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Iterative schemes for NMR have been developed by several groups. A theoretical framework 
based on mathematical dynamics is described for such iterative schemes in nonlinear NMR 
excitation. This is applicable to any system subjected to coherent radiation or other 
experimentally controllable external forces. The effect of the excitation, usually a pulse sequence, 
can be summarized by a propagator or superpropagator ( U). The iterative scheme (F) is regarded 
as a map of propagator space into itself, Un + 1 = FUn' One designs maps for which a particular 
propagator Ii or set of propagators {Ii J is a fixed point or invariant set. The stability of the fixed 
points along various directions is characterized by linearizing F around the fixed point, in analogy 
to the evaluation of an average Hamiltonian. Stable directions of fixed points typically give rise to 
broadband behavior (in parameters such as frequency, rf amplitude, or coupling constants) and 
unstable directions to narrowband behavior. The dynamics of the maps are illustrated by "basin 
images" which depict the convergence of points in propagator space to the stable fixed points. The 
basin images facilitate the optimal selection of initial pulse sequences to ensure convergence to a 
desired excitation. Extensions to iterative schemes with several fixed points are discussed. Maps 
are shown for the propa.gator space SO (3) appropriate to iterative schemes for isolated spins or 
two-level systems. Some maps exhibit smooth, continuous dynamics whereas others have basin 
images with complex and fractal structures. The theory is applied to iterative schemes for 
broadband and narrowband 'IT' (population inversion) and 'IT'I2 rotations, MLEV and Waugh spin 
decoupling sequ.~.mces, selective n-quantum pumping, and bistable excitation. 

I. INTRODUCTION 

The development of new techniques in nuclear magnetic 
resonance (NMR) is often synonymous with the develop­
ment of new radio frequency (ff) pulse sequences or excita­
tion schemes. A similar statement is recently becoming ap­
plicable to other areas of spectroscopy, for example, 
coherent laser spectroscopy and electron paramagnetic reso­
nance. This paper is concerned with a fairly recent approach 
to developing pulse sequences, namely the use of iterative 
schemes. 1-6 

In general terms, the purpose of a pulse sequence in 
NMR is to bring about some desired response or evolution of 
a nuclear spin system. The effect of a pulse sequence is de­
scribed quantum mechanically by a propagator or evolution 
operator.7Ia

) Pulse sequences of several types are treated in 
this paper. One type of sequence can be termed a broadband 
excitation sequence. 1,5-20 Such a sequence causes a spin sys­
tem to evolve from an initial condition of thermal equilibri­
um to a final, nonequilibrium condition, e.g., a condition of 
population inversion, uniformly over a large range of values 
of some experimental parameter. Possible experimental pa­
rameters include the rf frequency, 1,7,9-11,13-15, 17,18 the rffield 
amplitude, 1.5-9.11,13-16,18 and spin couplingstrengths.8.12,19 A 

second type of sequence can be called a narrowband excita-
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tion sequence. I ,6 Such a sequence causes a spin system to 
evolve to a desired final condition only over a small range of 
values of some experimental parameter. Narrowband excita­
tion is useful in many contexts including spatial localization 
of NMR signals.6

•
2
0-

22 A third type of sequence is used for 
spin decoupling. A decoupling sequence causes a coupled 
spin system to evolve as if certain couplings were absent. 
Homonuclear decoupling sequences23-31 effectively remove 
couplings between like spins, i.e., the same isotope; heteron­
uclear decoupling sequences3.4·32-38 remove couplings 
between unlike spins, i.e., different isotopes. A fourth type of 
sequence is used for the excitation of multiple quantum co­
herences in coupled spin systems39

-42; in other words, coher­
ences between spin states for which the difference !:l.m 
between their Zeeman quantum numbers is not equal to 
± 1. Of particular interest is the excitation only of coher-

ences for which !:l.m is a multiple of a given integer n, called 
nk-quantum selective excitation. 2,40 

In addition to the four general types of pulse sequences 
mentioned above, there are numerous other types of se­
quences which produce other useful and interesting re­
sponses, such as polarization transfer43

-46 and time rever­
sal.47 The majority of rf pulse sequences developed to date, 
despite their different functions, have a common feature: 
they are developed by some form of pulse-by-pulse analysis 
of specific sequences. A variety oftheoretica1 tools have been 
applied to such pulse-by-pu1se analyses, including the Bloch 
vector48 formalism and the related fictitious spin_1I249-51 
and product operatoii2,53 formalisms. A particularly power­
ful approach to the analysis of specific sequences is provided 
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by average Hamiltonian theory.23.24,26 With average Hamil­
tonian theory, the propagators for specific sequences or for a 
parametrized set of sequences 7-9 may be calculated. A 
search for a sequence with the desired propagator may be 
carried out with the help of experience, intuition, and inspi­
ration, or based on numerical methods. In general, this is a 
difficult problem due to the inherently nonlinear nature of 
the problem, namely the impossibility of directly inverting 
the response to obtain the necessary excitation. 

The detailed analysis of specific sequences is a useful 
approach, provided that the sequences are composed of a 
small number of individual pulses. However, there are cases 
in which such an approach is not sufficient. These are cases, 
such as the four types of pulse sequences briefly described 
above, in which the desired response cannot be achieved sat­
isfactorily with pulse sequences that are simple enough to be 
analyzed in detail, but can be achieved with more complex 
sequences. A conceptually different approach to pulse se­
quence design is then required. One such approach is the use 
of iterative schemes, as depicted schematically in Fig. 1. 
Rather than attempting to derive a sequence with the desired 
propagator directly, a set of operations is defined that may be 
applied repetitively to an initial pulse sequence So, generat­
ing a series of iterate sequences S l' S2, S3' etc. The theoretical 
task is to construct the operations in such a way that the 
propagators for the iterate sequences converge to the desired 
form. Operations treated in the literature include phase 
shifting of rf pulses,l--6 permutation of pulses,3-4 formation 
of inverse sequences,5.6 and concatenation of sequences. 1--6 
Typically, the higher iterate sequences are successively long­
er and are composed of increasing numbers of individual 
pulses. If an iterative scheme is successful, the higher iterates 
produce the desired response with increasing fidelity. In ad­
dition, the qualitative features of the response produced by 
the iterate sequences are largely independent of the choice of 
the initial sequence. For example, under a given scheme S5 
may always be a broadband excitation sequence, regardless 
of So. Thus, the development and evaluation of an iterative 
scheme must focus on the operations that comprise the 
scheme, rather than on the specific sequences that the scheme 
generates. 

In this paper, we present a geometrical framework for 
analyzing and developing iterative schemes. The underlying 

____ S~n __ ~~~ ___ S~n_+_1 __ 

So= 0=0 
S1= U II ! II 
S2= I i I I I II I II III 
FIG. 1. Schematic illustration of an iterative scheme. Operations are ap­
plied repetitively to an initial pulse sequence So> generating a series of iterate 
sequences, S" S2' etc. The iterate sequences typically become increasingly 
complex. The theoretical problem is to design the operations in such a way 
that the iterate sequences produce the desired excitation of a spectroscopic 
system to increasing degrees of accuracy. 

philosophy of the approach is to treat an iterative scheme as 
a function F that acts on the space of all possible pulse se­
quence propagators, mapping the propagator Un for the se­
quence S,. onto the propagator Un + 1 for the sequence 
Sn + I' Repeated applications of the iterative scheme then 
correspond to iterations of F. The study of the properties of 
iterated mappings is the domain of mathematical dynam­
ics,54,55 an extensive and active field whose physical applica­
tions extend to such areas as turbulence, nonlinear oscilla­
tions, and intramolecular energy transfer.56 The framework 
for treating iterative schemes described below is based on 
principles of mathematical dynamics, leading to simple pic­
tures that summarize the behavior of iterative schemes as 
well as algebraic and numerical methods for examining the 
behavior in detail. As shown below, the occurrence of fixed 
points of Fis an essential and unifying feature of the dynam­
ics of iterative schemes. For that reason, we refer to our 
approach as a fixed point theory of iterative excitation 
schemes. 

