
JOURNAL OF MAGNETIC RESONANCE 45, $t- 101 (1981) 

Dipolar Relaxation by Rotation in Spin Space 
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The influence of rotating the quantization axis on dipolar relaxation is studied. 
Rotation with variable frequency o, is simulated by a pulsed rf field of amplitude 
large compared to the local frequency q. For 4 4 q the dipolar relaxation rate 
increases with increasing r+, reaches a maximum for y = q, and diminishes to that 
in the unperturbed system for o, b q, as predicted. 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

Sample rotation has been shown to speed up considerably dipolar relaxation 
(I -5). For angular rotation frequencies f& much smaller than the local dipolk 
frequency q, the total relaxation rate for a rotating sample can be written (I, 2) 

where (l/T,,,), is the relaxation rate the sample would already have when not 
rotated and (l/T,D),t is the enhancement attributable to the sample rotation, It 
was argued in (I ) that (l/T,D),t will reach an upper limit of the order of q when 
& becomes of the order of q or greater. We note, however, that the approach 
in (1) is not valid for G s wI. In this case Pines (6) predicted that the relaxation 
of the average dipolar energy would be equal again to that of the static sample. 
In the present paper the emphasis is on the latter case, where the rotation fre- 
quency is fast compared to q. 

There is a close analogy between relaxation by sample rotation and relaxation by 
natural motion. In particular, there is a close analogy between slow sample rotation 
(I -5) and slow motion (7,8). Both cases fall into the category of changing the 
initial dipolar interaction %Di into a final interaction Xm, and (T&, of slow 
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sample rotation is closely related to the T,, of slow motion. In the case of natural 
motion it is known that the relaxation rate increases with increasing frequency of 
motion (0,) in the slow motion regime w, c ol; the relaxation rate becomes a 
maximum for 0, = q and decreases when the motion becomes rapid, w,,, > ol. 
In case of sample rotation, when Q S= oI one can decompose the original static 
dipolar interaction SC’, into a new static part &,, and a time-dependent part g&t) 

as in the case of natural motion when the motion is rapid. The relaxation rate of 
( gD ) should be equal to (l/T& of Eq. [ 11. &r,(t) does not contribute to relaxation 
because it does not contain the proper resonance frequencies of the spin system. 
A:n experiment should test whether the above prediction is correct, but since proton 
linewidths S of typical dipolar solids are of the order of 27~ x 30 kHz (6 = 4.08q 
for a Gaussian lineshape (9)), it would require f& > 2-rr x 100 kHz to satisfy the 
condition Sz, & q, whereas in practice R s 27r x 4 kHz. Therefore such an 
experiment will not be easy. By dilution or deuteration, one can reduce the line- 
width, say, to 5% of the original proton contents. But then signal-to-noise ratio 
will be poor. 

In this paper we use a much more convenient alternative, based on the analogy 
between sample rotation (IO, II ) and rotation in spin space (12-14). Thus instead 
of rotating the sample we rotate the quantization axis by applying an rf field. The 
rotation frequency q. can be varied from a value well below o1 to a value well above 
q simply by pulsing the rf field at the required rate. The method is described in 
the following section. 

ROTATING QUANTIZATION AXIS 

We consider dipolar coupled spins in solids, subject to a high static magnetic 
field along the z axis of the reference frame. The Hamiltonian of the spin system 
can be written 

131 

where wJ, is the Zeeman interaction and XD is the secular part of the dipolar 
interaction, i.e., [XD, Z,] = 0. 

In the absence of any rf field the z axis is the quantization axis. One can change 
the quantization axis by changing the direction of the effective field ZZ,. Applying 
an rf field with (angular) frequency o = o. + yA and amplitude yH,, along the 
x axis of the frame rotating with frequency w, one changes the quantization axis 
into the z direction of the rotating tilted frame, Fig. 1, where 0 = arctg (Hz/A) 
and the effective field H, = {A* + H,} 2 1’2. It is assumed that H, + wI to have 
good quantization along H,; of = Tr &/Tr ZE. 

By letting H, and/or A be time dependent in a proper way, it would in principle 
be possible to change 8 in a continuous fashion, as in real rotation. However, for 
practical simplicity we shall consider only the case that the rf field is pulsed on and 
off and for A = 0, so 8 will take on only two values, namely, 13 = 0” when the rf 
field is off and 8 = 90” when the rf field is on. 
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FIG. 1. Rotating quantization axis. The z axis 11 to the static magnetic field is the quantization axis 
in the absence of an rf field. The z’ axis of the rotating tilted frame becomes the quantization axis 
with an rf field of amplitude in frequency units large compared to local dipolar frequency. The rf field 
is along the x-axis of the rotating frame, A is the offset, and H, is the effective field 11 z’ axis. 

