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The theory describing nuclear magnetic resonance cross-polarization using adiabatic sweeps of the
rf spin-lock fields through the Hartmann–Hahn matching condition is extended to small
homonuclear coupled systems of the typeI NS. In particular, the connection is made between such
experiments and the associated theoretical limits on polarization transfer—the ‘‘unitary bounds’’—
demonstrating that these techniques can achieve the maximum transfer of polarization from theI
spins to theS spins, subject to the constraint of angular momentum conservation imposed by
spin-locking. Factors such as permutation symmetry of the spins, imperfect adiabaticity of
individual crossings and fast sample spinning are shown to have no fundamental impact on the
validity of these results. ©1997 American Institute of Physics.@S0021-9606~97!00445-5#
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I. INTRODUCTION

Cross polarization~CP! from high-g nuclei ~convention-
ally labeledI spins! to low-g nuclei ~S spins! is an essentia
step in the majority of solid-state nuclear magnetic resona
~NMR! experiments. Usually this is achieved by spi
locking the transverse magnetization, using continuous r
radiation, such that the field strengths on the two spin s
cies, v I and vS , satisfy the Hartmann–Hahn matchin
condition,1 uv I u5uvSu. Such cross polarization leads to
sensitivity enhancement ofg I /gS , which may be increased
further by increasing the repetition rate ifT1r of the I spins
is shorter than that of theS spins. The efficiency of the
experiment can be improved by adiabatically sweeping
amplitude of one~or both! of the rf fields through the
Hartmann–Hahn match such that the condition is satisfie
the approximate midpoint of the experiment. This appro
mately doubles the maximum possible efficiency relative
simple Hartmann–Hahn matching~vide infra!, as well as re-
ducing the difficulty of achieving the matching condition a
suppressing transient oscillations. This technique has b
successfully applied in liquid-state spectroscopy
J-coupled systems2,3 and in solids, under the acronym APH
~adiabatic passage through the Hartmann–Hahn condit!
for both static4 and spinning samples.5 Other modifications
of the Hartmann–Hahn matching condition to include qu
siadiabatic sweeps of the rf have also been reported.6,7

The theoretical description of the APHH experiment h
been presented for isolatedIS spin systems.4,5 The current
paper extends this theory to systems of the formI NS, that is,
systems of isolatedS spins coupled toN I spins, which may
themselves be coupled by the homonuclear dipolar inte
tion. The results are compared with the efficiency
Hartmann–Hahn matching experiments and general theo
ical constraints on the degree of polarization transfer.

a!Current address: Laboratoire de Ste´réochemie et des Interactions Mole´cu-
laires, Ecole Normale Supe´rieure de Lyon, 46 Alle´e d’Italie, 69364 Lyon,
France.
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II. ADIABATIC PASSAGE IN THE I2S SYSTEM

Before considering the generalI NS system, it is useful to
consider as a specific example the behavior of theI 2S system
under the conditions of the adiabatic passage at
Hartmann–Hahn condition~APHH! experiment. In the simu-
lation of Fig. 1 the spin-lock field onI is fixed (v I /2p
520 kHz), while the rf strength on theS nucleus is swept
through the Hartmann–Hahn condition. The time-depend
offset of theS spin rf is given by4

D~ t !5vS~ t !2v I5dest tan aS t

2
2t D 0<t<t, ~1!

a5
2

t
arctan

D~0!

dest
, ~2!

wheredest is an estimated dipolar linewidth~simply the het-
eronuclear coupling in anIS system!, t is the total contact
time, andD(0)/dest is the ratio of the initial offset to the
dipolar linewidth. This tangential time-dependence ensu
that the rf is swept relatively slowly through the approxima
matching condition; this functional form is a compromi
between linear rf sweeps which compensate well for va
tions in the match condition8 ~e.g., due to rf inhomogene
ities! and other forms which optimize the adiabaticity9 but
are less tolerant of mismatch.

In Fig. 1 there is a single heteronuclear coupling b
tween theS spin and one of the~coupled! I spins, and APHH
successfully transfers half theI spin magnetization to theS
spin, which is the maximum possible polarization transfer
this system, cf. Sec. III A. Although the homonuclear co
pling has no effect on the efficiency of transfer, it clear
modifies the matching condition; for this example, the hom
nuclear coupling exceeds the heteronuclear linewidth,
the polarization transfer occurs in two distinct steps se
rated by the homonuclear interaction strength. Note that o
a single crystallite orientation has been simulated and i
powder sample, this splitting of the matching condition w
be washed out by the orientation dependence of the coup
constants. The variation of the apparent matching condi
7/107(21)/8742/10/$10.00 © 1997 American Institute of Physics
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8743P. Hodgkinson and A. Pines: Cross-polarization efficiency
with orientation requires that both the initial rf offset,D~0!,
and the width over which the rf is swept slowly, be increas
if the adiabaticity conditions are to be satisfied.

Clearly, the homonuclear coupling must be included
any theoretical analysis of this system. In the doubly rotat
tilted frame~in which the quantisation axis,z, for both spins
lies along the spin-lock fields! the Hamiltonian for theI 2S
system is

H~ t !5H rf~ t !1VSSx1(
i

V i I xi12(
i

di I xiSx

1D~2I x1I x22I y1I y22I z1I z2!, ~3!

