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Effects of Double Rotation on Homonuclear Spin Systems
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The behavior of a homonuclear dipole-coupled spin system
under double rotation (DOR) is investigated by nuclear magnetic
resonance. We demonstrate, for a highly degenerate many-body
spin system, that the coherence created by the fast spinning mo-
tion in DOR is not destroyed by the slow precession motion
even when the precession frequency is significantly smaller than
the dipole—dipole interactions. Therefore, the DOR technique
can also be used to reduce line broadening arising from dipole-

dipole interactions. « 1993 Academic Press. Inc.

INTRODUCTION

Spin Hamiltonians in NMR can be rendered time depen-
dent by mechanical sample motions such as magic-angle
spinning (MAS) and double rotation (DOR ). Under MAS,
originally introduced in the 1950s as a means to reduce ho-
monuclear dipole-dipole couplings #p (1), the sample is
spun rapidly about a fixed axis inclined at the magic angle
(B, = 54.74°) with respect to the external magnetic field.
Double rotation, developed recently as a coherent averaging
technique for second-order quadrupolar interactions, im-
poses a more complex motion in which the axis of the sample
rotor undergoes an additional slow precession about a second
axis inclined at 8,. The trajectory is illustrated in Fig. 1 and
is realized with a double rotor in which the angle between
the axes of the inner and outer rotors is 3, (2). The sample
is placed in the small inner rotor, which rotates with an an-
gular velocity w,, while the larger outer rotor rotates at the
magic angle with angular velocity w,.

Intuitively one might expect that any dipolar line narrowing
achieved by rapid rotation of the small rotor (w, > || #5|)
would be destroyed by the slow precession of the inner rotor
axis if the secondary precession frequency, w,, is smaller
than || #pll. In this work, however, we demonstrate that an
experimentally controllable phase v can be created which is
able to reverse the phases of the odd-numbered harmonics
of the NMR signals. Similar behavior has been demonstrated
for inhomogeneous interactions, such as quadrupolar inter-
actions (3). This phenomenon offers proof that coherence
created by the fast modulation is not destroyed by the
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slow modulation, even when w, is significantly smaller than
| #bl. In this regard the effect is reminiscent of magic
echoes in strongly coupled dipolar systems, which, through
the phenomena of time reversal, provide a similarly vivid
demonstration of coherent evolution (4).

EXPERIMENTAL

NMR signals of **Na were detected in a polycrystalline NaCl
sample under DOR using a 400 MHz (proton) pulsed spec-
trometer. The DOR probe is described in detail elsewhere (5).

The relevant spin interactions in this system are the **Na
Zeeman and homonuclear dipole-dipole interactions. The
magnitude of /#} is approximately 2 kHz. Quadrupolar in-
teractions vanish because the environment at each lattice
site in NaCl is cubically symmetric, and inhomogeneous in-
teractions between **Na and **CI or *Cl are also not im-
portant for this study. The homogeneous character of the
line broadening is consistent with the facts that linewidth
cannot be reduced by the Hahn echo technique and is in-
versely proportional to the spinning speed under MAS.

THEORY AND RESULTS

Figure 2 compares a static spectrum of 2*Na in NaCl with
DOR spectra obtained for two values of w,. In neither case
were the RF pulses synchronized with the mechanical mo-
tions of the sample. At very slow precession, for example,
190 Hz, the spectrum in Fig. 2b, shows a pronounced cen-
terband and several weaker sidebands separated by w,/27 =
2.6 kHz. These latter signals are due to the harmonics of the
spinning motion. When the spinning frequency is kept at
2.6 kHz but the precession frequency is increased to 323 Hz,
the relatively broadbands collapse into sharp peaks of width
135 Hz as shown in Fig. 2c. The peaks are separated by
w,/ 2w, which corresponds to the harmonics of the precession
motion. Interestingly, this effect occurs at a precession fre-
quency much smaller than || #5].

