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The combination of double-quantum NMR with magic angle spining 1s demonstrated for deuterium in solids Under
magic angle spinning the single-quantum resonance lines are extremely sensitive to spinner angle adjustment and stabiity
while the double-quantum lines are not This provides an additional approach to high resolution.

1. Introduction

It was recently demonstrated that hugh-resolution
deuternum NMR in solids may be accomphished by magic
angle sample spinning even when the rotation frequency,
. /21 = 1 kHz, 1s much less than the quadrupole cou-
pling, wq /27 = 2e29Q/h ~ 130 kHz [1-4] The sample
rotation removes the broadening of spectra of amorphous
and polycrystailine samples due to the anisotropic
quadrupole and chemical-shift interactions. Isotropic
chemical-shift spectra can be obtained by sampling the
free induction decay (FID) synchronously with the
sample rotation [5] . This results in a narrowing of the
deuterium powder spectra by a factor of 1/2 (3cos28
— 1), where 0 1s the angle between the spinner axis and
the direction of laboratory magnetic field, B, Practically,
this yields a narrowing of about three orders of magni-
tude. Thus an extremely stable sample spinner is re-
quired, which is descnbed elsewhere [4] . having angular
fluctuations smaller than a few milhdegrees However,
it was recently shown that by detecting the deuterium
double-quantum transitions the anisotropic chermical-
shift spectra can be obtamed since the double-quantum
absorption lines are free of large first-order quadrupolar
broadening [6—10] A novel possibility, which we
demonstrate here, 1s to combine magic angle spinning
with double-quantum NMR in an alternative approach
to high resolution n solids. In remowving the quadrupole
coupling via the detection of double-quantum transi-
tions the spinner requirements become much less strin-
gent since it has only to remove the smaller chemaical-
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shift anisotropy as in the case of high-resolution magic
angle 13C NMR.

2. Double-quantum Fourier transform NMR in rotating
solids

The “forbidden’” deuterium (/ = 1) double-quantum
transitions (Am = 2) are independent of the quadrupole
coupling to first order. Thus the double-quantum spec-
trum for polycrystalline and amorphous solids usually
consists of overlapping chemical-shift powder patterns.
By rotating the sample about the magic angle and sam-
pling the double-quantum FID in multiples of spinner
cycles, 1, = 2m/w,, the remamning chemical-shift aniso-
tropy 1s also removed. Since the range of the chemical
shift is over two orders of magnitude smaller than the
quadrupole sphittings, it 1s expected that the width of
double-quantum resonance lines is considerably less
sensitive to deviations of the spinner axis from the magic
angle, 8, = tan—121/2 = 54.74°_ Also, the chemical
shift of the double-quantum line is just twice that of
the single-quantum Line.

Double-quantum coherence is prepared by two strong
pulses near resonance separated by a short delay as in
fig. 1. After evolution for some number of spinner
cycles, t; = nr, a detection pulse creates single-quantum
signal (FID) which appears as a train of rotational echoes
since the sample 15 rotating about the magic angle. A
senes of such FIDs for increasing values of n = 1,2,3, ...
are collected. The decay of the first rotational echo 1n
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Fig. 1. Pulse sequence for observation of deutennum isotropic
chemical-shift spectrum 1n solids by double-quantum NMR
with magic angle spinning. Double-quantum coherence is pre-
pared by a parr of strong pulses and evolves during time £,
which is an integral multiple of sample spinner cycles. A thud
detection pulse transfers double-quantum to observable single-
quantum coherence which appears as a train of rotational
echoes. The decay of the first echo (3 domain) 1s Founer
transformed and the double-quantum FID is obtained as a cross
section through those spectra asn = 1,2,3,... (t; domain)
Proton decoupling is applied except during the deuterium rf
pulses.

