be simplified to whether A approaches zero from below or abgvand on
B whether the first crossing is avoidéce., whethed-. is neg-
Hi()=w(F,+S)+A(D)S,, 5 ligibly small).
whereF, is the sumz operator for thd spins,l,;+1,, for The result of the adiabatic transfer is to exchange the
[,S. corresponding diagonal elements of the density matrix in the

Assuming that the rf is strong, i.ew;>d;,D,Q;, this  Eq.(7) eigenbasisp’, e.g., for the(F,+ S,)=1/2 block with
diagonal term will dominate the Hamiltonian which can thentransfer occurring between statég and (ii), linked by the
be divided into blocks of the same total magnetic quantund, matrix element,
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|d..| <|D| with the separation of the eigenvalues at the cross-
(i) ing given by twice the connecting matrix elemejt,.|. If,
(i) on the other hand|D|<|d.|, Fig. Zc), two of the three
states are effectively degenerate and there is a single crossing
point at A=0 with the separation of states given by
JdZ+d2.
We can describe the effect of imperfect adiabaticity in
terms of the parametéwhich describes the rotation applied
to the fictitious spin-1/2, operator appropriate to the tran-
. sition cf. Sec. Il B. At the end of a truly adiabatic passage
@ 0= corresponding to a full inversion of the populations of
(i) the states involved. Other values @fcorrespond to imper-
fect inversion with the limit of¢=0 corresponding to a sud-
. (iii) den transition in which no population is transferred. If we
)] \/{w : consider the subsystem above starting in the pure state with
only level-1 populatedp;,(0)= 1, the total population of the

2 and 3 levels after passage through the 1-2 and 1-3 transi-

~~
-
N
o~
®
N’
<) =
[ [t

|
N
]
o
w
[
[N

\/

(i)

(iii) -1

N ' ’ tions can be straightforwardly shown to be
(id) -0.5
\ Péz( T)"’Pés(T):%_%t Ccos 01_2_4; cos 93
(iii) -1
) — 7 cos 62 cos o'3, (10)
@ (i, G If any cosf'~'=—1, this expression has the value 1,
1 e corresponding to full exchange of population between level 1
© and the 2/3 levels. Only thothtransitions are nonadiabatic is
- the population exchange reduced.
-2 -1 1 2

lll. ADIABATIC TRANSFER IN /4SS

A. Unitary bounds on polarization transfer

(ii), (i) /

/

® If the density matrix is initially in a pure stat®, the
A transfer of this coherence into another statgwhich com-
mutes withB) can be represented
FIG. 2. Eigenvalues of Eq6), (F,+S,)=1/2: (a) |dy|#]|d,|, D#0, (b) B—aA+bB+--- . (12)
d;=d,, D#0, and(c) D=0. The labelgi)—(iii) correspond to the limiting
eigenstates of Eq(7). The horizontal scale ia/D for (a) and (b), and The maximum efficiency is, therefore, given by the
A/\JdZ+d3 for (o). maximum coefficient ofA, |a|. The requirement that the

square-norm of the density matrix be conserved leads to the
so-called entropy or thermodynamic boundan
1/2

IBJ?
pO=F,=|  -12 A AT (12
-1/2 _ .
In NMR experiments, however, the only transformations
—-1/2 that can be applied directly to the density matrix are unitary
co ones. As shown by 8ensen and co-worket$;*® this fur-
—p'(1)= 1/2 : 9)

ther restrictsa,y, to

o ) . A(A)-A(B)