The paper is organized as follows. Section II describes 
the interpretation of iterative schemes as mappings or func­
tions on the space of propagators. The significance of fixed 
points is explained and demonstrated using a simple math­
ematical example as background for the later NMR exam­
ples. In Sec. III, the fixed point theory is applied to a class of 
iterative schemes that we and others have previously intro­
duced for generating broadband and narrowband popula­
tion inversion sequences for systems of isolated spins. Alge­
braic methods for analyzing the fixed point properties of the 
schemes are presented. In Sec. IV, specific schemes for 
broadband population inversion are treated. Numerical 
methods are developed that lead to a procedure for optimiz­
ing the performance of an iterative scheme by the proper 
choice of an initial sequence. In Sec. V, the fixed point theory 
is applied to schemes for generating narrowband population 
inversion sequences. In Sec. VI, brief treatments of iterative 
schemes developed by other authors are given with the pur­
pose of demonstrating the applicability of the fixed point 
theory. In Sec. VII, a summary of the results of the fixed 
point theory and a discussion of potential further applica­
tions is given. 

II. MATHEMATiCAL BASIS OF THE FIXED POiNT 
THEORY 

A. Iterative schemes as functions on the propagator 
space 

Consider a spin system with N independent quantum 
mechanical states In ). Any operator that operates on the 
state of the system can be written as a unique linear combina­
tion of elements of a basis of N 2 independent operators, for 
example In) < m:, allowing complex coefficients. The space 
spanned by these N 2 basis operators is called Liouville 
space.24.57 Hermitian operators, such as the Hamiltonian, 
the density operator, and observable operators, occupy a 
subset of Liouville space. Unitary operators occupy a differ­
ent subset. The propagators that correspond to all possible 
pulse sequences or experimentally realizable operations on 
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the spin system, a special case of unitary operators, occupy a 
subset of Liouville space that we call the propagator space. 
The dimension and topology of the propagator space is de­
termined not only by N, but also by the internal spin Hamil­
tonian. As an example, the propagator space for a quadrupo­
lar spin-1 nucleus is an eight-dimensional space in general. 
However, if the quadrupole interaction identically vanishes, 
the propagator space reduces to three dimensions. 

Consider a pulse sequence So, defined by a particular 
combination of rf phase and amplitude functions of time. 
For a given internal spin Hamiltonian, the propagator corre­
sponding to So is Uo. Uo may be represented by a point in the 
propagator space. If an iterative scheme is applied to So, it 
generates a new pulse sequence S \. The corresponding pro­
pagator, for the same internal spin Hamiltonian, is UI' repre­
sented in general by a different point in the propagator space. 
As shown in Fig. 2, further iterations produce a series of 
points in the propagator space. Let us assume that there is a 
function F associated with the iterative scheme which gener­
ates that series of points according to the rule 

U11+ 1 = FUn' (1) 

In any experimental situation, a range of experimental 
parameters exists, arising, for example, from inhomogeneity 
of the applied rf and static magnetic fields and from varia­
tions in the internal spin interactions due to orientational or 
chemical heterogeneity. Then, since there is in general a dis­
tinct propagator for each distinct set of values of the experi­
mental parameters, there exists in practice a locus of points 
in the propagator space for each sequence rather than a sin­
gle point. F then maps the locus of points I Un 1 onto the 

locus of points I Un + 1 J. 
There is indeed a single, well-defined function associat­

ed with an iterative scheme under certain conditions. First, 
the scheme should be rigidly constructed so that, given the 
sequenceSn , there is only one possible sequenceSn + 1 • If the 
scheme is more flexible, allowing several possibilities for 
S n + I , as is the case with some schemes in the literature,3-5 

FIG. 2. The interpretation of an iterative scheme as a function or mapping 
on the propagator space. The propagators Uo• U,• Uz• etc. for the pulse se­
quences S", S" S2' etc. are described by points in an operator space. The 
underlying function F maps each point U. onto its iterate U. + I • 

then there may be several associated functions. Second, the 
series of propagators Uo' U1, U2• etc. should be determined 
only by Uo' the overall initial propagator, without reference 
to the details of the initial pulse sequence or of the internal 
Hamiltonian. Important cases where the second criterion is 
generally not satisfied are the iterative schemes for generat­
ing heternuclear decoupling sequences which depend on the 
permutation of pulses. 3,4 As will be shown in Sec. VI, a fixed 
point analysis still provides useful information in those 
cases, even though a function on the propagator space is not 
uniquely defined. 

B. Significance of fixed points 

The purpose of an iterative scheme is to generate pulse 
sequences that produce a desired spin response, i.e., imple­
ment a specific desired propagator or set of propagators. 
Therefore, an essential property of a successful iterative 
scheme is that, if the initial sequence So produces the desired 
response, then all of the iterate sequences Sn also produce 
the desired response. In the simplest case in which there is 
only one propagator U describing the desired response, this 
means that Un = U if Uo = U as shown in Fig. 3(a). In other 
words, 

(2a) 

or 

(2b) 

where F n indicates n iterations of the function F. U is then 
said to be a fixed point of F. More generally, there may be a 
set of propagators I U(I' J which produce the desired re­
sponse, as shown in Figure 3(b). Then F will have the proper-
~~ . 

lUll) J = FIU(J) J. (3) 

In other words, F may map one propagator in the set to 

(a) Uo = U1 = ... = U 
• Fixed point 

I nvariant set 

FIG. 3. The function Fon the propagator space may have fixed points (a). 
These are points that are mapped onto themselves by F. More generally. F 
may have invariant sets (b). An invariant set is a set of points that is mapped 
onto itself. Under a successful iterative scheme. the fixed points or invariant 
sets represent propagators that accomplish the desired excitation. 
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another propagator in the set. {UII) I is said to be an invariant 
set of F. F may have several fixed points or invariant sets 
simultaneously. 

A fixed point may be classified in terms of its stability as 
shown for the simplest case in Fig. 4. Roughly speaking, if 
points initially near the fixed. point converge to the fixed 
point with successive iterations ofF, the fixed point is said to 
be stable. Figure 4(a) illustrates a stable fixed point. An itera­
tive scheme with a stable fixed point typically generates 
pulse sequences with broadband excitation properties. This 
is because a range of initial pulse sequence propagators, aris­
ing from a range of experimental parameters, converge to the 
desired propagator upon iteration. If points initially near the 
fixed point diverge from the fixed point with successive itera­
tions of F, the fixed point is said to be unstable. Figure 4(b) 
illustrates an unstable fixed point. An iterative scheme with 
an unstable fixed point may generate pulse sequences with 
narrowband excitation properties. This is because only an 
initial pulse sequence propagator that exactly equals the de­
sired propagator, arising from particular values of the ex­
perimental parameters, remains equal to the desired propa­
gator upon iteration. Initial propagators that nearly equal 
the desired propagator progressively diverge from the de­
sired propagator upon iteration. They may then converge to 
other, stable fixed points or remain nonconvergent. 

It is also possible for a fixed point in a multidimensional 
space to be stable with respect to displacements in certain 
directions and unstable in other directions. Initial points 
near the fixed point may then approach the fixed point along 
a stable direction on low iterations before diverging along an 
unstable direction on higher iterations. 

(a) 

(b) 

o ~ 
_~,-___ --o I~ Unstable 

\ 

FIG. 4. Fixed points U of Fmay be stable or unstable. (a) Points near a stable 
fixed point converge to the fixed point with successive iterations of F. In this 
way, a desired propagator may be generated from a large range of initial 
propagators. Stable fixed points therefore lead to broadband excitation. (b) 
Points near an unstable fixed point diverge. Unstable fixed points may lead 
to narrowband excitation. In general, fixed points may be stable in some 
directions and unstable along other directions. 

C. Simple mathematical example of fixed points 

Before considering specific iterative schemes on propa­
gators in Liouville space for NMR applications, i.e., map­
pings on the propagator space for spin systems, we review 
the properties of simple one- and two-dimensional functions, 
as an illustration of the significance of fixed points and their 
stability. This is basic and well known materiaP4.55 but it 
allows us to introduce some of the terminology and methods 
used in the later analysis. Consider first a function f of a 
single, real variable x. An example of such a function 
fix) = ~ - x 3 appears in Fig. S. Beginning with any initial 
point xo'! can be used to generate a series ofiterates XI> x 2, x3, 
etc., with 

Xn =fn(xo)' 

i.e., Xo - Xl - X2 - X3 - • "". The fixed points of fare 
those poin ts x for which x = fix). They can be found graphi­
cally as the points of intersection of the graph offwith a line 
through the origin with a slope of 1, i.e., Xn + 1 = x n • In Fig. 