ANALOGY BETWEEN SAMPLE ROTATION AND ROTATING QUANTIZATION AXIS 

We consider successively the influence of sample rotation and of rotating quan- 
tization axis on the dipolar interaction. This interaction can be written 

xDiA49 I) = $ (1 - 3 COs2 4*j)(3zf.Jj~ - Ii’139 [41 
IJ 

where the subscripts i andj denote the spins i and j, rij is their internuclear distance, 
and 4ij is the angle between rlj and the magnetic field. When a sample is rotated with 
angular frequency R, around an axis perpendicular to the static magnetic field 
the &j becomes time dependent and cos &j can be written (10, II, 25) 

cos tj+j(t) = sin c#& cos (at + CQ), PI 
where 4ij is the angle between rij and the rotation axis and aij is the azimuth angle 
of rfj at t = 0, on a plane perpendicular to the rotation axis. From Eqs. [4] and [5] 
it follows that Xn becomes time dependent. Denoting the static parts by X$ and 
X&j and the fluctuating parts by kkD( t) and Sk&t) one can write 

%IAf) = C *ij(4ij, z~ t)7 161 
i-4 

with 
X$*j(+lj, 0 = -(1/2)XDij(4;j9 09 r71 

where the right-hand side of Eq. [7] is given by Eq. [43 with c${, instead Of &, and 
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%D,j($\j, I, t) = -3/Z sin* +& COS 2(&t + Qfij)- rl (3zitzjz - Ii *Ij)* PI 

For Ln, s q it is not possible to define a time-average dipolar interaction in an 
unambiguous way (i.e., averaged over a period of order w;‘). It is also obvious 
that the dipolar interaction, being explicitly time dependent, is no longer a constant 
of the motion. However, when sl, * q one can unambiguously define a time- 
average dipolar interaction X-t): 

&)(t) = xg. 191 

The effect of&,(t) can be neglected. It contributes neither to the dipolar energy, 
nor to the observable main NMR spectrum. It also does not contribute to relaxa- 
tion when 2&$ is not a proper resonance frequency of the spin system. For a 
powder sample one has 

with 2fD given by Eq. [4]. 

XD(f) = --(1/2)&J WI 

Now we consider the influence of a rotating quantization axis on the dipolar 
interaction. As mentioned in the previous section, for practical simplicity we let 
the quantization axis jump periodically with period o;l, between the z and x 
axes of the rotating frame. With a jumping quantization axis the angle 19, Fig. 1, 
becomes time dependent. The part of the dipolar interaction that is still secular in 
the rotating tilted frame is (22-14) 

x;(t) = -(l/2)(1 - 3 cos* e(f)}%&. 

We can rewrite Eq. [ 111 as 

r111 

x;(t) = (1/4)%D + (3/4){cos 2e(t)}XD. u21 
We note the resemblance of Eq. [12] to Rq. [6], in particular, the time-dependent 
part of Eq. [ 121 to Eq. [8]. When 6 takes on the values 0” and 90” with equal duration 
T the time-dependent part of Eq. [12] is a block function and can be written as 

cos 20(t) = 2 
1 

- cos 2*(2n + l)t, 
n=. 2n + 1 Cl31 

where w, = r/r. Since the higher harmonics have diminishing amplitudes, the 
effect of Eq. [13] will be mainly determined by the lowest harmonics. So for 
w, s q we have a situation analogous to that for sample rotation with rc1, 5 q 
and for w, % q a situation analogous to that for sl, %- wl. When o, % q we can 
de:fine a time-average dipolar interaction 

.x;(r) = (1/4)LXD, 1141 

which is the analog of Eq. [lo]. The different numerical factors in the two cases 
are of no importance for their relaxation behavior which is the point of our main 
concern. (One could get a factor of l/2 instead of l/4 in Eq. [14] by choosing 
8 = 54”44’ instead of 8 = 90”. The sign difference is irrelevant since the dipolar 
energy is proportional to Tr Xg.) 
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FIG. 2. Pulse sequence for the measurement of the dipolar relaxation by rotation of the quantization 
axis. Dipolar order is created by the !90:-7,-45: pulse sequence. Then the quantization axis jumps 
periodically between the z and x axis for a time t = 2~17 by pulsing the rf field of amplitude H, along 
the x axis of the rotating frame. After waiting for a time TV the remaining dipolar order is measured 
with the 45; readout pulse. 

Equation [14] could also be obtained using multiple-pulse coherent averaging 
theory. For multiple 90: pulses (16) the multiple pulse-average dipolar interac- 
tion is %D = (1/2)(XD + XU,) = -(1/2)X2, and its secular part is %f, = (1/4)XD; 
cf. Eq. [14]. X,, and X,, are given by the expression for XD, Eq. [14], with z 
replaced by x and y , respectively. 