The similarity transform of Eq(7) commutes withS,, “m”;)f‘ry:m,
hence(S,)=Tr(pS,)=Tr(p’'S,). As a result, the finab spin (A)-A(A)
polarization is independent of which states exchange popuwhereA (X) denotes the vector of the ordered eigenvalues of
lations. Which crossing is taken will, however, affect the rf X.
field at which the transfer occurs. For example] if andd _ A unitary transform cannot change the eigenvalueg, of
are nonzero and is positive, decreasing the rf offsatwill and the maximum value & corresponds to maximising the
lead first to a crossing in the block of the density matrixprojection of the eigenvalue vector Afon to the eigenvalue
corresponding to{F,+S,)=—1/2 at A=3D/4, Fig. 2a), vector ofB. Only if the eigenvalues dB match those ofA
followed by a subsequent crossing&at —D/4 in the(F,  (in which caseA and B are related directly by a unitary
+S,)=1/2 block. These crossings will only be distinct if transform will the unitary bound equal the entropy bound

—1/2
(13
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eigenvalues of the density matrix so as to maximize the in-
crease in the projection on 8, for a given decrease in the
projection on to the initial staté;,. ForlyS andS=1/2, the
eigenvalues of, can be ordered

Mgy (M=D)gm-1) - =M+ D) g1y, (=M)gu)

(149
My s (M= D)=y oo = M+ D)1y, (= M),

where (), denotes an eigenvalue repeatech times with

the superscript indicating the state of tBespin. M is the
maximum value of F,), andg(m) is the degeneracy of the

m state ofF,. Note that this applies tb spins of arbitrary
spin quantum numbers although, in practice, the strong qua-
drupolar interactions of spink>1/2 cannot be effectively
spin-locked in this frame of reference.

The problem of choosing which eigenvalues should be
exchanged can be formulated generallyd Hndf denote the
initial and target eigenvalue vector, respectively, anthe
current state, and using, to denote thenth element ofe,
etc., the changes in projectioA]l , caused by swapping el-
ementsm andn are given by

~T

AL(d):<dmen+dnem+2 de |- de
] n ]

#m,
=(dn—dy(en—em), (15
AL(f)=---=(fn—f)(en—em). (16)
Hence, we need to maximize
AL(f)|_ fm—fn‘
AL(A)| |y d, (7O 40

In the case 06=1/2,|f,,—f,| can only take the value 1.
The smallest nonzero difference af values is also 1
(the spacing of angular momentum levelshence
|AL(f)/AL(d)|=1. The 2D bounds thus commence from a
state of maximum polarization with a line of unit gradient
({(F,=1-(S,)), the thickened segments of Fig. 3. Note that
several pairs of states may have the sdraedd eigenval-
ues; the corresponding segment of the 2D bound is traced out
FIG. 3. Unitary bound(area enclosed by solid line$or the transfer of by exchanging all of these pairs.
coherence fronf, to S, for 1S, N=1,2,3. The vertical axes are scaled by It is important to note that neither the Hartmann—Hahn
1N so that the entropy boun@ashedl line remains circular. The thick- matching experiment nor APHHor related experimenks
ened segments correspond to states for whiich-S,)=1. Only states cor-  reach the simple one-dimensional bound on the maximum
resppndlng‘to points within t_he unitary bound can be accessed by a densﬂe{oefﬁciem ofS, given by Eq.(13). This is a result of the
matrix starting inF, and subjected to purely unitary transforms. . . . ;

strong spin-lock fields which imply thatS,) and(F,) re-

main good quantum numbers throughout the experiment, re-
derived on the basis of the conservation of spin order. Theulting in the conservation gfF,+S,). This constrains the
unitary bound can only be circumvented by invoking nonuni-projection of the density matrix on to tife,,S, plane to lie
tary process such as relaxatitfn. on the line(F,+ S,)= 1,1 which coincides with the first seg-

The cross-polarization experiment can be convenientlynent of the unitary bound derived above. The maximum
visualized in terms of the two-dimension@D) generaliza- coefficient ofS, corresponds to the point where shape of the
tion of the unitary bound? that is, a plot of the accessible unitary bound diverges from this line, that is the ends of the
values ofa andb for a transfer between two statds— A. thickened segments in Fig. 3. Fb% and |,S, the APHH
The 2D unitary bounds on tHe,— S, transfer are shown for experiment reaches this point, withS,)(7)=(F,)(0)

IS, 1,S and|;S in Fig. 3, see Ref. 14 for other such dia- and (S,)(7)=(F,)(0)/2, respectively. In contrast, the
grams forl Sy . These bounds are traced out by swappingHartmann—Hahn matching experiment results in a quasiequi-
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librium state of the density matri%. This point corresponds
to a S spin magnetization of about half that of the adiabatic
transfer experiments, cf. Sec. IV.