5, the fixed points are -,,[f7i, 0, and .JT7i. 
The stability of x can be determined by evaluating the 

derivative off at x, i.e.,J'(x). In the neighborhood of X, 

fix) = X + j'(x)(x - x) + 0 [(x - X)2), (4) 

where 0 [(x - xf] indicates a quantity on the order of 
(x - xf The possible stability properties of x are summar­
ized as follows: 

unstable: V'(xJI > 1, 

stable: 0 < V'(x) < 1, 

superstable:j'(.x) = O. 

(Sa) 

(5b) 

(Sc) 

!fx is stable, initial points near x converge to x geometrical­
ly, i.e., 

f (x) 

I // 

/ 

-- f (x) = 3/2 x - x 3 / 

--- f (x) = x / 

/ 

/ 
/ 

/ 

I / 
II~/_/--------~I-----------~-
FIG. 5. A simple function of a single variable, with an unstable fixed point at 
o and stable fixed points at ±,ff72. Except for isolated points, the entire 
open interval ( - ,[57'2., .[572) converges to ± ,fi!2 with iterations of f The 
isolated points map onto O. Thus. stable fixed points dominate the dynamics 
of a function over a large range of initial points. 
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x -x 
lim " _ = j'(x). (6) 

n-ooX"_1-x 

The most rapid convergence occurs when x is superstable. 
Then points near x converge to within 0 ((x - X)2) of x on a 

single iteration. In Fig. 5, the fixed points ± Mare super­
stable. The fixed point ° is unstable, sincej'(O) = 3/2. 

The assessment of the stability of a fixed point is based 
on a linearization of the function in the neighborhood of the 
fixed point. Only the first derivative is considered, which is 
sufficient to characterize the behavior of a small interval of 
initial points except in marginal cases. However, when a 
fixed point is stable, it can affect the dynamics of the function 
far beyond its immediate neighborhood. Large regions of 
initial points, not only the nearby points, may converge to 
the fixed point. For example, all initial points in the open 

interval (O,.J3/2) converge to the fixed point M in Fig. 5. 

AU initial points in the interval (- .J3/2,0) converge to 

- M. In fact, it can be shown graphically58.59 or numeri­

cally that all initial points in ( - M,M) converge to ei-

ther - M,O, or M upon iteration. The set of points that 
converge to a stable fixed point is called the basin of that 
fixed point. 

The NMR examples in the following sections involve 
functions of more than one variable, because they act on a 
multidimensional propagator space. To demonstrate how to 
proceed in such a more complicated case, we generalize the 
function of Fig. 5 to the complex plane: 

(7) 

If/is considered to be afullction of two rea] variables x andy, 
with z = x + iy, Eq. (7) can be rewritten: 

f (x,y) -+ (¥ - x 3 + 3xy2, ~y + y3 - 3x1y). (8) 

/ still has the same three fixed point:. on the real axis with 

coordinates (M,O), (0,0), and { - ,,112,0). 
The stability of the fixed points of a function of many 

variables is determined by evaluating the Jacobian of the 
function at the fixed point, a natural generalization of the 
evaluation of the derivative in the one-dimensional case in 
Eq. (5). The Jacobian is a linear transformation, so that sta­
bility is again determined by a linearization of the function. 
If the eigenvalues of the Jacobian evaluated at a fixed point 
are aU less than 1 in magnitUde, the fixed point is stable. 
Otherwise, the fixed point is unstable but may have certain 
stable directions. If all eigenvalues are zero, the fixed point is 
superstable. 

by 
The Jacobian J (x,y) of/in Eq. (8) is a 2 X 2 matrix given 

J (x,y) = (3/2 - 3x
2 + 3y2 

-6xy 
6xy ) 
3/2 + 3y _ 3x2' (9) 

Evaluated at the fixed points ( ± M,O), J is the zero ma­
trix. These fixed points are therefore superstable in the com­
plex plane. At (0,0), J is 3/2 time the unit matrix. (0,0) is an 
unstable fixed point, with no stable directions. 

D. BasIn images 

In the two-dimensional or complex case in Eqs. (7) and 
(8), we use a numerical procedure to determine the basins of 
the superstable fixed points. A portion of the complex plane 
is divided into a grid of small squares. The center of each 
square is chosen as an initial point. The iterates of each initial 
point are computed and checked for convergence to the de­
sired fixed point. An iterate is considered to have converged 
if it is within a radius of 0.1 of the fixed point in the complex 
plane. Once convergence occurs, the iteration process stops 
and the number of iterations required for convergence is as­
signed to the square. If convergence does not occur within 15 
iterations, the iteration process stops and the number - 1 is 
assigned to the square. Finally, the selected portion of the 
complex plane is displayed on a graphics system, with each 
square shaded according to its assigned number. We call the 
resulting picture a basin image. 

Figure 6 shows basin images for the two superstable 
fixed points of/(z) in Eq. 7. The grid consists of squares with 
sides of length 0.02. Lighter shades correspond to smaller 
numbers, or more rapid convergence. Nonconvergent re­
gions ( - 1) are fined with black. The symmetry of the basins 

for (M,O) and ( - M,O) is a result of the fact that/is an 
odd function of z. The structure of the basins and the number 
of iterations required for the convergence of an initial point 
can be read directly from a basin image. From that informa­
tion in Fig. 6, the dynamics of/can be inferred. For example, 
it is clear that there is a large, teardrop-shaped region around 

(M,O) which converges to that fixed point. In addition, 
there is a smaller teardrop along the negative real axis that 

also converges to (M,O). The similarity of shapes suggests 
that/maps the smaller teardrop onto the larger teardrop on 
the first iteration. The existence of other smaller and darker 
teardrops in the basin image indicates a succession of map­
pings of the small teardrops onto ever larger teardrops, lead­
ing to the eventual convergence. 

Along with the concept of treating an iterative scheme 
as a function or mapping on the propagator space and the 
process of investigating fixed points and their stability, the 
examination of basin images is an important component of 
the fixed point theory as developed in subsequent sections. It 
gives a geometrical picture of how the iterative scheme 
works. In Sec. IV, we show how basin images can be used to 
guide the choice of the initial pulse sequence on which an 
iterative scheme acts. In addition, basin images reveal prop­
erties of iterative schemes that reflect the complexity and 
symmetry of the underlying dynamics, as will be seen in 
Secs. IV and VI. 

E. Propagator space for a spin-1/2 or two-level system 

Much of the development in subsequent sections deals 
with pulse sequences applied to isolated spins. The high field 
rotating frame Hamiltonian for an isolated spin during an rf 
pulse is always of the form 

H = iJ.wI. + wJ!lx cos tP + Iy sin tP), (10) 

where WI and tP are the rffield amplitude and phase, respec­
tively, and Il.w is the resonance offset, or the difference 
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between the rf frequency and the Larmor frequency. Equa­
tion (10) holds regardless of the total spin quantum number. 
In addition, Eq. (10) is the form of the Hamiltonian for any 
two-level, quantum mechanical system60

•
61 if the spin angu­

lar momentum operators 1/ are taken to be fictitious spin-
1/2 operators. 

If the pulse length is 7, the propagator for the pulse is 

U(r) = exp( - ia· I) (11) 

with 

a = (wlr cos l/J,w 1r sin l/J,tuJJr). (12) 

The overall propagator for a pulse sequence is a product of 
operators in the form of Eq. (11). with a varying from pulse 
to pulse or continuously as the rfamplitude, phase, and pos­
sibly frequency vary. 

It is appropriate in NMR to describe the quantum statis­
tical state of a spin system by a density operator, due to the 
fundamentally statistical nature of the ensemble being mea­
sured. For isolated spins or two-level systems, the density 
operator p is specified by a three-dimensional vector M: 

p=M·[ (13) 

The effect of rf pulses in Eq. (11) is to rotate M. Thus, in a 
density operator description, pulse sequence propagators are 
always rotations, with the rotation angle specified by 1 al and 
the rotation axis specified by the direction of a. Note 
again7

(a) that we use the term propagator for what is in this 
case a superpropagator or Liouvillian since it transforms or 
propagates the density operator. The distinction is not criti­
cal for the discussions in this paper. 