EXPERIMENTAL RESULTS 

We now study the relaxation behavior of the dipolar energy under the influence 
of a rotating quantization axis. The rotation is done in the manner explained in the 
previous section. The experimental procedure is depicted in Fig. 2. First, dipolar 
order is created with the Jeener-Broekaert program (90s--71-45E) (17). After 
the first 450, pulse in Fig. 2 the dipolar order can be described by a density matrix 

P = P%M WI 

where p is a measure of the dipolar order. Then we introduce a pulsed rf field of 
amplitude H1, for example, along the x axis in the rotating frame, for a period 
t = n x (2r), where we call V, = (27)-l the rotation ground frequency of the quan- 
tization axis and w, = 2nrv,. After that period we wait for a time Td allowing 
multiple-quantum (Z8, 19) coherences to decay to zero. Then we measure the 
remaining dipolar order, which is proportional to (I,) at a fixed time 72 after the 
450, readout pulse (17). (In fact, one should also wait long enough before applying 
the first pulse after creating the dipolar order, but it turned out experimentally 
that this time can be as short as 5 psec.) (I,) is measured as a function oft = nv;l 
for several values of v,. 

For w, < ol, which is analogous to slow motion (CO,,, 4 4) or slow sample rota- 
tion (@ + Q), one expects increasing relaxation rates with increasing O+ Relaxa- 
tion rate will be maximum for w, = q, although relaxation behavior may not be 
simple, because then the dipolar energy is not a quasi constant of the motion and 
q is changing. 

For o, S q, the case of our main concern, there is a unique average dipolar 
interaction; cf. Eq. [14]. The time-dependent part of the interaction (cf. Eqs. [12] 
and [ 131) will not affect the relaxation behavior of the dipolar energy (%‘A) when 
none of the relevant frequencies 2~+(2n + 1) coincides with a resonance frequency 
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FIG. 3. Relaxation of the dipok energy for different values of the rotation frequency v, of the 
quantization axis. Relaxation rate increases with increasing v, for 27rv, < q and becomes maximum 
for 27~~ = 0,. 

of the spin system. Therefore the relaxation of (x;) will be governed by the same 
mechanism as (&, ) in the static case and without the pulsed rf field. 

We have done measurements on the relaxation of the proton dipolar energy of 
L-alanine(NH$CHCH,COO-) powder at room temperature using a Bruker CXP 
pulse spectrometer at 60 MHz. The sample was chosen because of its short Zeeman 
rellaxation time (88 msec). The 90” pulse width was 3 psec, corresponding with 
an amplitude yH1 = 27r X 83 kHz; r1 = 16 psec, r2 = 22 psec, and rd = 100 
psec. The local frequency of L-alanine is o1 = 2n x 8 kHz. The experiment has 
been done on resonance (A = 0). The amplitude of the x pulse is equal to rH,, 
which is much greater than u,. 

Figure 3 shows the experimental results for the dipolar energy (x;(t)) (cf. Eq. 
[K!]) as a function oft = nv;’ for V, = 1, 2, 5, 10, 25, and 50 kHz. The expected 
increase of the relaxation rate with increasing V* is evident for Y, 5 10 kHz. The 
rel.axation is maximum for ur = 5 to 10 kHz, as should be, and relaxation shows 
some significant oscillatory behavior for V, between 5 and 25 kHz. Such oscillatory 
behavior has also been observed in the rotating sample experiments (20-22). 
This oscillatory behavior reflects the time dependence of the dipolar interaction 
either by sample rotation or by rotating quantization axis, combined with the 
fact that the spin-diffusion rate (of the order 4) is not fast compared to rotation 
frequency, but as yet no theory exists for a good quantitative description for the 
case w, * q. Qualitatively, Fig. 3 shows the expected behavior for o 5 q. No 
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FIG. 4. Relaxation of the dipoIar energy for rotation of the quantization axis, with a frequency much 
higher than the dipolar frequency, compared to that of a static sample without rotation of the 
quantization axis. Relaxations are quite similar for 2au, 4 q and for v, = 0. 

quantitative comparison with Eq. [l] has been attempted for w, % q, but we note 
that this has already been done in Ref. (I). 

Figure 4 shows the relaxation of the dipolar energy (%‘A) (cf. Eq. [14]) as a 
function of t = nv;l for V, = 100 kHz, compared to the case of u, = 0. Figure 4 
shows definitely that the relaxations for the two cases are indeed the same, confirm- 
ing the expectation. The relaxation can be described by two exponent&, in 
accordance with the symmetry-restricted spin-diffusion model (23-25). 

CONCLUSION 

We have studied the influence of a rotating quantization axis on the relaxation 
of the dipolar energy. The rotation of the quantization axis is achieved by a pulsed 
rf field. The rf amplitude should be large compared to the local frequency q to 
provide a good quantization axis along the effective field also on resonance. The 
rotation frequency o, of the quantization axis can be varied easily from a value 
well below to a value well above ol, just by changing the pulse rate of the rf 
field. In this way we extend the range of the rotation experiment to the limit of 
very high rotation frequencies, as yet inaccessible by sample rotation. For y Q o1 
relaxation rates increase with increasing o,, reach a maximum for o, = o, and 
diminish to that in the unperturbed system for o, s=- q, as expected from theoretical 
considerations. 
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