If (F,+S,) is not conserved, more complete polarization
transfer is possible cf. the optimal sequences developed fc
IyS cross polarization in liquidst This limitation can, for
instance, be avoided using multiple-quantum transitions, i.e
flipping more than one spin for eachS spin flop!® The
practicality of such gedanken experiments has yet to be den
onstrated, and so the polarization transfers corresponding
the remaining segments of the 2D unitary bound are no
considered further. It is also important to note that the
ADRF/ARRF experiment is not subject to this limitation and
can, potentially, achieve full polarization transfer, within the
limit of the unitary bound® This experiment involves adia-
batically demagnetizing thé spins in the rotating frame
(ADRF), followed by remagnetization of th® spins?! The
ordering of the eigenstates during the adiabatic passage is,
however, strongly dependent on the details of the homo- FIG. 4. Eigenvalues of Eq21) as a function ofA for D=1, d=0.2.
nuclear and heteronuclear coupling network and full polar-
ization transfer cannot always be achieved. The reordering of
states under the influence of homonuclear couplings is proghe evolution of the density matrix can be reduced to the
ably a better explanation for the often poor performance ofxchange of the diagonal population elements with corre-
ADREF than the supposition of fast relaxation of the interme-spond to the eigenstates of the Hamiltonian. Provided the
diate dipolar order. evolution is adiabatic, i.e., the passage through avoided

It is instructive to examine in general under what condi-crossings of the Hamiltonian is sufficiently slow that that no
tions an adiabatic sweep can achieve the limit set by th&ansitions between eigenstates occur, then it is only neces-
unitary bound. This involves determining the evolution of sary to determine which eigenstates of the final Hamiltonian
the density matrix as a result of the APHH experiment. Thecorrespond to which eigenstates of the initial Hamiltonian.

Hamiltonian is truncated by the strong rf terif (- S,) and For general rf offsets,A, the partially-diagonalized
so evolution of the density matrix can only occur within Hamiltonian has the form
blocks of the same total spin quantum numbgf,+S,), B d
i.e., between i—1)¢ and (m)? states. Each ni—1)¢ ( i ,), (20
—(m)”? block of the initial density matrix, proportional to (d)’ A
F., can be represented schematically whereA’ andB’ are the diagonal forms @& andB, andd’
mi 0 is the transformed matrix of heteronuclear couplings. Equa-
g(m) (m=-1)| , (18)  tion (20) is the schematic generalization of H§). Assum-
g(m-1) ing that the crossings between theeigenstates and the
wherel , is an identity matrix of orden. eigenstates are avoided, thgfm) « eigenstates will ex-
When the rf is strong and\ (t)| is large, the correspond- change with 8 eigenstates, leavingg(m—1)—g(m)) B
ing portion of the Hamiltonian, Eq3), is truncated byH,;,  eigenstates localized in tH& submatrix cf. Figs. 2 and 4. In
Eqg. (9, to terms of the density matrix, this corresponds to an exchange
B 0 of the g(m—1) diagonal terms oA with g(m—1) of the
0 A)’ (19 diagonal terms oB. This is equivalent to the exchange of

eigenvalues used to find the 2D unitary bound earlier. This
where A and B consist of diagonal rf terms,n{—1/2)w, density matrix must then be transformed from the eigenbasis
+A/2, and homonuclear coupling terms; the off-diagonalof the rf Hamiltonian into the initial frame of reference. This
heteronuclear coupling blocks are eliminated by the truncagenerally results in off-diagonal terms in the final density
tion. The component proportional to the identitym ( matrix, but since this similarity transform commutes with
—1/2)w,1, although responsible for the truncation, is irrel- S,, the finalS spin polarization, Tr§S,), is unaffected. The
evant to the evolution of the subsystem and can be droppedssumption thag(m)<g(m-—1) is, of course, only valid for
leaving the secular terms A/2. The eigenvectors of this m>0; analogous arguments apply, however, fox 0.