Any rotation in three-dimensional space can be repre­
sented by a 3 X 3 real, orthogonal matrix with a determinant 
of 1. Such matrices are the elements of a group, called 
SO (3).62 The elements of SO (3) lie in the three-dimensional 
space of Fig. 7. The vector a may be viewed as the coord i-

FIG. 6. Basin image for the complex func­
tion I(z) = (3/2)z - r in the complex 
plane. A basin image reveals the set of ini­
tial points that converges to a fixed point, 
i.e., the basin of the fixed point, by shading 
regions according to the number of itera­
tions required for convergence. Shown are 
the basins of the real fixed points M 
(top) and -.ff7i (bottom). A scale of 
shades corresponding to the number of 
iterations for convergence is shown to the 
left. The basins consist of mUltiple, discon­
nected regions with a self-similarity of 
structure. 

nates of a rotation in that space. SO (3) space is spherical, 
with a radius of 1T, since any product of rotations is equiva­
lent to a net rotation of 1T or less about a single axis. In addi­
tion, antipodal points on the sphere are identified, since rota­
tions by 1T about anti parallel axes are equivalent. 

Points in SO (3) in Fig. 7 along thex,y, or z axes represent 
rotations about the x,y, or z axes. The origin of SO(3) repre­
sents a net rotation of zero, or the unit operator. Points on 
the equator of SO (3) represent net rotations of 1T about axes in 
the xy plane. Such rotations correspond to the inversion of 

z 

x 
SO (3) 

FIG. 7. SO (3) space, the propagator space for pulse sequences applied to 
isolated spins or two-level spectroscopic systems. SO (3) space is a sphere in 
three dimensions with a radius of 11'. Antipodal points are identified. A point 
in SO(3) with coordinates (ax> a y, a.)=a represents a rotation by lal 
about an axis along the direction of a.. The equator represents 11' pulses, i.e., 
rotations that invert populations. The origin represents no net rotation, i.e., 
the unit operator. 
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spin state populations and therefore have a special signifi­
cance in Sees. III-V below. 

For isolated half-integral spins, the pulse sequence 
propagators fonn a group that is rigorously isomorphic to 
SU (2), the group of unitary 2 X 2 matrices with a detenninant 
of 1, rather than SO (3).63 Provided that a density operator 
description is employed, however, the distinctions between 
SU(2) and SO (3) become immaterial because the absolute 
phase of the fennion wave function is eliminated. We there­
fore take SO (3) to be the propagator space for all isolated spin 
problems. This is consistent with the nonnal NMR picture 
of rf radiation rotating magnetization vectors about axes in 
the rotating frame. 

III. FIXED POiNT ANALYSIS OF ITERATIVE SCHEMES 
fOR POPULATION INVERSION 

A. Definition and properties of phase shift schemes 

There exist several iterative schemes which generate 
pulse sequences for broadband 1.5.6 or narrowband 1.6 popula­
tion inversion. One class of schemes is pictured in Fig. 8 and 
defined as follows. Beginning with any initial pulse sequence 
So, we fonn N phase-shifted versions S gl by applying overall 
rf phase shifts tPi to So. For population inversion problems, N 
is required to be an odd integer. The first iterate sequence SI 
is then the concatenation of the phase-shifted versions of So 
taken in order, i.e., sg~ S~)··· SbN~. The same phase shifts 
are applied to SI' producing versions S ~1 that are concatenat­
ed to fonn S2' Repetitive application of the scheme generates 
higher iterate sequences. The sequence Skis N k times longer 
than So. We use the notation [tP l,tP2' ••• ,tP N] to represent 
specific phase shift schemes, with the phase shifts given in 
degrees. 

A phase shift scheme dictates a well-defined function F 
on SO (3). In order to analyze that function, we use the nota­
tion R (a) to represent a point in SO (3) corresponding to a 
rotation by lal about an axis along the direction of a. Rx (E) 
represents a rotation about the x axis by an angle E, with 
analogous notation for rotations about they andz axes. Ry (E) 
represents a rotation about an axis in the xy plane making an 
angle r with the x axis. If the propagator for the sequence S k 

is the point R (a) in SO (3), then the propagator for S~l is 
R (a~,), with 

a~, = (ax cos tPi - ay sin tPi ,ay cos tPi "+ ax sin tP;.az)· 
(14) 

Sn '-

[<A,CP., ---,<PH] 

Sn+1 

FIG. 8. Action of an iterative scheme based on phase shifts. The sequence 
Sn + 1 is generated from S. by forming phase-shifted versions S~ki. with 
phase shifts ¢k. and concatenating them. A phase shift scheme is depicted 
by the notation f¢l> ¢2 ..... ¢N]. 

A phase shift merely rotates a about the z axis. The propaga­
tor for the sequence Sk + I is R (a), given by 

R (P) = R (a~)R (a~N_l)··· R (a~J (15) 

Thus, F maps the point R (a) to the unique point R (13). 
F has certain fixed points that are immediately appar­

ent. If R (a) is the unit operator, corresponding to a rotation 
of zero and the origin of SO (3), then Eq. (15) shows thatR (a) 
is also the unit operator. The origin of SO (3) in Fig. 7 is 
therefore always a fixed point. 

If R (a) is Ry (1T), that is, a rotation by 1T radians about an 
axis in the xy plane, then 

R (13) = RyHT(1T) (16) 

with 

(17) 

Ry(1T) is a point on the equator of SO (3). Equation (16) im­
plies that the equator is in general an invariant set. Physical­
ly, this is apparent because Ry{1T) is a rotation that inverts 
spin populations, transfonning an initial density operator of 
I z to - I z • A phase-shifted version Ry + ~.(1T) also inverts 
populations. Any product of an odd number of inverting 
rotations is itself another inverting rotation. tPT is the net 
phase shift experienced. by an inverting rotation. If the 
scheme is such that tPT is a multiple of 1T, individual points on 
the equator of SO (3) are fixed, recalling that antipodal points 
are identified. 

The z axis of SO (3) is also an invariant set. If R (a) is 
R z (a), then R (13) is R z (Na). In addition to the origin, the 
other points along the z axis that are individually fixed are 
those that satisfy a = 2n1T/{N - 1). 

B. Stability of fixed pOints 

1. The Origin 

The stability of the origin of SO (3), corresponding to the 
unit propagator, plays an important role in the dynamics of 
iterative schemes for narrowband population inversion and 
heteronuclear decoupling, discussed in Sees. V and VI. If the 
origin is stable, pulse sequences that produce no net rotation 
may be generated. To detennine the stability of the origin 
under a general scheme of the fonn [tPI.tP2" • •• tP N ]. we linear­
ize Eq. (15) about the origin. This is conveniently done by 
evaluating the right-hand side ofEq. (15) to first order in lal. 
The result is 

(18) 

Equation (18) expresses F as a linear transfonnation T(origin) 

on the vector a near the origin: 

P = T(origin)a (19) 
N N 

L cos tPn L sin tPn 0 
"=1 "=1 

T(origin) = N N 
- L sin tP" L cos tPn 0 

(20) 

"= I "=1 

0 0 N 
One eigenvector of T(origin) is (0,0, 1), a vector along the z axis. 
The corresponding eigenvalue is N. Since N> 1, the z axis of 
SO (3) is always an unstable direction. The other eigenvectors 
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are (l,i,O) and (1, - i,O), with eigenvalues A 0+ and A 0-' re­
spectively: 

N 

Ao± = L exp( ± icP")· 
11=1 

(21) 

The existence of complex eigenvectors and eigenvalues is 
indicative of a rotation. T(origin l stretches or shrinks vectors 
in the xy plane by a factor of I A 0+ I and rotates them about z 
by an anglecP+, wherecP+ is the phase of ,10+ . The stability of 
the origin of SO (3) along directions in the xy plane is thus 
determined by I A 0+ I . If A o± < 1, the origin is stable with 
respect to displacements in the xy plane. Equation (21) im­
plies 

[( N )2 (N )2]112 
1,10+ 1 = 1I~1 COScPn + n~l sincP I • (22) 

2. The equator 

The stability of the equator (rotations by tr around axes 
in the xy plane) plays an essential part in the dynamics of 
iterative schemes for broadband and narrowband popula­
tion inversion. As will be seen, a stable equator leads to 
broadband inversion sequences. An unstable equator, com­
bined with a stable origin, leads to narrowband inversion 
sequences. A linearization of F about the equator of SO (3) 
may be carried out using the following general form for a 
rotation operator: 

R (a) = Rr(tr)R (E) 

with 

(23) 

E = (cxoC,.,O). (24) 

Equation (23) expresses an arbitrary rotation as the product 
of two rotations about axes in the xy plane, the first by lEI 
and the second by tr. If the net rotation is nearly an inverting 
rotation, R (E I is a small, error rotation. Appendix A contains 
a proof of the generality of Eq. (23). 