In the rotating frame, the dipole-dipole Hamiltonian
truncated by the strong Zeeman interactions (6) is given,
under DOR modulations, by

o) = 3 e "I dF(By)e AR By e S, (1]
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FIG. 1. The sample-containing inner rotor spins around the z axis at
angular frequency w, while the = axis precesses around the Z axis at the
angular frequency w,. The precession is imposed by the spinning motion of
the outer rotor. The angle 3; is 30.56°, and the angle 3, between the external
magnetic field By and the Z axis is 54.74°. The relative orientations of B,
aty = 0° and v = 180° are indicated by Bo(y = 0°) and By(y = 180°)
with B, taken in the same plane as the - and Z axes.

in which

S, =3 D& ()l TH,. [2]
i

ng is the spherical tensor spin operator, while D,ﬂ,2J and
d,(\,,Z) represent the second-rank Wigner rotation matrix and
the corresponding reduced matrix, respectively. The spatial
spherical tensor of the dipole~dipole interactions for a spin
pair (i, j) in the principal-axis system ( PAS) is p%. The two
sets of Euler angles, Q, = (wy, Bs, v) and @, = (w,!, 8,.0),
describe the rotational transformations from the small rotor
frame to the large rotor frame and from the large rotor frame
to the laboratory frame, respectively. The angle v depends
on the orientation of the magnetic field relative to the axes
of the two rotors at time 1 = 0, where time evolution starts.
Two positions, ¥ = 0° and v = 180°, are illustrated in Fig.
1. The angle v can be selected by synchronizing the RF pulses
and the outer rotor. Effects of synchronization under MAS
have also been investigated before (7-9). The Euler angles
QY which describe the rotational transformations from the
PAS frame to the small rotor frame, depend on each partic-
ular spin pair (7, j). This system is clearly homogeneous (7)
because operators 75 and TJZIE, with a common index do not
commute.

Assume now that the conditions w, > | #p|| and w, » w,
are met. Then, according to the averaging method developed

by Bogolyubov and Mitropol’skii (/0), a solution of the
density operator p(?) can be sought in the form

p =81+ 2 pi(t)exp(—ikwy),
k#0

[3]

where £(¢) contains the time evolutions that are much slower
than w,. This term describes the behavior of the centerband
which arises from the spinning motion, where the corre-
sponding sidebands are described by the harmonic terms
pi(1)exp(—ikwy). We should mention here that the effects
of precessional motion are completely included in £&(¢) and
pi(l).

To apply the averaging method, we rewrite #4(?) in Eq.
[1] in the form

4

p(1) = 2 He™™, [4]
n=-2
with
=T e A dEN B )N Bs)e 1S, [5]
n’
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FIG. 2. (a) Static *»Na spectrum of NaCl. (b) DOR spectrum with w,/

2m = 2.6 kHz and w,/2% = 190 Hz; the broad sidebands associated with
the spinning motion are clearly visible. (¢) DOR spectrum with w,/2rx =
2.6 kHz and w,/27 = 323 Hz; the broad frequency bands in (b) are split
into various sharp peaks separated by w, /2.
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The time evolution of (7) is, according to the averaging
method, determined by d&/dt = —i[ #, £], where # is the
secular term of the Hamiltonian #4, with respect to the spin-
ning motion. Up to order || #p)%/w,, # is given by # =
#, + 7' with #' defined as

1
2nw,

#= -3 [6]

n#0

[0, #7n].

Both #; and #" can be easily derived from Eqs. [4] and [5]
as

N
<

= Z d%(ﬁp)d(‘)gl(gs)e—m'mw,,nso

=28, T d3(B)do(B)cos[n'(y + wpt)]  [7]
n'=0
and
4
]": Z f:,/efi"/H‘Wp’)
n’=-4
=2 > Fpcos[n'(y+ wp)l
n’=0.2.4
=2i > Fsin[n'(y + wpt)], [8]
n’=1.3
where
1
Fw= T a(B)du(B) T 3
/=0.2.4 nro SHWs
X c(22j;n, —n)[S,, S-.]. [9]

Here a’((,) is a coefficient that depends on j only, and ¢(22 j;
n, —n) is the Clebsch-Gordan coefficient.