block-diagonal matrix fall into two setgj(m— 1) eigenvec- The completeness of this polarization transfer requires
tors within A, corresponding tax S states, andg(m) 8  that allg(m) « eigenstates cross in{® eigenstates. Clearly
eigenvectors irB. if there is no coupling pathway between laepin and theS

The evolution of the system can be followed in the spin, then no polarization transfer is possible from that spin,
eigenbasis which diagonalizes the rf Hamiltonian. This ini-and so the number of spindl, should only include spins
tial density matrix commutes with this transformation and sowith at least one coupling pathway to tBespin. In the large
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A limit, the plot of the eigenvectors as a function®dfcon-  expressed for a crossing of two states in terms of fictitious

sists of two setga and p) of states corresponding ¥5,) spin-1/2 operatofé>*for the two levels involved.The den-

==*1/2. With the degeneracy of the states lifted by finitesity matrix at timet is proportional to

homonuclear couplings and in the absence of symmetr .

(which is discussed in more detail belpveachg eigenstate ! 12 cos 6(1) + 1, sin 6(t), (22)

must cross into a state af character. Even if this state whered(t) is the angle between the density matrix at time

crosses with anothe$ state, it in turn must encounter an- andl,,

other a state into which it can cross, sinaggm)<g(m _

—1). Note that there arg(m—1)—g(m) states which re- tan 0(t)=d; /4;(v), (23

main « states through the manifold crossing. This is illus-whereA; is the offset of the rf from théth crossing and; is

trated in Fig. 4 for the eigenvalues of a matrix of the form the separation of the statesi#t crossinglequal to the cou-
pling between the states

—A/2—-DJ/2 0 d d d With the initial density matrix proportional tb,, adia-
0 —A/2+D/2 d d d batic inversion requires firstly that(0)=0 and 6;(7) =,
d d AI2-D O 0 . corresponding ta\;(0)= —A;(7) =, and secondly that
d d 0 AJ2 0 de(t)
d d 0 0 A/2+D Q(t):\/Ai(t)2+diz/ 3 =L (29)

(1) whereQ(t) is the adiabaticity factot.
Note how the eigenstate marked by the solid line connects Failure to start the sweep in an eigenstate of the Hamil-
the a (A/2) manifold atA — with the 8 (—A/2) manifold  tonian[i.e., using an initial offsetA(0), that is too small
atA— —oo, leads to oscillations which may persist through the transfer.