H rf~ t !5v I~ t !~ I z11I z2!1vS~ t !Sz , ~4!

whereVS andV i are the chemical shifts of spinS and theI
spins respectively,v I(t) and vS(t) denote the time-
dependent rf on theI and S spins, respectively,di is the
~orientation dependent! heteronuclear coupling constant be
tween theS spin and theI i spin, andD is the ~similarly
orientation dependent! homonuclear coupling between theI
spins.

It is convenient to keep one spin-lock field constant, s
v I , and sweep theS spin field through the Hartmann–Hah
condition, i.e.,vS(t)5v I1D(t) where D(t) is the time-
dependent offset from match. Hence the rf contribution
the Hamiltonian can be simplified to

H rf~ t !5v I~Fz1Sz!1D~ t !Sz , ~5!

whereFz is the sumz operator for theI spins,I z11I z2 for
I 2S.

Assuming that the rf is strong, i.e.,v I@di ,D,V i , this
diagonal term will dominate the Hamiltonian which can the
be divided into blocks of the same total magnetic quantu

FIG. 1. Simulations of the APHH experiment for a staticI 2S system. The
hetero- and homonuclear couplings are 500 and 1500 Hz, respectively.
polarization is initially on theI spins and the rf offset,D/2p, is swept from
a positive value through the Hartmann–Hahn condition~i.e., right to left in
the figure!. The parameters used to set the shape of the tangential rf sw
cf. Eq. ~1!, were v I /2p520 kHz, dest/2p51200 Hz, D(0)/2p57200 Hz
andt530 ms.
J. Chem. Phys., Vol. 107, N
d
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number,̂ Fz1Sz&. Assuming that all spins are spin-1/2, th
results in four diagonal blocks,^Fz1Sz&561/2,63/2. The
isolated 131^Fz1Sz&63/2 blocks can be ignored as the
will not lead to evolution of the initial density matrix, leav
ing the two 333 blocks corresponding tôFz1Sz&561/2.
Removing the diagonal terms inv I , which are proportional
to the identity matrix and therefore not important in descr
ing the dynamics of the system, these blocks are given b

S 2D/47D/2
d1/2
d2/2

d1/2
D/46D/2

D/4

d2/2
D/4

D/46D/2
D . ~6!

The adiabatic passage occurs in the eigenbasis of t
Hamiltonians. In the limit ofD@D,d, which is the case a
the beginning and end of the rf sweep, Eq.~6! is diagonal-
ized straightforwardly giving the eigenvalues and eigenv
tors:

~i! 7D/22D/4 ~1,0,0!,

~ii ! 6D/21D/2 ~0,1/&,1/& !, ~7!

~iii ! 6D/2 ~0,21/&,1/& !.

Applying the similarity transformation defined by th
eigenvectors~i!–~iii ! to Eq. ~6!,

S 2D/47D/2
d1/2

6d2/2

d1/2
D/26D/2

0

6d2/2
0

6D/2
D , ~8!

whered65(d16d2)/&.

The density matrix following the initial (p/2)y pulse, is
proportional toFz in the tilted rotating frame~assuming the
usual high temperature approximation!. This commutes with
the similarity transform of Eq.~7!, which fulfills the first
criterion for an adiabatic exchange,9,10 i.e., that the density
matrix must commence in a pure state of the Hamiltonian
H(t) changes sufficiently slowly, then the eigenstates of
density matrix will smoothly follow the eigenstates of E
~8!, i.e., no transitions are induced between eigenstates.
ure 2 plots these eigenvalues as a function ofD, revealing
which initial eigenstates cross into which final states. Unl
d1 andd2 are both zero~in which case cross polarization i
impossible! state~i! will cross over into state~ii ! or ~iii !. The
choice of final eigenstate depends on which crossing is
countered first~which in turns depends on the sign ofD, and
whetherD approaches zero from below or above!, and on
whether the first crossing is avoided~i.e., whetherd6 is neg-
ligibly small!.

The result of the adiabatic transfer is to exchange
corresponding diagonal elements of the density matrix in
Eq. ~7! eigenbasis,r8, e.g., for thê Fz1Sz&51/2 block with
transfer occurring between states~i! and ~ii !, linked by the
d1 matrix element,

he

ep,
o. 21, 1 December 1997
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8744 P. Hodgkinson and A. Pines: Cross-polarization efficiency
r8~0!5Fz5S 1/2

21/2

21/2
D

→r8~t!5S 21/2

1/2

21/2
D . ~9!

The similarity transform of Eq.~7! commutes withSz ,
hencê Sz&5Tr(rSz)5Tr(r8Sz). As a result, the finalS spin
polarization is independent of which states exchange po
lations. Which crossing is taken will, however, affect the
field at which the transfer occurs. For example, ifd1 andd2

are nonzero andD is positive, decreasing the rf offsetD will
lead first to a crossing in the block of the density matr
corresponding tô Fz1Sz&521/2 at D53D/4, Fig. 2~a!,
followed by a subsequent crossing atD52D/4 in the ^Fz

1Sz&51/2 block. These crossings will only be distinct i

FIG. 2. Eigenvalues of Eq.~6!, ^Fz1Sz&51/2: ~a! ud1uÞud2u, DÞ0, ~b!
d15d2 , DÞ0, and~c! D50. The labels~i!–~iii ! correspond to the limiting
eigenstates of Eq.~7!. The horizontal scale isD/D for ~a! and ~b!, and
D/Ad1

21d2
2 for ~c!.
J. Chem. Phys., Vol. 107, N
u-
f

ud6u,uDu with the separation of the eigenvalues at the cro
ing given by twice the connecting matrix element,ud6u. If,
on the other hand,uDu!ud6u, Fig. 2~c!, two of the three
states are effectively degenerate and there is a single cros
point at D50 with the separation of states given b
Ad1

21d2
2.