It is important to realize that /#; in Eq. [7] is inhomo-
geneous; i.e., [ #(1,), #(t2)] = 0 for any two arbitrary
times ¢, and ¢,. The corresponding time-evolution operator
U? can therefore be easily obtained by performing the in-
tegration

U°(1) = exp[—ij; d[’%(t’)] = U'U% [10]

U' and U? arise from the contributions of #' = 1 and n’ =
2 terms in Eq. [ 7], respectively, and are given by

g2 S
U= exp[—12d1.o)(6p)d6.1’(6s)-w—

p

[sin(y + wyt) — sin(y)]So] . [11]

and

. 2 l
U= exp{ —12d§,0)(6p)d‘o?z)(ﬁs) o
p

[sin(2(y + wpt)) — sin(27)]So] . [12]

The n' = 0 term in Eq. [7] does not contribute because
d((fo)(ﬁp) vanishes at 8, = 54.74°. For the centerband with
respect to the spinning motion, the total evolution operator
U is governed only by the Hamiltonian .# and can be written
as U = U'UU™, where U™ is determined by the Hamil-
tonian '™ = U0z U0

The free-induction-decay (FID) signal F originating from
£(1) can be generally represented as

F=Tr(l.¢) = To(UHU" L U'UU™ I U™, [13]
Since U' and U? are both inhomogeneous, they introduce
only periodic evolutions but no signal decay. The spectral
linewidth is completely determined by the homogeneous
Hamiltonian /# ™, which is of the order of || #p|| */ ws. How-
ever, because # ™ is a many-body Hamiltonian, it is still
impossible to calculate either the details of the FID signals
or the details of #'™ itself. Yet, some properties can be un-
derstood without completely solving the many-body prob-
lems.

By applying the Fourier-Bessel expansion, exp(iz sin ¢)
=2>x__ Ja.(z)e™, where J,, is the Bessel function, to the
evolution operators U' and U? in Egs. [11] and [12], it is
easy to see from Eq. [8] that #'™ can always be expanded
to

%im: Z %Lnt(,y)e—ik(wrwpr)i [14]

k=

in which #™ is time-independent and is of the order of
| #5ll 2/ ws. Assume now that w, > || #pll?/w,; then the
density operator p'™ = U™J U™ can again be solved by
using the averaging method. It consists of a slowly varying
term £™(+, ) and the harmonic terms p{™(y, 7)e '*“¢ similar
to Eq. [3]. However, unlike £(7) in Eq. [3], £™ does not
contain any modulation frequency and is governed
by d&™/dt = —i[ #'™, £™], where the time-independent

Hamiltonian .#'™ is given by

%:%iom_z

n#0
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2nw,

The harmonic terms p{™ are, according to the averaging
method, determined by pi™ = w,'[#iMe %7, £™] in the
first-order approximation. If w, > || #p| %/ w is satisfied. i.e.,
the peaks are well separated from each other, .# i dominates
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the spectral linewidth, which is then proportional to 1/w,
but independent of w,. In addition, the effects of the har-
monic terms p™ can be neglected in the calculations of the
FID because ||pi™|| < |[£™]|. The sideband patterns with re-
spect to the precession motion are thus determined by U'U?
and therefore behave like those of an inhomogeneous spin
system (7). At lower precession frequencies, however,
2i™(v, e " contribute to the sideband patterns, and the
linewidth will depend on the precession frequencies as well.

Figure 3 shows a plot of the spectral linewidth at half-
height, Af,», versus |/ws, recorded in two double rotors
with different ratios w;/w, (5) and with precession frequen-
cies that exceeded the linewidths. As expected, the spectral
linewidth is indeed inversely proportional to w,. The two
lines have exactly the same slope but different intercepts ow-
ing to the different shimming values of the external magnetic
field. The inset to Fig. 3 is a plot of the spectral linewidth
versus | /w, for the same value of w, and, as predicted above,
the linewidth is independent of the precession frequency wy,.

Another feature that can be understood without solving
the complete many-body problem is the change in the side-
band patterns when + is varied from 0° to 180°. Consider
the y dependence of the operator U'fA¢ """, where A
is a vy-independent operator. Applying the Fourier-Bessel
expansion for U', the operator U'T Ade " U can be ex-
pressed as

UltAe‘in’wpl U!

X

= 2

man’ == x

Jm(iz)AJm/(:_:)‘,l(mﬂn’-—n’)wpl’ [16]