It is possible that small couplings between eigenstate# is noteworthy that these oscillations are most noticeable in
may result in nonadiabatic transfer. As shown earlier for thdS systems and tend to be suppressed by homonuclear cou-
specific 1,S case, such crossing failures do not, howeverplings. Since the eigenvalues are continuous, the requirement
preclude full polarization transfer. Only if there are no cross-that the density matrix begins each crossing in an eigenstate
ings at all between one of the states and any g8 states is  is automatically fulfilled provided that the density matrix be-
the polarization transfer guaranteed to be incomplete. lgins in pure eigenstates of the Hamiltonian and subsequent
practice, crossings will often fall in the intermediate regimecrossings are close to adiabatic. As seen above, these condi-
where the crossing is not so fast that it is missed entiithly ~ tions can be relaxed if, as is invariably the case, we only
sudden approximationnor sufficiently slow to be truly adia- require adiabaticity of the overaf,— S, transfer rather than
batic. In these cases theeigenstate polarization may cross adiabaticity of individual crossings.
into more than ongs state. Of course, any polarization that Where the crossings in a multilevel system are well-
remains untransferred t@ states corresponds to a loss of separated or involve independent states, each crossing can be
efficiency but for systems where there are several possibleonsidered separately and the overall adiabaticity can be as-
crossings, the adiabaticity of individual crossings may besumed to be limited by the minimum value @f(t) for any
quite poor without the polarization loss becoming unacceptcrossingi. Assuming thatA(t) is adjusted so that it follows
ably high. If polarization is transferred into multipistates, a suitable functional form for each crossing, th@yft) will
the final density matrix will no longer be in a pure state of generally have its minimum value at the crossing point of the
the rf Hamiltonian and will oscillatéRabi oscillationy be-  states involved. This is certainly true for a matched tangen-
tween states at frequencies determined by their energy sep@al sweep sincel¢/dt is a constant for this form o (t).*
ration. Tr(pS,), however, is independent of the population Hence it is usually sufficient to assume that the maximum
distribution of these states at larfjd, and this break-down sweep rate is limited bd;|, the minimum separation of the
of adiabaticity is only observable as transient oscillations ofstates.
the plot of (S,) vs time around the crossingsvhere the Some general conclusions about the separation of eigen-
eigenstates of the total Hamiltonian are not eigenstates of trgiates and hence the adiabaticity of crossings can be drawn in
rf Hamiltoniar). These oscillations are visible in Fig. 1, the two limiting cases obvp<wy and wp> wy, Wherewp
where the sweep is still sufficiently slow that the overallandwy denote the linewidths of the homonuclear and hetero-
polarization transfer is complete. nuclear couplings, respectively. Whesp> wy, €.9., Figs.

2(a) and 2b), then the separation of eigenstates is found by
the diagonalization of the and 8 blocks of the Hamiltonian.

In the notation of Eq(20), the couplings between thlggfm)

a andg(m—1) B states given by thg(m)xXg(m—1) ma-

For a passage through a crossing of states to be trulyix d’. Figures 2a) and 4 illustrate the usual pattern of
adiabatic, two conditions must be fulfilled. The density ma-crossings that result. Symmetry may result in some non-
trix at the start and end of the passage must be in an eigemavoided crossings, e.g., Fig(k.
state of the Hamiltonian and the rate of change of the density As shown in the Appendix, whetay> wy the eigenval-
matrix must be small. These conditions can be convenientlyes of the Hamiltoniam>0 blocks can be divided into two

B. Adiabaticity of crossings
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sets: a ¢(m—1)—g(m)) degenerate level of noninteracting blocks from the coupling of spins 3, 4, and 5. Only transfers

« eigenstates ang(m) pairs of eigenvalues given by between blocks of the same symmetry are permitted.
It is important to note that each symmetry block, such as
yi=+ VAZATNZ, (25 y it

A(1,2)E(3,4,5), is itself the representation of an angular
where \; are the singular values of the matrix of hetero-momentum operator. In particulay,(m)<g,(m—1) (m
nuclear couplingsl. These pairs of states all cross&=0  >0), wherem denotes the spin quantum number ands
with a separation of ||, cf. Fig. 2c). Hence the condition used to distinguish the blocks. This implies that for each
that all the a eigenstates cross int@ states reduces to state with quantum numben, within the manifold of degen-
whetherd is of full rank, that is whether ranki) =g(m). eracyg(m), there exists a state of the same symmetry within
When the hetero- and homonuclear couplings are othe m—1 manifold. This is significant since this is exactly
similar strengths, the crossings may be strongly overlappethe condition required for complete polarization transfer be-
and can no longer be treated as simple two-level systems. tween two levels connected by the heteronuclear dipolar in-
teraction. Only if a level is isolated, that g,(m)>0 and
C. Effects of permutation symmetry gn(m—1)=0, can the polarization ah level be completely
prevented from exchanging with that of the-1 level. This
is consistent with previously published restfitsvhich

states failing to interact as a result of their belonging to dlf_showed that magnetic equivalence of thspins did not af-