We can describe the effect of imperfect adiabaticity
terms of the parameteru which describes the rotation applie
to the fictitious spin-1/2I z operator appropriate to the tran
sition cf. Sec. III B. At the end of a truly adiabatic passa
u5p corresponding to a full inversion of the populations
the states involved. Other values ofu correspond to imper-
fect inversion with the limit ofu50 corresponding to a sud
den transition in which no population is transferred. If w
consider the subsystem above starting in the pure state
only level-1 populated,r118 (0)51, the total population of the
2 and 3 levels after passage through the 1-2 and 1-3 tra
tions can be straightforwardly shown to be

r228 ~t!1r338 ~t!5 3
42

1
4 cosu1-22 1

4 cosu1-3

2 1
4 cosu1-2 cosu1-3. ~10!

If any cosu i2j521, this expression has the value
corresponding to full exchange of population between leve
and the 2/3 levels. Only ifboth transitions are nonadiabatic i
the population exchange reduced.

III. ADIABATIC TRANSFER IN INS

A. Unitary bounds on polarization transfer

If the density matrix is initially in a pure state,B, the
transfer of this coherence into another state,A ~which com-
mutes withB! can be represented

B→aA1bB1••• . ~11!

The maximum efficiency is, therefore, given by th
maximum coefficient ofA, uau. The requirement that the
square-norm of the density matrix be conserved leads to
so-called entropy or thermodynamic bound ona

amax
entropy5

iBi2

iAi2 . ~12!

In NMR experiments, however, the only transformatio
that can be applied directly to the density matrix are unit
ones. As shown by So”rensen and co-workers,11–15 this fur-
ther restrictsamax to

amax
unitary5

L~A!•L~B!

L~A!•L~A!
, ~13!

whereL(X) denotes the vector of the ordered eigenvalues
X.

A unitary transform cannot change the eigenvalues or,
and the maximum value ofa corresponds to maximising th
projection of the eigenvalue vector ofA on to the eigenvalue
vector ofB. Only if the eigenvalues ofB match those ofA
~in which caseA and B are related directly by a unitary
transform! will the unitary bound equal the entropy boun
o. 21, 1 December 1997
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8745P. Hodgkinson and A. Pines: Cross-polarization efficiency
derived on the basis of the conservation of spin order. T
unitary bound can only be circumvented by invoking nonu
tary process such as relaxation.16

The cross-polarization experiment can be convenie
visualized in terms of the two-dimensional~2D! generaliza-
tion of the unitary bound,14 that is, a plot of the accessibl
values ofa andb for a transfer between two states,B→A.
The 2D unitary bounds on theFz→Sz transfer are shown fo
IS, I 2S and I 3S in Fig. 3, see Ref. 14 for other such dia
grams forI NSM . These bounds are traced out by swapp

FIG. 3. Unitary bound~area enclosed by solid lines! for the transfer of
coherence fromFz to Sz for I NS, N51,2,3. The vertical axes are scaled b
1/AN so that the entropy bound~dashed! line remains circular. The thick-
ened segments correspond to states for which^Fz1Sz&51. Only states cor-
responding to points within the unitary bound can be accessed by a de
matrix starting inFz and subjected to purely unitary transforms.
J. Chem. Phys., Vol. 107, N
e
-

ly

g

eigenvalues of the density matrix so as to maximize the
crease in the projection on toSz for a given decrease in th
projection on to the initial state,Fz . For I NS andS51/2, the
eigenvalues ofFz can be ordered

~Mg~M !
a ,~M21!g~M21!

a ,...,~2M11!g~M21!
a ,~2M !g~M !

a
,

~14!
Mg~M !

b ,~M21!g~M21!
b ,...,~2M11!g~M21!

b ,~2M !g~M !
b ),

where (m)n
a denotes an eigenvaluem repeatedn times with

the superscript indicating the state of theS spin. M is the
maximum value of̂ Fz&, andg(m) is the degeneracy of the
m state ofFz . Note that this applies toI spins of arbitrary
spin quantum numbers although, in practice, the strong q
drupolar interactions of spinsI .1/2 cannot be effectively
spin-locked in this frame of reference.

The problem of choosing which eigenvalues should
exchanged can be formulated generally. Ifd andf denote the
initial and target eigenvalue vector, respectively, ande the
current state, and usingen to denote thenth element ofe,
etc., the changes in projection,DL, caused by swapping el
ementsm andn are given by

DL~d!5S dmen1dnem1 (
iÞm,n

diei D 2(
i

diei

5~dm2dn!~en2em!, ~15!

DL~ f!5•••5~ f m2 f n!~en2em!. ~16!

Hence, we need to maximize

UDL~ f!

DL~d!
U5U f m2 f n

dm2dn
U ~enÞem!. ~17!