Reference 1 contains a derivation of the linearization of 
F about the equator based on the form in Eq. (23). Using Eq. 
(23), Eq. (15) becomes 

R (PI = Rr+ ~N(tr}R (E~)Rr+ ~N- I (tr) 

XR (E+N _,)· ··Rr++.(trIR (E~J 

With the aid of the following identities: 

R~(tr) = R.(1T)R z ( - 2¢), 

R (E~) = Rz(cP)R (E)R z( - cP), 

R,,(tr)R (E)R" ( - tr) = R (E), 

where 

(25) 

(26) 

(27) 

(28) 

n odd r = {cP" + :tll( - 1)m + '2¢m' 

" cP" - 2y + :t: ( -l)m2<Pm' 

(32) 
n even 

Equation (31) presents F as a linear transformation acting on 
E in the neighborhood of the equator. However, in studying 
the mapping of R (a) to R (!l), we must take into account the 
phase shift cPT' It is the direction of E relative to the phase y 
and the direction of Er relative to the phase y + cPr that are 
important in determining the extent of population inversion. 
The actual value ofthe phase is unimportant, and is defined 
arbitrarily. For this reason, we remove the phase shift cPr by 
rewriting Eq. (30) as 

R (Il) = Rz(cPT)Rr{tr)R (E;')Rz( - cPr), (33) 

where 
N 

E;' = L (cx cosr~ - c,. sinr~,( -1)"+ ICy cosr~ 
"=1 

r~ = r l1 + ( - l)"cPT' 

(34) 

(35) 

The linear transformation in Eq. (34) is expressed in matrix 
form, in the I x,y} basis, as 

(36) 

N ) 
- L sinr~ 

i~~ 1)"+' cosr; . (

N 

L cosr~ 
T (equator) = 11 = I 

"~I ( - It + I sin r ~ 
(37) 

The fact that T(equatorl is a 2 X 2 matrix reflects the fact that 
there are only two directions for displacements from the 
equator. The eigenvectors and eigenvalues of T(equatorl de­
pend on the choice of the rf phase shifts cP i in the iterative 
scheme. For example, an iterative scheme with a stable equa­
tor is derived by choosing the cPi such that the eigenvalues of 
T(equator j are both less than I in magnitude. Three possible 
scenarios exist. First, the eigenvalues can be real and dis­
tinct, implying the existence of two real eigenvectors. Sec­
ond, the two eigenvalues can be complex and conjugate to 
one another, implying two complex conjugate eigenvectors. 
Third, the two eigenvalues can be real and degenerate. In 
this case, there may be either one or two independent real 
eigenvectors. The linearization of the function correspond­
ing to an iterative scheme is generally not Hermitian, and so 
need not have a comp~ete basis of eigenvectors. The eigenval­
ues of T(equator) are A l' , given by 

E = (c", - C,.,O), (29) A e± = (cos r; + cos r i + ... 
we evaluate Eq. (25) to first order in lEI as 

R (13) = Rr+~T(tr)R (ET), 

where 
N 

+cosrN)± [(cosr~ +cosr~ 

(30) + ... +cosrN_.l2 +(sinr2 
+ sin r ~ + ... + sin r N _ d2 

ET = L (cx cos r" - c,. sin r" ,( - 1)" + IC,. cos r" -(sinr; +sinri + ... +sinrN)2}1/2. (38) 
"=1 

(31) 
The eigenvalues are independent of y. The eigenvectors for 
y;60 are related to those for y = 0 by rotation about z by y. 
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IV. GENERATION OF SEQUENCES FOR BROADBAND (a) 

POPULATION INVERSION 

A. Derivat.ion of schemes using vect.or diagrams 

Pulse sequences that invert spin populations over large 
ranges of the resonance offset I:uu and the rf amplitude (J) I 

can be generated by iterative schemes for which the equator 
of SO (3) is stable and the origin is unstable, as in Fig. 9. Such 
schemes can be found by searching for a combination of 
phase shifts for which I A. / I < 1 in Eq. (38). An alternative 
method, which is particularly useful for assuring superstabi­
lity, is to use vector diagrams, as in Fig. 10. Equation (34) 
implies that Er is the sum of N vectors with equal magni­
tudes in the xy plane. These vectors may be divided into two 
groups, those with odd n and those with even n. Those with 
odd n are rotated about z by r~. Those with even n, in addi­
tion to being rotated about z by r ~, are rotated about x by 1T. 

If {r ~ J can be found such that the two groups of vectors 
separately add up to zero, Er will be zero regardless of E and 
regardless of r. In other words, Tiequator) in Eq. (37) is the zero 
matrix. The equator of SO (3) is then superstable. Note that a 
minimum N of 5 is required_ For N = 5, possible superstabi­
lity conditions are 

r3 = r 1 + 21T13, 

r 4 = r 2 + 1T, 

rs = r l + 41T/3. 

(39a) 

(39b) 

(39c) 

The phase shifts rPn may be determined from r n with Eq. 
(32). Two schemes that satisfy Eq. (39) are [0,0,120,60,120] 
and [0,330,60,330,0], as proposed in Ref. 1. For later com­
parison, plots of the extent of population inversion as a func­
tion of the relative resonance offset 1luJ1{J)~ for pulse se­
quences generated by [0,0,120,60,120] are shown in Fig. 11. 
Ct)~ is the nominal rf amplitude, used to define pulse lengths. 
The sequences in Fig. 11 were generated using a single 1T 

pulse as the initial sequence. When.dlU = 0 and WI =:= Ct)~ , a 1T 

pulse produces complete population inversion, correspond­
ing to a propagator on the equator of SO (3). Since the equator 
of SO (3) is superstable under rO,O, 120,60,120], initial points 
converge to the equator from aU directions. Thus, the se­
quences generated by [0,0,120,60,120] produce broadband 
population inversion with respect to all experimental param­
eters that affect the propagator, i.e., both (J)I and 1luJ. I 

z 

t _e ____ 

~ 

FIG. 9. The essential dyna­
mical properties of phase 
shift schemes which gener­
ate pulse sequences for 
broadband popUlation in­
version. Shown is the xz 
plane of SO 13). The origin is 
an unstable fixed point. 
The equator is a stable in­
variant set. Points in SO 13) 
may converge to the equa­
tor, i.e., to inverting 11T) ro­
tations under iteration. 

(b) 3 
4 

1200 2 
900 

5~--------~~~----~ 

7 

FIG. 10. Vector diagrams for deriving phase shift schemes for which the 
equator of SO 13) is superstable. la) Diagram for five-phase schemes of the 
form [0,<,6,120 + 2<,6,fIJ + 3<,6,120 + 441]. Ib) Diagram for seven-phase 
schemes of the form [0,<,6,90 + 2<,6,300 + 31,6,240 + 441,300 + 5<,6,90 + fxP]. 
The mutual cancellation of the vectors ensures superstability. 

B. Construction of basin images 

Figure 11 reveals several striking features. The se­
quences generated by [0,0,120,60,120] invert populations es­
sentially perfectly over a very large range of offsets around 
zero, approximately - 1 < t..{J)ICt)~ < 1. In addition, there 
are other smaller ranges of offsets over which population 

(a) r~ 1.0"(b('\[~ ~ I 0 I 

IV L·I 
1.0 

c 

.~ 
Q) a > 
E. 