ferent symmetry representgtlons. Itis |mp_ortapt tq EXamiNg. ot the 2D unitary bound for,S. In contrast, permutation
whether such further blocking of the Hamiltonian interferes : .
symmetry of all the spins did change the shape of the 2D

with polgrization transfer, especially as some permutatiorbound for instance for ah; system in which polarization
symmetries have been shown to _affe_ct th_e unitary batinds as béing transferred from onespin to the two other iden-
and are relevant to cross-polarlzanon in_scalar COUpl.e(givcal spins. This is not relevant, however, for heteronuclear
systems In the context of solid-state NMR where the domi- P

nant dipolar interactions are strongly orientation dependen? .The problem simplifies if all thé spins are identic@?
(_m _contrast with th? scglaﬂ_coupllngs which dominate In this case, the states in the coupled basis can be simply
liquid-state NMR, orientation-independent symmetry of the labelled|L, M, a) (|L,M, 8) for the corresponding S statd
couplings is relatively unusual. The only common example is ) T '

. . . o whereL and M are the quantum numbers for the coupled
inversion symmetry and so equivalence of all spins is only

possible inl,S, which has been considered in some detailstates. There is no mixing between states of different sym-

already in Sec. Il. Fast motion, however, may also rendanetry(mcludmg those with identicall values, and so cross

spins equivalent, e.g., freely rotating methyl groupsSy polarization is reduced to population inversion between all

and in liquid crystals where only the projection of the cou-the pairs of statefl,M - 1), |L,M, ). The effective het

plings on to the director axis survives the averaging due t(garonuclear coupling between these states is scaled by a factor

rapid motion about this axi& of \/L(L-_f-l?—_ M(M—-1) _relative to the coupling betweeh
) . L . ._and the individual nuclei.

If each subset of identical spins is transformed into its
coupled representation, the Hamiltonian for the compligte
system can be formed as usual from the direct product o
these representations to form a mixed coupled-uncouple
representation in which only identical spins are coupled. For  Since (high-speeil sample spinning does not signifi-
instance, an,l; system(a five spin-1/2 system made up of cantly change the nature of the APHH transfer, the generali-
one pair and one ftriplet of identical spjnwill contain a  sation of the theory of APHH for cross polarization k8
block which can be denoted(1,2)E(3,4,5), i.e., a X2 under MAS need only be presented in outline. The central
block resulting from the direct product of tHe=0 block  portion of the Floquet Hamiltonigh~28corresponding to Eq.
from the coupling of spins 1 and 2, and one of thel1/2  (3) for an|yS system can be written schematically as

Additional symmetry of the Hamiltonian may result in

é. APHH under MAS

181) |al) B0y |a0) 1B-1) la—1)
<,81| ZB+ D0+(UR do Dl dl D2 d2
(a1| do Za+D0+wR dl Dl d2 D2
(,80| D—l d—l Z,B+ Do do Dl dl (26)
(a’0| d71 D*l do Za+ DO dl Dl ’
<,3_1| D*Z d,z D*l d*l ZB+DO—wR do
(a—1| d_2 D_2 d—l D—l do Za+D0—wR
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whereZ (labelled byS spin statgis used to represent the rf |3/2,8) levels inl3S. The initial diagonal of the appropriate
terms, wg is the rotation frequency, amdj, andD,, are ma-  subblock of the density matrigroportional toF,), can be
trices corresponding to theth Fourier components of the represented

hetero- and homonuclear couplings, respectively. Under the
conditions of fast spinning at the magic angle, i@g,|Z|| 12,112,172, 3/2. (30