In the case ofS51/2, u f m2 f nu can only take the value 1
The smallest nonzero difference ofd values is also 1
~the spacing of angular momentum levels!, hence
uDL(f)/DL(d)u51. The 2D bounds thus commence from
state of maximum polarization with a line of unit gradie
(^Fz&512^Sz&), the thickened segments of Fig. 3. Note th
several pairs of states may have the samef andd eigenval-
ues; the corresponding segment of the 2D bound is traced
by exchanging all of these pairs.

It is important to note that neither the Hartmann–Ha
matching experiment nor APHH~or related experiments!
reach the simple one-dimensional bound on the maxim
coefficient ofSz given by Eq.~13!. This is a result of the
strong spin-lock fields which imply that̂Sz& and ^Fz& re-
main good quantum numbers throughout the experiment
sulting in the conservation of̂Fz1Sz&. This constrains the
projection of the density matrix on to theFz ,Sz plane to lie
on the line^Fz1Sz&51,17 which coincides with the first seg
ment of the unitary bound derived above. The maximu
coefficient ofSz corresponds to the point where shape of t
unitary bound diverges from this line, that is the ends of
thickened segments in Fig. 3. ForIS and I 2S, the APHH
experiment reaches this point, witĥSz&(t)5^Fz&(0)
and ^Sz&(t)5^Fz&(0)/2, respectively. In contrast, th
Hartmann–Hahn matching experiment results in a quasie

ity
o. 21, 1 December 1997
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8746 P. Hodgkinson and A. Pines: Cross-polarization efficiency
librium state of the density matrix.18 This point corresponds
to a S spin magnetization of about half that of the adiaba
transfer experiments, cf. Sec. IV.

If ^Fz1Sz& is not conserved, more complete polarizati
transfer is possible cf. the optimal sequences developed
I NS cross polarization in liquids.11 This limitation can, for
instance, be avoided using multiple-quantum transitions,
flipping more than oneI spin for eachS spin flop.19 The
practicality of such gedanken experiments has yet to be d
onstrated, and so the polarization transfers correspondin
the remaining segments of the 2D unitary bound are
considered further. It is also important to note that t
ADRF/ARRF experiment is not subject to this limitation an
can, potentially, achieve full polarization transfer, within t
limit of the unitary bound.20 This experiment involves adia
batically demagnetizing theI spins in the rotating frame
~ADRF!, followed by remagnetization of theS spins.21 The
ordering of the eigenstates during the adiabatic passag
however, strongly dependent on the details of the hom
nuclear and heteronuclear coupling network and full po
ization transfer cannot always be achieved. The reorderin
states under the influence of homonuclear couplings is p
ably a better explanation for the often poor performance
ADRF than the supposition of fast relaxation of the interm
diate dipolar order.

It is instructive to examine in general under what con
tions an adiabatic sweep can achieve the limit set by
unitary bound. This involves determining the evolution
the density matrix as a result of the APHH experiment. T
Hamiltonian is truncated by the strong rf term (Fz1Sz) and
so evolution of the density matrix can only occur with
blocks of the same total spin quantum number,^Fz1Sz&,
i.e., between (m21)a and (m)b states. Each (m21)a

2(m)b block of the initial density matrix, proportional to
Fz , can be represented schematically

S mIg~m!

0
0

~m21!Ig~m21!
D , ~18!

whereIn is an identity matrix of ordern.
When the rf is strong anduD(t)u is large, the correspond

ing portion of the Hamiltonian, Eq.~3!, is truncated byH rf ,
Eq. ~5!, to

S B
0

0
A D , ~19!

where A and B consist of diagonal rf terms, (m21/2)v I

7D/2, and homonuclear coupling terms; the off-diagon
heteronuclear coupling blocks are eliminated by the trun
tion. The component proportional to the identity, (m
21/2)v I I , although responsible for the truncation, is irre
evant to the evolution of the subsystem and can be drop
leaving the secular terms7D/2. The eigenvectors of this
block-diagonal matrix fall into two sets:g(m21) eigenvec-
tors within A, corresponding toa S states, andg(m) b
eigenvectors inB.

The evolution of the system can be followed in t
eigenbasis which diagonalizes the rf Hamiltonian. This i
tial density matrix commutes with this transformation and
J. Chem. Phys., Vol. 107, N
c
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the evolution of the density matrix can be reduced to th
exchange of the diagonal population elements with corre
spond to the eigenstates of the Hamiltonian. Provided th
evolution is adiabatic, i.e., the passage through avoide
crossings of the Hamiltonian is sufficiently slow that that no
transitions between eigenstates occur, then it is only nece
sary to determine which eigenstates of the final Hamiltonia
correspond to which eigenstates of the initial Hamiltonian.

For general rf offsets,D, the partially-diagonalized
Hamiltonian has the form

S B8 d8

~d8!† A8
D , ~20!

whereA8 andB8 are the diagonal forms ofA andB, andd8
is the transformed matrix of heteronuclear couplings. Equ
tion ~20! is the schematic generalization of Eq.~8!. Assum-
ing that the crossings between thea eigenstates and theb
eigenstates are avoided, theng(m) a eigenstates will ex-
change with b eigenstates, leaving (g(m21)2g(m)) b
eigenstates localized in theB submatrix cf. Figs. 2 and 4. In
terms of the density matrix, this corresponds to an exchan
of the g(m21) diagonal terms ofA with g(m21) of the
diagonal terms ofB. This is equivalent to the exchange of
eigenvalues used to find the 2D unitary bound earlier. Th
density matrix must then be transformed from the eigenbas
of the rf Hamiltonian into the initial frame of reference. This
generally results in off-diagonal terms in the final density
matrix, but since this similarity transform commutes with
Sz , the finalS spin polarization, Tr(rSz), is unaffected. The
assumption thatg(m)<g(m21) is, of course, only valid for
m.0; analogous arguments apply, however, form,0.