-1.0 

-1.0 0 1.0 -1.0 a 1.0 

(e) (d) 
1.0 

f~r\~\l 
1.0 

~lf U 
I ' c: I.:!!: 0 

t~~ .~ 

0 0 

"\ 
OJ 
> 
E. 

-1.0 -1.0 I .. 

-1.0 a 1.0 -1.0 a 1.0 

t."'I"'~ t."'I"'~ 
FIG. II. Population inversion performance of the first four iterate se­
quences generated from an initial single 1T pulse by the scheme 
[0,0, 120,fIJ, 120] [(aHd), respectively] as a function of the relative resonance 
offset. An inversion value of 1.0 represents complete population inversion; a 
value of - 1.0 represents equilibrium populations. Dots are experimental 
measurements, from IH NMR of a H 20 lil sample. Lines are simulations. 
Note that offset ranges of nearly complete inversion develop, separated by 
ranges of wildly varying inversion. 
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inversion is also achieved. In between, there are ranges of 
offsets over which the inversion varies chaotically. Qualita­
tively similar features appear in plots of the inversion as a 
function of relative rf amplitudes OJ)/ OJ~ . These features are 
reminiscent of the structure of the basin of a stable fixed 
point, as described in Sec. II and Fig. 6. Therefore, we exa­
mine the basin of the equator of SO (3) under the mapping 
corresponding to [0,0,120,60,120] using basin images as in­
troduced in Sec. II. In particular, we seek to answer the fol­
lowing questions: 

1. What limits the inversion bandwidths in Fig. II? 
2. Why are there separated regions of complete inver­

sion? 
3. Why are there regions of chaotic fluctuations of the 

inversion? 
The numerical construction of basin images for iterative 

schemes follows the procedure that led to Fig. 6. A grid of 
initial points in SO (3) is selected. For each initial point, the 
corresponding 3 X 3 rotation matrix R (a) is set up. Phase­
shifted versions R (a¢) are constructed according to Eq. (27) 
and multiplied together according to Eq. (15), resulting in 
the 3 X 3 matrix corresponding to the first iterate point. Con­
tinuing in this way, higher iterates are generated. Each iter­
ate is checked for convergence to the form R r (1T). The crite­
rion for convergence is 

[R (ajlzz < - 0.998. (4Oj 

where [R (a)]zz is the matrix element of R (a) in the! x,y,z, 
basis that represents the projection onto the z axis of a unit 
vector, initially aligned with + z, after rotation by R (a). The 
number of iterations required for convergence is assigned to 
each initial point. The number - 1 is assigned to those 
points that do not converge within 15 iterations. 

The construction of a basin image is greatly simplified 
by symmetry with respect to rotations about the z axis. For 
any [~)'~2" • "~N] scheme, if two initial points are related by 

a rotation aboutz by some angle, then their iterates are relat­
ed by the same rotation. This is a consequence of Eq. (15). 
The two initial points necessarily converge in the same num­
ber of iterations. Therefore, it is sufficient to consider a single 
cross section of SO (3) containing the z axis. 

Figure 12 is a basin image for [0,0,120,60,120], dis­
played on a graphics system in the manner of Fig. 6. It is 
clear that the basin of the equator of SO (3) is nearly the entire 
space. However, embedded in SO (3) there is a set of points 
that apparently does not converge to the equator. The basin 
has a repeating structure that is the consequence of the map­
ping of smaller basin regions onto larger ones as described in 
Sec. II C. The basin image, as a visualization of the dynamics 
of [0,0,120,60, 120J, provides an explanation of the features 
seen in Fig. 11. If the value of the parameter aOJ is such that 
the initial propagator lies in a convergent region of SO (3), 
spins with that value of aOJ will be nearly completely invert­
ed by a high iterate sequence. The fact that there are discon­
nected convergent regions implies that there may be discon­
nected ranges of aOJ for which the inversion becomes 
complete. The limits on the inversion bandwidth are estab­
lished by values of aOJ for which the initial propagator be­
longs to the nonconvergent set. 

The nonconvergent set in Fig. 12 has an intricate, fila­
mentous structure. It is likely that there are convergent 
"holes" in the nonconvergent set occurring at all levels of 
magnification. In that case, the nonconvergent set is a frac­
tal64 surface in SO (3), with a dimension between two and 
three. This fractal surface gives rise to the chaotic variations 
in the inversion for some ranges of aOJ in Fig. 11. 

Figure 13 is a basin image for [0,330,60,330,0]' The 
qualitative features of Fig. 12 are reproduced, namely the 
existence of disconnected convergent regions separated by 
fractal, nonconvergent set of points. In addition, there is 
symmetry with respect to reflections in the xy plane. This is 
the result of the symmetry of the phase shifts, namely, 

FIG. 12. Basin image for the iterative 
scheme [0,0,120,60,120]. Shown is a cross 
section through SO(3), containing the z 
axis. Convergence to the equator is dis­
played. Lighter shades correspond to 
more rapid convergence. The basin of the 
equator is nearly the entire space. Points 
that do not converge to the equator, de­
picted in black, apparently fonn a fractal 
set. 
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¢N-; =¢;+I' (41) 

It is shown in Appendix B that Eq. (41) implies that, if two 
initial points are related by reflection in the xy plane, their 
iterates must also be related by reflection. Therefore, the two 
points must converge in the same number of iterations. 

C" Optimization of the inltia! pulse sequence 

Basin images such as those in Figs. 12 and 13 can be used 
to guide the selection of an initial pulse sequence. An initial 
pulse sequence is specified by a sequence offiip angles and rf 
phases. The flip angle of the ith pulse in the sequence is w~ 'T; 

where 'T; is the length of the pulse. When aw = 0 and 
WI = w~ , the initial sequence produces a net rotation that is a 
single point in SO (3). However, there are always experimen­
tal variations of aw and WI that produce variations in the net 
rotation, so that the initial sequence actually corresponds to 
a locus of points in SO (3). In the most general terms, an 
initial pulse sequence corresponds to a locus of points in the 
propagator space, dictated by the nominal flip angles and 
phases and by the experimentally relevant ranges of param­
eters in the Hamiltonian. 

As an example, Fig. 14 shows the loci of points in SO (3) 
corresponding to a single 1T pulse with separate variations of 
WI and aw. The inversion plots in Fig. 11 could be predicted 
by comparing Fig. 14(b) with Fig. l2. The ranges of offsets 
where the inversion is nearly complete in Fig. 11 are the 
segments of the locus in Fig. 14(b) that lie on top of the rapid­
ly convergent regions in Fig. l2. 

For broadband excitation problems in general, the 
range of parameters over which an iterative scheme is effec­
tive can be enlarged by choosing an initial sequence for 
which the locus of initial points conforms to the basin of the 
desired fixed point. This is illustrated schematically in Fig. 
15. For the case of the scheme [0,0,120,60,120], the largest 

FIG. 13. Basin image for the scheme 
[0,330,60,330,0]. Qualitative features are 
similar to the basin image for 
[0,0,120,60,120] shown in Fig. 12. The ad­
ditional reflection symmetry in this figure 
arises from the symmetry of the phase 
shifts. 

part of the basin is roughly defined by the requirements 
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-1.0 

40° <¢< 140°, (42a) 

O.7D1r <r <1T (42b) 
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FIG. 14. Loci of points in SO (3) corresponding to a single 1T'pulse with varia­
tions in the rf amplitude (a) or the resonance offset (b) and the corresponding 
inversion profiles for I. in (c) and (d). Shown in (a) and (b) is half of the xz 
plane of SO (3). The points are rotated about z so that they lie in the pictured 
plane. Comparison of these loci of points with the basin images in Figs. 12 
and 13 reveals the ranges of rf amplitudes and resonance offsets over which 
complete population inversion may be achieved by applying the schemes 
[0,0,120,60,120] and [0,330,60,330.0] to an initial single 1T' pulse. 
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(a) 

(b) 