> di[,[IDy|, the Floquet matrix diagonalizes into blocks with  After APHH, the|3/2,8) population has exchanged with
similar diagonal termsthe secular approximationFor arbi-  that of one of thd1/2,a) states, e.g.,

trary values ofw,, wg and wg, these blocks correspond to

the individualZ submatrices and no polarization transfer is 172,312,172, 112. (31)
possible. At various resonance conditions, however, these

i ) The final population of thém, «) level is given by
blocks may be connected via tlg or D, matrices. In gen-

eral, these resonances occur at PM=g(m+1)(m+1)+[g(m)—g(m+1)]m
whereA,, Ag, andAy are the differences iR, eigenvalue, ~ In general, the final total populations of thelevel are
S, eigenvalue andN eigenvalue for any pair o diagonal given by
terms. Note that resonance phenomena can occur when
. . . m)m-+g(m+1) m=0,

and o, (and wg) are rational multiples of each other. This pm:[g( ym+g( ) (33
effect has been used to allow double-quantum transitions in g(m)(m+1) m<0
experiments to restore the dipolar interaction under MAS

- ) . g(m)(m—1) m=0,
and similar effects have recently been observed in the spin- P7= (34)
locking of quadrupolar nucléf but this complication need g(mm-g(m—-1) m<o0.

not be considered further.

Note thatg(m)=0 for values ofm outside the range df
The heteronuclear dipolar interaction is a flip—flop inter- g(m) g z

eigenvalues ¥,...,—M) and the sign ofm is significant

action, corresponding thl = —AS= = 1, with Fourier com-  qjn0 it affects the relative values gfm) andg(m-+1).
ponents ahN=0,=1,+2 and so the resonance condition is Hence the projection on t8, is given by
simply
1
ws=w +kog k=0,£1,+2. (28) <sZ>APHH=§§ PI— P (35)

Under these conditions, and assuming fast spinning

(which also disallows thé=0 condition for magic angle - |9(1/2)  2M odd,

=/ — 36
spinning, the Floquet matrix reduces to blocks of the form g(0) 2M even, (36)
Zs+Dg d nog O Wh_ere./l/ ':EMNMg(m) is the total number of states in the
dv Z,4De) Tl 0 negl (29 spin-system2N for I =1/2).

The Hartmann—Hahn match is slightly different, since
The resulting Hamiltonian is identical in form to the the populations are equilibrated rather than completely ex-
static Hamiltonian, cf. Eq(20), and so the dynamics are changed (implying that the maximum efficiency of a
identical® with the effective coupling constants being scaledHartmann—Han matching is always smaller than the maxi-
by the appropriate second-order reduced Wigner rotation manum efficiency of the APHH experimenUnlike the APHH
trix elementd(3). More significantly, the homonuclear cou- case wheré spin symmetry has no effect on the degree of
pling vanishes, sincdg%) and hencd®, vanishes at the magic polarization transfer, symmetry operations which further
angle. This implies that, to this order of approximation, theblock-diagonalize th&,+ S, blocks will slightly modify the
degree of spin order transfer cannot be improved by exploitfinal degree of polarization transfer. It is worth noting that
ing homonuclear interactions to otherwise uncoupled spinsSymmetry operations which reduce the number of states in
|m, 8) with which |m—1,a) can equilibrate ih>0) will re-
duce the extent of polarization transfer betwgganda S,
states. Indeed, the quasiequilibrium state has a complex de-
pendence on the details of the coupling netw§rkor sim-
plicity, however, we will ignore the effects of homonuclear
Under Hartmann—Hahn matching, a quasiequilibriumand heteronuclear coupling and assume complete
state is reached which corresponds to an equilibration of thequilibratior?* between allg(m—1) states ofm,«) and the
populations of matching and 8 manifold$®3! before spin- 9(m) states ofm,a).
lattice relaxation returns the spin system to full equilibrium.  For the levels of Eq(30), the final population distribu-
It is useful to calculate the projection on & of this state tion will be
and compare it to the_ limit from the APHH experiment.. 3/4, 3/4, 314, 3/4 37)
Consider population exchange between two manifolds
with the same eigenvalue ¢f,+S,, e.g., the|1/2«) and and in general