The completeness of this polarization transfer require
that all g(m) a eigenstates cross intob eigenstates. Clearly
if there is no coupling pathway between anl spin and theS
spin, then no polarization transfer is possible from that spin
and so the number of spins,N, should only include spins
with at least one coupling pathway to theS spin. In the large

FIG. 4. Eigenvalues of Eq.~21! as a function ofD for D51, d50.2.
o. 21, 1 December 1997
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8747P. Hodgkinson and A. Pines: Cross-polarization efficiency
D limit, the plot of the eigenvectors as a function ofD con-
sists of two sets~a and b! of states corresponding tôSz&
561/2. With the degeneracy of the states lifted by fin
homonuclear couplings and in the absence of symm
~which is discussed in more detail below!, eachb eigenstate
must cross into a state ofa character. Even if this stat
crosses with anotherb state, it in turn must encounter an
other a state into which it can cross, sinceg(m)<g(m
21). Note that there areg(m21)2g(m) states which re-
main a states through the manifold crossing. This is illu
trated in Fig. 4 for the eigenvalues of a matrix of the form

S 2D/22D/2
0
d
d
d

0
2D/21D/2

d
d
d

d
d

D/22D
0
0

d
d
0

D/2
0

d
d
0
0

D/21D

D .

~21!

Note how the eigenstate marked by the solid line conne
thea (D/2) manifold atD→` with theb (2D/2) manifold
at D→2`.

It is possible that small couplings between eigensta
may result in nonadiabatic transfer. As shown earlier for
specific I 2S case, such crossing failures do not, howev
preclude full polarization transfer. Only if there are no cro
ings at all between one of thea states and any ofb states is
the polarization transfer guaranteed to be incomplete.
practice, crossings will often fall in the intermediate regim
where the crossing is not so fast that it is missed entirely~the
sudden approximation!, nor sufficiently slow to be truly adia
batic. In these cases thea eigenstate polarization may cros
into more than oneb state. Of course, anya polarization that
remains untransferred tob states corresponds to a loss
efficiency but for systems where there are several poss
crossings, the adiabaticity of individual crossings may
quite poor without the polarization loss becoming unacce
ably high. If polarization is transferred into multipleb states,
the final density matrix will no longer be in a pure state
the rf Hamiltonian and will oscillate~Rabi oscillations! be-
tween states at frequencies determined by their energy s
ration. Tr(rSz), however, is independent of the populatio
distribution of these states at largeuDu, and this break-down
of adiabaticity is only observable as transient oscillations
the plot of ^Sz& vs time around the crossings~where the
eigenstates of the total Hamiltonian are not eigenstates o
rf Hamiltonian!. These oscillations are visible in Fig. 1
where the sweep is still sufficiently slow that the over
polarization transfer is complete.

B. Adiabaticity of crossings

For a passage through a crossing of states to be t
adiabatic, two conditions must be fulfilled. The density m
trix at the start and end of the passage must be in an ei
state of the Hamiltonian and the rate of change of the den
matrix must be small. These conditions can be convenie
J. Chem. Phys., Vol. 107, N
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expressed for a crossing of two states in terms of fictitio
spin-1/2 operators22,23 for the two levels involved.4 The den-
sity matrix at timet is proportional to

I z cosu~ t !1I x sin u~ t !, ~22!

whereu(t) is the angle between the density matrix at timet
and I z ,

tan u~ t !5di /D i~ t !, ~23!

whereD i is the offset of the rf from thei th crossing anddi is
the separation of the states ati th crossing~equal to the cou-
pling between the states!.

With the initial density matrix proportional toI z , adia-
batic inversion requires firstly thatu i(0)50 andu i(t)5p,
corresponding toD i(0)52D i(t)5`, and secondly that

Q~ t !5AD i~ t !21di
2Y du~ t !

dt
@1, ~24!

whereQ(t) is the adiabaticity factor.9

Failure to start the sweep in an eigenstate of the Ham
tonian @i.e., using an initial offset,D~0!, that is too small#
leads to oscillations which may persist through the trans
It is noteworthy that these oscillations are most noticeable
IS systems and tend to be suppressed by homonuclear
plings. Since the eigenvalues are continuous, the requirem
that the density matrix begins each crossing in an eigens
is automatically fulfilled provided that the density matrix b
gins in pure eigenstates of the Hamiltonian and subseq
crossings are close to adiabatic. As seen above, these c
tions can be relaxed if, as is invariably the case, we o
require adiabaticity of the overallFz→Sz transfer rather than
adiabaticity of individual crossings.

Where the crossings in a multilevel system are we
separated or involve independent states, each crossing c
considered separately and the overall adiabaticity can be
sumed to be limited by the minimum value ofQi(t) for any
crossingi . Assuming thatD(t) is adjusted so that it follows
a suitable functional form for each crossing, thenQi(t) will
generally have its minimum value at the crossing point of
states involved. This is certainly true for a matched tang
tial sweep sincedu/dt is a constant for this form ofD(t).4

Hence it is usually sufficient to assume that the maxim
sweep rate is limited byudi u, the minimum separation of the
states.