each of these FIDs is Fourier transformed to give a
single-quantum quadrupole powder pattern spectrum.
The double-quantum FID is obtained as a cross sec-
tion through these spectra in the second or ¢, time
domain This procedure avoids receiver ring-down after
the detection pulse and phase cancellation of double-
quantum coherence which occurs in a cross section
through the rotational echoes. Fourier transformation
of the double-quantum FID then gives the frequency
spectrum of the #; domain (2D spectrum). For the
three-level spin-1 deuterium system this spectrum ex-
hibits any single- and double-quantum coherence which
existed after evolution time t;. In the present work, a
was set to a value less than 90° (fig 1) in order to allow
simultaneous generation of single- and double-quantum
Iines in the 2D spectrum

3. Experimental

The pulse sequence of fig. 1 was applied to a poly-

crystalline sample of 2892 randomly deuterated ferrocene-

d g rotating at 1.11 kHz. Spectra were taken at room
temperature on a homebuilt spectrometer operating at
i [20(2D) = 28 MHz. The ferrocene quadrupole cou-
pling constant was wq /27 = 73 kHz. High-power proton
decoupling was applied at all times except during the
deuterium rf pulses.

A sct of spectra were taken with 8 adjusted to the
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Fig 2. One-dimensional (1D) and two-dimensional (2D) deu-
terium solid state spectra of polycrystalline 2852 randomly
deuterated ferrocened g rotating at 1.11 kHz. The 1D spectra
show the narrowing of the ferrocene (waer = 73 kHz) qua-
drupole powder pattern by the spinning as @ approaches the
magic angle. The 2D spectra exhibit the single-quantum (£-Q)
and double-quantum (2-Q) lines and llustrate the fact that the
2-Q chemical shift is double that of the 1-Q. As 9 deviates from
the magic setting, the 1-Q line splits into the quadrupole powder
pattemn and is lost in the noise while the 2-Q line remains sharp.

optimal narrowing setting and at successive deviations
from that setting. Each set consisted of the usual single-
quantum spectrum from the FID after a singie pulse
(one-dimensional or 1D) and the two-dimensional or
2D spectrum as described above. The results are shown
in fig. 2.

4. Results and discussion

The 1D spectra show the narrowing of the quadru-
pole powder pattemn to a shaip line as the angle 9
becomes magic. The 2D spectra exhibit single-quantum
(1-Q) and double-quantum (2-Q) lines and the chemical
shift of the 2-Q is just twice that of the 1-Q. While the
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1-Q linewidth depends strongly on the adjustment of
0, the 2-Q Linewidth is insensitive to 1t. For small devia-

tions of @ from the optimal setting the 1-Q line broadens

and falls into the noise while the 2-Q linewidth does
not change.

In fig. 2a the width of the 1-Q line 1s 20 Hz. The
width of the 2-Q hine is about twice this value. Two
reasons for thus effect are.

(1) Static field inhomogeneity and susceptibility
anisotropies over the sample have exactly double their
effect for double-quantum transitions since all chemical
shifts are doubled.

(2) The second-order quadrupole perturbation shifts
only the highest and the lowest of the three deuterium
energy levels, leading to a broadening and shift of the
deuterium resonance n a spinmng sample [2], which
are exactly twice in size for the double-quantum tran-
sition relative to the single-quantum transitions at exact
be concluded that the width of deuterium double-
quantum lines in magic angle spinning sohds are ex-
pected to be somewhat smaller than twice the inewidth
of the corresponding single-quantum transitions at exact
magic angle, since the hfetime of the double-quantum
coherence can be greater than one-half the single-quan-
tum T’ . and n fact greater than the single-quantum
T, [11,12]. Thus the expected resolution in a double-
quantum spectrum is always better than i a single-
quantum spectrum.

On the basis of these results, we feel that the com-
bination of double-quantum NMR with magic angle
spinning offers the possibility for high resolution with-
out unusually stringent spinner requirements, especially
in complicated molecules with several inequivalent
deuterium positions
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