FIG. IS. Illustration of the principle of matching the initial locus of points 
to the basin in order to optimize the exictation bandwidth produced by an 
iterative scheme. (a) A s1!.ble fixed point Ii is shown in an abstract propaga­
tor space. The basin of U is filled with diagonal lines. (b) An initial pulse 
sequence is chosen so that the corresponding locus of initial points in the 
propagator space, arising from variations in experimental parameters and 
depicted as the shaded region, lies inside the basin. It is then guaranteed that 
the propagator for the iterate sequence will converge to Ii over the entire 
range of experimental par~meters. Note that the locus of initial points need 
not be concentrated near U. 

where t/> and r are polar coordinates in SO (3). An initial se­
quence for which the locus of points satisfies Eq. (42) for 
- 1.4 Ct)~ <aCt) < 1.4 Ct)~ is the sequence 3000 12°180, using 

the standard notation Or for a pulse with a flip angle ° and a 
phase y. The locus of points for 3000 120180 with variations in 
~ is shown in Fig. 16. The locus in Fig. 16 clearly conforms 
to the basin in Fig. 12. Figure 17 shows inversion plots for 
iterate sequences generated from 3000 120180 by 
[0,0,120,60,120]. The range of offset values for which the 
inversion is nearly complete is approximately twice as large 
as that in Fig. 11. Note that it is not essential that the initial 
sequence itself produce broadband inversion, but only that it 
conform to the basin. 

To find the sequence 3000 120180, a computer search was 
conducted over possible sequences consisting of two pulses 
with phases of 0· and 180" and flip angles in increments of 
10". For each possible sequence, the points in SO (3) are calcu­
lated for values of ~ between - 1.4 Ct)~ and 1.4 Ct)~, in in­
crements of 0.1 Ct)~. This is done by treating the pulse se­
quence as a product of 3 X 3 rotation matrices. By examining 
the matrix elements of the net rotation R (a), the vector a 
that specifies the coordinates of the point in SO (3) can be 
extracted. 

As a second example of the selection of an initial se­
quence to improve the performance of an iterative scheme, 
consider the generation of sequences for simultaneous 

,I 

Awlw~ 

FIG. 16. Locus of points in SO (31 corresponding to the sequence 3000120'80 
with variations in the resonance offset. Initial points are rotated about z so 
as to lie in the xz plane. 3000 120"0 is chosen to conform to the basin of the 
equator of SO(3) under the scheme [0,0,120,60,1201, shown in Fig. 12. 

broadband inversion with respect to /::w.) and (j) 1 by the 
scheme [0,330,60,330,0]. Figure I8(a) shows the locus of 
points for a single 1T pulse with simultaneous variations in 
aCt) and Ct) \. Figure 18(b) shows the locus for the sequence 
1650 165 105 1650 with the same variations in aCt) and Ct)\. 

1650 165105 1650 is chosen to conform to the basin of 
[0,330,60,330,0] in Fig. 13, using a search procedure as out­
lined above. Figure 19 shows inversion coutour plots for se­
quences generated from a single 1T pulse and from 
1650 165 105 1650 by [0,330,60,330,0). The area for which the 
inversion is nearly complete is enlarged by the choice of an 
initial sequence that conforms to the basin. 

Thus, the basin images provide not only an explanation 
of the performance of the broadband inversion schemes, but 
also a prescription for optimizing the performance. The 
principal of matching the initial sequence to the basin may be 
applied to broadband excitation problems in general. 

V. GENERATION OF SEQUENCES fOR NARROWBAND 
POPULATION INVERSION 

A, DerivatIon and p$rI'ormance of schemes 

In Ref. 1, the scheme [0,120,240) was proposed for the 
problem of narrowband population in version, in particular, 
narrowband with respect to the rf amplitude. For 
[0,120,140]. the eigenvalues of T1origin! and Tlequator, , the lin-
earizations of F at the origin and the equator, are respective­

ly A cf = ° and A:- = - 1 ± Iii. The origin of SO (3) is su­
perstabl.e with respect to displacements in the xy plane; the 
equator is unstable. This is illustrated in Fig. 20. Tfthe initial 
sequence is a single 1T pulse, the perfect inversion at (j) I = Ct)? 

is preserved upon iteration. However, initial points near the 
equator, arising from rf amplitudes somewhat greater than 
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or less than W~, are repelled from the equator. Initial points 
near the origin, arising from rf amplitudes near ° or 2w~, 
move towards the origin. The result is the development of a 
narrow region of population inversion centered around 
WI = w~. Inversion plots for sequences generated by 
[0,120,240] are shown in Fig. 21, for the sake of comparison. 

Schemes for which the origin is superstable with respect 
to displacements in the xy plane can be derived with vector 
diagrams, as were the schemes in Sec. IV. Equation (IS) im­
plies that the origin is superstable in the xy plane for the 

(a) (b) 

'~}>:::: .. 

zt 

rtrf~n:'i? 
. ': .;, ~ , 

F1G. 18. Loci of points in SO (3) for the single pulse 1800 (a) and the pulse 
sequence 1650165"151650 (b) resulting from simultaneous variations of the 
resonance oft'set and the rf amplitude. Points for offsets in the range 
- 1.0<41l1/ 1lI~ <: 1.0 in increments of 0.05 and rf amplitudes in the range 
0.4<1lI,/1lI~<1.6 in increments of 0.05 are plotted. The points are rotated 
about z so as to lie in the xz plane. 165016510,1650 is chosen to conform to 
the basin of the equator of SO(3) under [0,330,60,330,0], shown in Fig. 13. 
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F1G. 17. Simulations of population inversion 
as a function of the resonance offset for the se­
quence 3000 120'80 (a) and its first three iter­
ates (b), (c), (d) generated by [0,0,120,60,120). 
Compared to Fig. 11, the inversion band­
widths of the high iterate sequences are nearly 
doubled by choosing an initial sequence 
whose locus of points in SO (3) conforms to the 
basin of the equator. 

scheme [1,61,1,62' •• ·,tPN] if N unit vectors in the xy plane at 
angles 1,6; to the x axis add up to zero. 

As is apparent in Fig. 21(d), the narrowband inversion 
profile is only a transient result of the scheme [0,120,240]. 
An explanation of this feature is provided by Fig. 22, which 
shows the movement of representative initial points under 
[0,120,240]. Because the origin of SO (3) is unstable along the 
z axis, initial points in the xy plane move toward the origin on 
the lower iterations but then diverge from the origin along 
the z axis. Thus, significant inversion develops at intermedi­
ate values of WI on higher iterations. 

The escape of points from the xy plane can be prevented 
by using a scheme with symmetric phase shifts in the sense of 
Eq. (41). The reflection symmetry discussed in Sec. IV Band 
Appendix B constrains initial points in the xy plane to re­
main in the xy plane. An example of a scheme with the de­
sired symmetry is {lSO-cos-10.25, ISO + COS-I 0.25, 0, 
180 + COS-I 0.25, 180 - cos- 1 0.25], or approximately 
[104.5,255.5,0,255.5, 104.5). For this scheme, A. o± = 0 and 
A..± = 2.375 ± 0.5. Initial points in the xy plane move from 
the equator to the origin upon iteration. Inversion plots as a 
function of WI for sequences generated from an initial single 
11' pulse are s.'hown in Fig. 23. The narrowband inversion 
profile is clearly not transient. Rather, the inversion band­
width decreases indefinitely with increasing iterations . 

B. Resonance offset behavior 

Pulse sequences for narrowband population inversion 
with respect to the rf amplitude, generated by schemes such 
as [0,120,240] and [104.5,255.5,0,255.5,104.5], typically ex­
hibit inversion plots as a function of the resonance offset that 
resemble those in Fig. 24. A possible application of the nar­
rowband sequences is the spatial localization of NMR sig-
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FIG. 19. Calculated inversion contour plots for pulse sequences which are 
the second iterates oflSOo(a) and 1650 165 10,1650 (b) under [O,330,60,330,0j. 
Shown are the 0.99 (dotted lines) and 0.50 (solid lines) inversion contours. 
The area of nearly complete population inversion is enlarged by choosing an 
initial sequence for which the locus of points in SO (3) conforms to the basin 
of the equator for simultaneous variations of the resonance offset and the rf 
amplitUde. 

nals in rf field gradients.6,20--22 In such an application, the 
sensitivity to resonance offset apparent in Fig. 24 severely 
limits the frequency range over which signals can be uni­
formly localized. Pulse sequences that invert spin popula­
tions over a narrow range of rf amplitUdes but over a broad 
range of resonance offsets are needed. 