Some general conclusions about the separation of eig
states and hence the adiabaticity of crossings can be draw
the two limiting cases ofvD!vd and vD@vd , wherevD

andvd denote the linewidths of the homonuclear and hete
nuclear couplings, respectively. WhenvD@vd , e.g., Figs.
2~a! and 2~b!, then the separation of eigenstates is found
the diagonalization of thea andb blocks of the Hamiltonian.
In the notation of Eq.~20!, the couplings between theg(m)
a andg(m21) b states given by theg(m)3g(m21) ma-
trix d8. Figures 2~a! and 4 illustrate the usual pattern o
crossings that result. Symmetry may result in some n
avoided crossings, e.g., Fig. 2~b!.

As shown in the Appendix, whenvD@vd the eigenval-
ues of the Hamiltonianm.0 blocks can be divided into two
o. 21, 1 December 1997
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sets: a (g(m21)2g(m)) degenerate level of noninteractin
a eigenstates andg(m) pairs of eigenvalues given by

g i56AD2/41l i
2, ~25!

where l i are the singular values of the matrix of heter
nuclear couplingsd. These pairs of states all cross atD50
with a separation of 2ul i u, cf. Fig. 2~c!. Hence the condition
that all the a eigenstates cross intob states reduces to
whetherd is of full rank, that is whether rank(d)5g(m).

When the hetero- and homonuclear couplings are
similar strengths, the crossings may be strongly overlap
and can no longer be treated as simple two-level system

C. Effects of permutation symmetry

Additional symmetry of the Hamiltonian may result
states failing to interact as a result of their belonging to d
ferent symmetry representations. It is important to exam
whether such further blocking of the Hamiltonian interfer
with polarization transfer, especially as some permutat
symmetries have been shown to affect the unitary boun24

and are relevant to cross-polarization in scalar coup
systems.3 In the context of solid-state NMR where the dom
nant dipolar interactions are strongly orientation depend
~in contrast with the scalarJ couplings which dominate
liquid-state NMR!, orientation-independent symmetry of th
couplings is relatively unusual. The only common example
inversion symmetry and so equivalence of all spins is o
possible inI 2S, which has been considered in some de
already in Sec. II. Fast motion, however, may also ren
spins equivalent, e.g., freely rotating methyl groups (I 3S)
and in liquid crystals where only the projection of the co
plings on to the director axis survives the averaging due
rapid motion about this axis.25

If each subset of identical spins is transformed into
coupled representation, the Hamiltonian for the completeI N

system can be formed as usual from the direct produc
these representations to form a mixed coupled-uncou
representation in which only identical spins are coupled.
instance, anI 2I 3 system~a five spin-1/2 system made up o
one pair and one triplet of identical spins! will contain a
block which can be denotedA(1,2)E(3,4,5), i.e., a 232
block resulting from the direct product of theI 50 block
from the coupling of spins 1 and 2, and one of theI 51/2
J. Chem. Phys., Vol. 107, N
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blocks from the coupling of spins 3, 4, and 5. Only transfe
between blocks of the same symmetry are permitted.

It is important to note that each symmetry block, such
A(1,2)E(3,4,5), is itself the representation of an angu
momentum operator. In particulargn(m)<gn(m21) (m
.0), wherem denotes the spin quantum number andn is
used to distinguish the blocks. This implies that for ea
state with quantum numberm, within the manifold of degen-
eracyg(m), there exists a state of the same symmetry wit
the m21 manifold. This is significant since this is exact
the condition required for complete polarization transfer b
tween two levels connected by the heteronuclear dipolar
teraction. Only if a level is isolated, that isgn(m).0 and
gn(m21)50, can the polarization ofm level be completely
prevented from exchanging with that of them21 level. This
is consistent with previously published results24 which
showed that magnetic equivalence of theI spins did not af-
fect the 2D unitary bound forI 2S. In contrast, permutation
symmetry of all the spins did change the shape of the
bound, for instance for anI 3 system in which polarization
was being transferred from oneI spin to the two other iden-
tical spins. This is not relevant, however, for heteronucl
CP.

The problem simplifies if all theI spins are identical.2,3

In this case, the states in the coupled basis can be sim
labelleduL,M ,a& ~uL,M ,b& for the correspondingb S state!,
whereL and M are the quantum numbers for the coupl
states. There is no mixing between states of different sy
metry ~including those with identicalL values!, and so cross
polarization is reduced to population inversion between
the pairs of statesuL,M21,a&, uL,M ,b&. The effective het-
eronuclear coupling between these states is scaled by a f
of AL(L11)2M (M21) relative to the coupling betweenS
and the individualI nuclei.

