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The spin temperature hypothesis is extended to a system of nuclear spins with internal magnetic dipolar inter- 
actions and subject to periodic external perturbation in the form of intense radiofrequency pulses. Preliminary re- 
sults are described for the case of phase-alternated irradiation at resonance. 

The spin temperature hypothesis has provided an 
extremely useful tool for the understanding and devel- 
opment of nuclear magnetic resonance in solids [l]. 
We find that when a strong time-dependent perturba- 
tion, in the form of a sequence of intense radiofrequen- 
cy pulses, is applied to a spin system, the concepts of 
spin thermodynamics and statistical mechanics may 
still be employed with respect to a time-independent 
average Hamiltonian [2] in a frame of reference defin- 
ed by the external perturbation. This is an extension 
of Redfield's hypothesis of spin temperature in the 
rotating frame [3]. 

Fig. 1 depicts one of the pulse sequences used in 
present experiments. An adiabatic demagnetization in 
the rotating frame (ADRF) prepares the system in a 
state of high inverse dipolar spin-temperature 13o, char- 
acterized by the density operator: 

* Supported in part by the U.S. Atomic Energy Commission 
and in part by the National Science Foundation. 

1 
Oo :~ 'o  exp (-/3oHm), (1) 

where Z = Tr {exp (-/30 H~ )} and H~ is the usual 
truncated dipolar interaction amongst 19F spins. The 
subsequent irradiation HI(0, consists of a series of re- 
sonant rf pulses of nutation angle 0 with an alterna- 
tion of phases by n every pulse. We assume that if 
r < T2, we may consider the system to behave as if 
under the influence of a time independent average di- 
polar Hamiltonian/4~ in an interaction picture defined 
by Hi(t), 

12r t t  
H~:~O f TexP(of -  it '  ~-  Hl( t ' )  d t /H~  (2) 

/ [ ' i t '  dt ' )d t ,  X T exp~j -~  Hl(t '  ) 

andT, is a time ordering operator. We now assume that 
after a sufficiently long time, the system can be de- 

Or/2) e xe 18  x --" 

I , . . -J  
T 

Fig. I. Pulse sequence used in the experiment. The dotted lines 
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depict schematically the type of transient signal observed. 
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Fig. 2. Relative signal intensity for the two 19F transient in 
CaF2 on application of pulse sequence in fig. 1. SI/S d is the 
relative intensity of the first transient and #2/~o is the relative 
final inverse dipolar temperature, i.e., the relative intensity of 
the second transient. The theoretical solid curves are taken 
from footnote *. 

scribed in the new picture by a canonical density 
operator: 

1 
Pl = Zll exp ( - f l l ~ ) .  (3) 

The rf irradiation is now terminated. The time de. 
pendent relative magnetization upon termination of  
the pulse ~equence is given by: 

Tr (exp ( -  it t4~tlh)p 1 exp (i t t4~/li)l x 
Sl( t  ) : (4) 

Using the high temperature approximation for p I in 
(3) and solving for/q~ in the case of ideal "6-pulses", 
we find: 

S 1 {t) ..... sin 0 cos 0 Sd(t ), (5) 

where Sd(t ) is the normal dipolar free induction decay 
[4] observed from a system in a state described by (1) 

after a (~r/4)x pulse. This is exactly borne out experi- 
mentally. 

To determine the long time behavior, we assume 
that during the pulse sequence the average dipolar ener- 
gy (H~) is conserved, and that after the irradiation, 
(/4~ ) is conserved. The final state of  the system is de- 
scribed by (3) with subscript 1 replaced by 2. Employ- 
ing eqs. (1) - (3) we obtain with some trival algebra: 

{32/t3 o = ¼ (1 + 3 cos20). (6) 

These expressions are easily generalized to the case of  
non-ideal pulses.* 

Fig. 2 depicts the nutation angle dependence of  
our observed signals in CaF 2. S 1 (t)/Sd(t) is the rela. 
tive intensity of  the transient observed on termination 
of  the sequence, and/32//3 o is the final relative inverse 
dipolar spin-temperature. The agreement indicates that 
the assumption of  quasi-equilibrium during the strong 
time dependent excitation is a useful one, and that 
quantitative predictions may be made. 

Interestingly, in the continuous resonant irradiation 
experiment of  Jeener and co-workers [5] the average 
dipolar Hamiltonian is identical to our situation in" 
which 0 = lr[2. For this case, eqs. (5) and (6) predict 

1 no first transient and/32 = ~/~o, as was indeed observed 
by the above authors. 

* The general expressions for (6) a n d  (7) are: SI (t) 
= - sin0 p(O) Sd(t) a n d  #2/#0 = (1+3 cos0 p(e))2/4(1+3p2(O)) 
where p (0) = (1 - 8 ) cos e + 6 sin # [0 and ~ is the rf duty fac- 
tor. 
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