where = = d{9(8,)d6(By)wp' So. Jl(2)AJ,(—2) and
J.(—2)A4J,.(z) correspond to the cases of ¥y = 0° and v =
180°, respectively. Since J,,(—z) = (—1)"J,.(z), it can be
derived easily that J,,(2)AJ,,(—z2) = J,(—2)AJ,(z)if m
+ m'iseven, and J,,(2)A4J,(—z2) = —J,(—z)AJ . (z) if m
+ m' is odd. In other words, changing v from 0° to 180°
leaves those terms in Eq. [16] with even m + m’ unchanged,
but those terms with odd m + m' change signs. Applying
this analysis to U'"#'U", we see from Eq. [8] that those
terms with even kK = m + »' — n' will not be changed when
v switches from 0° to 180°, because if 2 + m’ and n’ are
both even then neither J,,(z2)#,-J,,(—z) nor cos[n'(y +
w,t )] will change sign. Conversely, if m + m’ and n’ are both
odd, then J,(z).# - J,,(—z)and sin[n'(y + w,¢)] will each
change sign. For similar reasons, those terms with odd & =
m + m' — n' will change sign. Since v appears in U2 only in
the form e/>"™, which contains only even harmonic terms,
the above conclusions hold also for UZ'U't#'U'U?. This
implies that # ™ change sign if £ is an odd number and
remains the same if k is an even number when v = 0° «
180°. From this conclusion, we know that .# ™ and therefore
also £™ and pi™ with even k remain unchanged whereas
o™ with odd k change signs when v = 0° < 180°. Similar
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FIG. 3. The linewidth at half-height, A f, ,,, plotted against the spinning
frequency (27 /w,) X 10* using two different DOR probes. Various bearing
and drive pressures are used for the inner rotors in order to produce different
spinning frequencies w, for the same precession frequency w,. The overall
shift between the data sets (@ and [J) recorded with the two different probes
is due to the different shimming values of the external magnetic field. The
inset shows the linewidth versus (2r/w,) X 10% at w,/27 = 3.5 kHz.

conclusions can be drawn for U*'U' 7, U'U?. Thus it is not
difficult to see that the odd-numbered harmonic terms of
the operator UTU I .U'U?U™I U™ in Eq. [13] also
change signs while the even-numbered harmonic terms re-
main the same when y = 0° < 180°,

This effect is demonstrated experimentally by synchro-
nizing the RF pulses with the mechanical motions of the
double rotor. Figure 4 shows the DOR spectra taken at w,/
27 = 606 Hz with random v, v = 0° and vy = 180°. Con-
tributions from pi™ are very small in this situation. The
phases of the odd-numbered sidebands are indeed reversed
while those of the even-numbered sidebands remain un-
changed. When the precession frequency w, is reduced such
that the sidebands and the centerband are strongly over-
lapped with each other (as in Fig. 5a, which is the same
spectrum as Fig. 2b), the sideband patterns are also deter-
mined by the homogeneous interactions 5# '™ because [|£'™||
and ||pi™|| are now comparable. Still, if we carry out the
phase-reversal operation in these circumstances of strongly
overlapping lines, the same phenomenon is observed as il-
lustrated in Fig. 5b, where the spectrum is accumulated with
v alternating between 0° and 180°. The odd-numbered side-
bands completely disappear owing to the phase-reversal ef-
fects. The linewidth, about 210 Hz, is much larger than that
in Fig. 2c, which was measured at the same spinning fre-
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quency of 2.6 kHz but at the higher preces_sion frequgncy of
323 Hz. This observation confirms that ||£™]} and ||pi™| are
comparable in Fig. 5.

CONCLUSIONS

In summary, we have demonstrated both theoretically and
experimentally that the DOR technique can also serve as an
effective tool for reducing the line broadening of homonu-
clear dipole-dipole interactions. The only requirement is that
the spinning frequency w, be larger than the dipole-dipole
interactions #p. The precession frequency w,, by contrast,
can be significantly smaller than #,. Moreover, the ho-
mogeneous system behaves inhomogeneously with respect
to the precession motion. The phase-reversal phenomenon
of the odd-numbered harmonics of the NMR signals upon
alternations of the phase vy may be understood without solv-
ing the details of the many-body problem.
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FIG. 4. ?*Na DOR spectra of NaCl observed for w,/27 = 606 Hz and
wg/2m = 3.7 kHz. (a) DOR spectrum averaged over 300 scans with v being
random. (b) Synchronized DOR spectrum at v = 0°. (¢) Synchronized
DOR spectrum at y = 180°.
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FIG.5. *Na DOR spectra of NaCl recorded with w,/27 = 190 Hz and
w,/27 = 2.6 kHz. (a) DOR spectrum averaged over 700 scans with y being
random. (b) Synchronized DOR spectrum accumulated over 128 scans with
v alternating between 0° and 180°.
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