IV. EFFICIENCY OF APHH VS HARTMANN-HAHN
MATCHING
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pm-1 PT  g(m-1)(m—1)+g(m)m For experiments wherg,+S, is a constant of the mo-
g(m—1) = g(m) = g(m—1)+g(m) tion, APHH allows the maximum possible transferlaio S
magnetization il \S systems. This is true for both static and
g(m) spinning samples, for systems where symmetry consider-
=m-1 : (38) ations restrict which states can interact, and even in case
g(m—1)+g(m) ions restrict which states [ , ven i ses

where the adiabaticity conditions are not strictly maintained.
Note how eachm—1,a), [m,8) pair effectively has its own  Of course, this only represents a maximum efficiency and
spin temperature which depends on the degeneracies of thgyes not guarantees that this efficiency can be achieved, nor
levels involved. Semiclassical calculations based on spiyven that different techniques will not perform better in prac-
thermodynamics are clearly inappropriate for such small spifice than APHH. Analysis of cross polarization in terms of

systems. unitary bounds does, however, provide a target for experi-
The quaSiequilibriurTSz polarization iS then menta| practice to Strive for_
M
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approximation. Hence, the ratio of Eq$36) and(39) gives

(S)Hun 1 APPENDIX

lim =z. (40

v (SOaPHH 2 When the homonuclear couplings are negligibly small in

comparison with the heteronuclear couplings, thetS,
blocks of the Hamiltonian can be approximated by

o —AR21gm d
The theory of cross polarization via adiabatic sweeps dt A2 | ; (A1)
g(m-1)

through the Hartmann—Hahn matching conditiGhPHH)

has been extended to covieyS systems, including the ef- Whered is the matrix of heteronuclear couplings ahdan
fects of homonuclear coupling between thepins. In gen-  identity matrix of ordem.

eral terms, the presence of homonuclear coupling increases This matrix can be factored using the singular value
the range of the offset from match over which the rf must bedecompositiof of d, that is,

swept to maintain adiabaticity and ensure maximum polar-  g=ytAy, (A2)
ization transfer. For example, ihS systems in which the ) )

homonuclear coupling is larger than the heteronuclear cou¥here V and U are unitary matrices of ordeg(m) and
pling, the polarization transfer occurs in two distinct steps9(M—1), respectively, and is theg(m) x g(m—1) matrix
This broadening of match conditidwhich must be carefully ~containing theg(m) singular values ofl, \;,

V. SUMMARY

distinguished from inhomogeneous effects such as spatial A\, O - 0 0O --- 0

variations of the match conditiprmight seem entirely un- 0 A, - 0 0

welcome. If, however, not all thiespins are directly coupled A= : : 0 : o (m>0).
to the S spin, homonuclear couplings which connect other- 0 0 - 0 -~ 0

wise isolated spins td spins which are coupled t8 may g(m) (A3)
permit greater polarization transfer. A useful compromise in ) _

such systems might be to scale the linewidth of the homo- EQuation(Al) can then be written

nuclear coupling to within that of the heteronuclear coupling,/ — A/2 lg(m) d

e.g., using off-resonance decouplitfgExperimental at- df A2 )

tempts to observe APHH in the presence of extensive homo- 9(m=1)

nuclear coupling have been unsucces3tis unclear, how- _(VT 0 )( —A/2 1) A )(V 0)
ever, whether this is a fundamental problem or a failure to  ~ | 0 U' AT A2 lym-1y/10 U
maintain a strong spin-lock over the wide offset range re- —xtyx. (A4)

quired for an adiabatic transfer. In fast MAS experiments,
the homonuclear coupling is eliminated to first order and itis  The eigenvalues of EA1) can then be found by di-
unlikely that the residual homonuclear coupling could no-agonalizing matrixY. Y separates into a diagonal matrix
ticeably improve the degree of polarization transfer. QuantiA/2 |4, -1)-gm), the eigenstates of which form g(m
tative studies of the efficiency of adiabatic passage experi—1)—g(m) degenerate level of noninteractiggeigenstates
ments under MAS are underway in other laboratories. andg(m) 2X2 matrices of the form
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