D. APHH under MAS

Since ~high-speed! sample spinning does not signifi
cantly change the nature of the APHH transfer, the gener
sation of the theory of APHH for cross polarization ofIS
under MAS5 need only be presented in outline. The cent
portion of the Floquet Hamiltonian26–28corresponding to Eq.
~3! for an I NS system can be written schematically as
�

^b1u

^a1u

^b0u

^a0u

^b21u

^a21u

ub1& ua1& ub0& ua0& ub21& ua21&

S Zb1D01vR d0 D1 d1 D2 d2

d0 Za1D01vR d1 D1 d2 D2

D21 d21 Zb1D0 d0 D1 d1

d21 D21 d0 Za1D0 d1 D1

D22 d22 D21 d21 Zb1D02vR d0

d22 D22 d21 D21 d0 Za1D02vR

D
�

, ~26!
o. 21, 1 December 1997
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whereZ ~labelled byS spin state! is used to represent the
terms,vR is the rotation frequency, anddn andDn are ma-
trices corresponding to thenth Fourier components of th
hetero- and homonuclear couplings, respectively. Under
conditions of fast spinning at the magic angle, i.e.,vR ,iZi
@idi i ,iDi i , the Floquet matrix diagonalizes into blocks wi
similar diagonal terms~the secular approximation!. For arbi-
trary values ofv I , vS andvR , these blocks correspond t
the individualZ submatrices and no polarization transfer
possible. At various resonance conditions, however, th
blocks may be connected via thedn or Dn matrices. In gen-
eral, these resonances occur at

D Iv I1DSvS1DNvR50, ~27!

whereD I , DS , andDN are the differences inFz eigenvalue,
Sz eigenvalue andN eigenvalue for any pair ofZ diagonal
terms. Note that resonance phenomena can occur whenvR

and v I ~and vS! are rational multiples of each other. Th
effect has been used to allow double-quantum transition
experiments to restore the dipolar interaction under MA29

and similar effects have recently been observed in the s
locking of quadrupolar nuclei,30 but this complication need
not be considered further.

The heteronuclear dipolar interaction is a flip–flop inte
action, corresponding toDI 52DS561, with Fourier com-
ponents atDN50,61,62 and so the resonance condition
simply

vS5v I1kvR k50,61,62. ~28!

Under these conditions, and assuming fast spinn
~which also disallows thek50 condition for magic angle
spinning!, the Floquet matrix reduces to blocks of the for

S Zb1D0

d2k

dk

Za1D0
D1S nvR

0
0

nvR
D . ~29!

The resulting Hamiltonian is identical in form to th
static Hamiltonian, cf. Eq.~20!, and so the dynamics ar
identical,5 with the effective coupling constants being scal
by the appropriate second-order reduced Wigner rotation
trix elementdk0

(2) . More significantly, the homonuclear cou
pling vanishes, sinced00

(2) and henceD0 vanishes at the magi
angle. This implies that, to this order of approximation, t
degree of spin order transfer cannot be improved by exp
ing homonuclear interactions to otherwise uncoupled spi

IV. EFFICIENCY OF APHH VS HARTMANN–HAHN
MATCHING

Under Hartmann–Hahn matching, a quasiequilibriu
state is reached which corresponds to an equilibration of
populations of matchinga andb manifolds18,31 before spin-
lattice relaxation returns the spin system to full equilibriu
It is useful to calculate the projection on toSz of this state
and compare it to the limit from the APHH experiment.

Consider population exchange between two manifo
with the same eigenvalue ofFz1Sz , e.g., theu1/2,a& and
J. Chem. Phys., Vol. 107, N
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u3/2,b& levels in I 3S. The initial diagonal of the appropriat
subblock of the density matrix~proportional toFz!, can be
represented

1/2, 1/2, 1/2, 3/2. ~30!

After APHH, theu3/2,b& population has exchanged wit
that of one of theu1/2,a& states, e.g.,

1/2, 3/2, 1/2, 1/2. ~31!

The final population of theum,a& level is given by

Pa
m5g~m11!~m11!1@g~m!2g~m11!#m

5g~m11!1g~m!m. ~32!

In general, the final total populations of them level are
given by

Pa
m5H g~m!m1g~m11! m>0,

g~m!~m11! m,0
~33!

Pb
m5H g~m!~m21! m>0,

g~m!m2g~m21! m,0.
~34!

Note thatg(m)50 for values ofm outside the range ofFz

eigenvalues (M ,...,2M ) and the sign ofm is significant
since it affects the relative values ofg(m) andg(m11).

Hence the projection on toSz is given by

^Sz&APHH5
1

2(m Pa
m2Pb

m ~35!

5N 2 Hg~1/2!

g~0!

2M odd,
2M even, ~36!

whereN 5(2M
M g(m) is the total number of states in theI

spin-system~2N for I 51/2!.
The Hartmann–Hahn match is slightly different, sin

the populations are equilibrated rather than completely
changed ~implying that the maximum efficiency of a
Hartmann–Han matching is always smaller than the ma
mum efficiency of the APHH experiment!. Unlike the APHH
case whereI spin symmetry has no effect on the degree
polarization transfer, symmetry operations which furth
block-diagonalize theFz1Sz blocks will slightly modify the
final degree of polarization transfer. It is worth noting th
symmetry operations which reduce the number of state
um,b& with which um21,a& can equilibrate (m.0) will re-
duce the extent of polarization transfer betweenb anda Sz

states. Indeed, the quasiequilibrium state has a complex
pendence on the details of the coupling network.18 For sim-
plicity, however, we will ignore the effects of homonucle
and heteronuclear coupling and assume comp
equilibration31 between allg(m21) states ofum,a& and the
g(m) states ofum,a&.

For the levels of Eq.~30!, the final population distribu-
tion will be

3/4, 3/4, 3/4, 3/4 ~37!

and in general
o. 21, 1 December 1997
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Pa
m21

g~m21!
5

Pb
m

g~m!
5

g~m21!~m21!1g~m!m

g~m21!1g~m!

5m211
g~m!

g~m21!1g~m!
. ~38!

Note how eachum21,a&, um,b& pair effectively has its own
spin temperature which depends on the degeneracies o
levels involved. Semiclassical calculations based on s
thermodynamics are clearly inappropriate for such small s
systems.

The quasiequilibriumSz polarization is then

^Sz&HH5
1

2 (
m52M

M

g~m!S 11
g~m11!

g~m!1g~m11!

2
g~m!

g~m21!1g~m! D . ~39!

In the limit of a large number of spins,g(m21)
'g(m)'g(m11) and the fractional terms of Eq.~39! will
cancel ~i.e., a common spin temperature becomes a g
approximation!. Hence, the ratio of Eqs.~36! and~39! gives

lim
M→`

^Sz&HH

^Sz&APHH
5

1

2
. ~40!

V. SUMMARY

The theory of cross polarization via adiabatic swee
through the Hartmann–Hahn matching condition~APHH!
has been extended to coverI NS systems, including the ef
fects of homonuclear coupling between theI spins. In gen-
eral terms, the presence of homonuclear coupling incre
the range of the offset from match over which the rf must
swept to maintain adiabaticity and ensure maximum po
ization transfer. For example, inI 2S systems in which the
homonuclear coupling is larger than the heteronuclear c
pling, the polarization transfer occurs in two distinct ste
This broadening of match condition~which must be carefully
distinguished from inhomogeneous effects such as sp
variations of the match condition! might seem entirely un-
welcome. If, however, not all theI spins are directly coupled
to the S spin, homonuclear couplings which connect oth
wise isolated spins toI spins which are coupled toS may
permit greater polarization transfer. A useful compromise
such systems might be to scale the linewidth of the hom
nuclear coupling to within that of the heteronuclear couplin
e.g., using off-resonance decoupling.32 Experimental at-
tempts to observe APHH in the presence of extensive ho
nuclear coupling have been unsuccessful.5 It is unclear, how-
ever, whether this is a fundamental problem or a failure
maintain a strong spin-lock over the wide offset range
quired for an adiabatic transfer. In fast MAS experimen
the homonuclear coupling is eliminated to first order and i
unlikely that the residual homonuclear coupling could n
ticeably improve the degree of polarization transfer. Qua
tative studies of the efficiency of adiabatic passage exp
ments under MAS are underway in other laboratories.
J. Chem. Phys., Vol. 107, N
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For experiments whereFz1Sz is a constant of the mo
tion, APHH allows the maximum possible transfer ofI to S
magnetization inI NS systems. This is true for both static an
spinning samples, for systems where symmetry consid
ations restrict which states can interact, and even in ca
where the adiabaticity conditions are not strictly maintain
Of course, this only represents a maximum efficiency a
does not guarantees that this efficiency can be achieved
even that different techniques will not perform better in pra
tice than APHH. Analysis of cross polarization in terms
unitary bounds does, however, provide a target for exp
mental practice to strive for.
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APPENDIX

When the homonuclear couplings are negligibly small
comparison with the heteronuclear couplings, theFz1Sz

blocks of the Hamiltonian can be approximated by

S 2D/2 Ig~m!

d†
d

D/2 Ig~m21!
D , ~A1!

whered is the matrix of heteronuclear couplings andIn an
identity matrix of ordern.

This matrix can be factored using the singular val
decomposition33 of d, that is,

d5V†LU, ~A2!

where V and U are unitary matrices of orderg(m) and
g(m21), respectively, andL is theg(m)3g(m21) matrix
containing theg(m) singular values ofd, l i ,

L5S l1

0
A
0

0
l2

A
0

•••
•••
�

•••

0
0
0

lg~m!

0
0
A
0

•••
•••
�

•••

0
0
A
0
D ~m.0!.

~A3!

Equation~A1! can then be written

S 2D/2 Ig~m!

d†
d

D/2 Ig~m21!
D

5S V†

0
0
U†D S 2D/2 Ig~m!

L†
L

D/2 Ig~m21!
D S V

0
0
UD

5X†YX . ~A4!

The eigenvalues of Eq.~A1! can then be found by di-
agonalizing matrixY. Y separates into a diagonal matr
D/2 Ig(m21)2g(m) , the eigenstates of which form ag(m
21)2g(m) degenerate level of noninteractingb eigenstates
andg(m) 232 matrices of the form
o. 21, 1 December 1997
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S 2D/2
l i

l i

D/2D ~A5!

with eigenvalues

g i56AD2/41l i
2. ~A6!

The eigenvalues of Eq.~A1! can be expressed more sim
ply if g(m)51 (m.0). The eigenvalues,g, are given by the
solution of

U2D/22g
d1/2

A
dg~m21!/2

d1/2
D/22g

A
0

•••
•••
�

•••

dg~m21!/2
0
A

D/22g

U50 ~A7!

and so

g56AD2/41(
j

dj
2/4 ~A8!

plus g(m21)21 repeated roots,g5D/2. This corresponds
to a single avoided crossing with an effective coupling giv
by

deff
2 5 (

j

g~m21!

dj
2. ~A9!
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