As a step towards the derivation of such narrowband­
broadband combination sequences, we examine iterative 
schemes with stability properties illustrated by Fig. 25. Con­
sider the scheme [0,200,230,30,95]. For this scheme, 
A o± = 0.196 ± 0.388i so that the origin is stable in the xy 

plane. According to Eq. (37), with r = 0, the linear transfor-

FIG. 20. The essential dynamical properties of phase shift schemes which 
generate pulse sequences for narrowband population inversion. Compare 
with Fig. 9. The instability of the equator of SO (3) causes iterate sequences 
to produce complete inversion only at isolated values of the experimental 
parameters. The stability of the origin with respect to displacements in the 
xy plane produces no net rotation or a rotation about the z axis over large 
ranges of the experimental parameters. 

mation at the equator is 

Tlequator) = (~.6708 
0_ 0.0196). (43) 

The equator has one stable and one unstable direction. The 
unstable direction, with eigenvalue 1.6708, is the direction 
towards the origin. The stable direction, with eigenvalue 
- 0.0196, is the z direction, as explained in Appendix A. 

If the initial pulse sequence is a single 7r pu.lse, a displace-
ment from the equator along z corresponds to a nonzero 
resonance offset. A displacement towards the origin corre-
sponds to a nonzero difference (jJ I - (jJ~. Loosely speaking, 
the equator of SO (3) is stable with respect to the resonance 
offset and unstable with respect to the rf amplitude under 
[0,200,230,30,951. Figure 26 shows inversion plots for the 
second iterate sequence generated by [0,200,230,30,95] for 
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FlG. 21. Population inversion as a function of the rf amplitude for the first 
four iterates of a single Tr pulse, generated by [0,120,240] [(aHd), respective­
ly]. Dots are experimental measurements, form IH NMR of a H20 II ) sam­
ple. Lines are simulations. The function on SO (3) that underlies [0,120,240] 
has the stability properties of Fig. 20. 
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[0, 120, 240] 

FIG. 22. The flow of points in 
SO (3) under [0, 120,24Q]. Points 
are rotated about z so as to lie in 
the xz plane. The escape of 
points from the xy plane results 
in the transient nature of the 
narrowband inversion profiles 
generated by [0,120,24Q] and 
seen in Fig. 21. 

various, fixed offsets. As anticipated, the inversion is insensi­
tive to the offset in a range of WI about w? 

The results in Fig. 26 still suffer from a strong depen­
dence on aw/w? at values of WI near O.4w? and 1.6w? These 
ranges of WI correspond to initial points in SO (3) that are not 
near the equator and are therefore not controlled by the sta­
bility properties of the equator. It may be possible to gener­
ate pulse sequences for which the inversion is insensitive to 
aw/w? over the entire range of WI using iterative schemes 
with somewhat different stability properties. For example, if 
the entire xy plane of SO (3) were stable with respect to displa­
cements along z, and if the initial sequence was a single 17' 
pulse, then the resonance offset dependence could be can­
celed for all values of WI' Such stability properties cannot be 
achieved with iterative schemes that rely on phase shifts, but 
may be possible if other operations on pulse sequences are 
developed. 
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FIG. 23. Simulations of population inversion as a function of the rf ampli­
tude for the first four iterates of a single 11' pulse generated by the scheme 
[104.5,255.5.0,255.5,104.5] [(aHd), respectively]. Compare with Fig. 21. 
[104.5,255.5,0,255.5,104.5] has the stability properties of Fig. 20, but the 
symmetry of the phase shifts prevents the escape of points from the xy plane 
in SO (3), leading to a progressive, rather than transient, narrowing of the 
inversion profile. 

(a) (b) 
1.0 (\ 

0 

c -1.0 

f". ! \~ 
) \ I .. -.,\ 

.. ./ \. ., ..... ' 
.2 

<J) -1.0 1.0 -1.0 o 1.0 o 
.t 
> c (e) (d) 

1.0 

0 

-1.0 
-/.O 0 /.0 -1.0 o 1.0 

f:,w/w~ 

FIG. 24. Population inversion as a function of the resonance offset for the 
first four iterates of a single 11' pulse under [0,120,240]. Simulations (solid 
lines) and experimental data (dots) are shown. The development of multiple 
narrow offset ranges where populations are inverted is a common feature of 
iterative schemes that generate narrow inversion bandwidths with respect 
to the rf amplitude. 

VI. FIXED POINT ANALYSIS OF OTHER ITERATIVE 
SCHEMES 

A. Motivation 

This section is devoted to analysis of iterative schemes 
developed by other authors for various purposes in NMR. 
We do not intend to give complete descriptions of either the 
theory or the applications of those schemes, but merely to 
demonstrate the applicability of the principles developed in 
the preceding sections to iterative schemes in general. Com­
plete descriptions of the schemes, their derivations, and their 
applications can be found in the original papers. The fixed 
point theory yields geometrical pictures of those schemes 
and provides dynamical explanations of their performance. 

B. Composite pulses 

1. Recursive expansion procedure 

Levitt and Ernst have proposed the recursive expansion 
procedureS for generating broadband composite 17'/2 pulses, 
i.e., pulse sequences which rotate the spin density operator 
from Iz to a linear combination of Ix and Iy • The recursive 
expansion procedure is an iterative scheme which may act on 
any initial pulse sequence in principle, but that depends on 

z 

i -e_ 
~ 

FIG. 25. Essential dynamic 
properties of phase shift 
schemes intended to gener­
ate narrowband inversion 
with respect to the rf ampli­
tude over a broad range of 
resonance offsets. Compare 
with Fig. 14. The stability 
oftheequatorofS(J(3)~th 

respect to displacements 
out of the xy plane is in­
tended to remove the offset 
dependence of initial points 
near the equator. 
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FIG. 26. Simulations of population inversion as a function of the rf ampli­
tude for the second iterate of a single 17' pulse generated by [0,200,230,30,95]. 
This iterative scheme has the stability properties of Fig. 25. Plots for relative 
resonance offsets.:i = .:iw/ w~ , values of 0.0, 0.2,and - 0.2 are shown. The 
narrow inversion profile is fairly insensitive to the offset in a range of rf 
amplitudes WI around the nominal value w~ around the nominal value w~ , in 
contrast to the scheme [0,120,240] of Figs. 20-24. 

the existence of an inverse sequence, i.e., another sequence 
that produces the inverse of the rotation produced by the 
initial sequence. When ~UJ = 0, an inverse sequence is easily 
constructed by phase shifting the initial. sequence by 180· 
and reversing the order of the pulses. When fuJJ i= 0, there is 
no general method for constructing an exact inverse, al.­
though Levitt and Ernst propose an approximate meth­
od.5

•
65 In what follows, however, we assume that exact in­

verse sequences can always be found. 
The recursive expansion procedure consists of conca­

tenating the sequence So with its inverse, phase shifted by 
90·. Thus, the first iterate sequence SI can be symbolized by 
SolS 0- I )90' A convenient general form for the initial rotation, 
or point in SO (3), is 

R (a) = RZ (rl)R,,($)R z (r2)' (44) 

Rotations that transform Iz to a linear combination of Ix 
and Iy have $ == 11'/2 in Eq. (44). Note that such rotations do 
not necessarily produce a net rotation of 1T /2. They are mere­
ly the rotations that produce an inversion of zero. 

The first iterate rotation R (13) becomes 

R (P) = R.(1T/2 - r2)Rx(1T12 + €) 

XR.( - 1T12)Rx('11/2 + €)Rz(r2) 

with 

$ = 1T/2 + €. 

IfEq. (45) is evaluated to first order in €, the result 

R (a) = Rz ( - r2 + €)Rx (1T/2)Rz (1T/2 + r2 + €) 

(45) 

(46) 

(47) 

is obtained. R (13) is thus a rotation that transforms /z to a 
linear combination of Ix and Iy • Such rotations are therefore 

a supers table, invariant set under the recursive expansion 
procedure. That set is a surface embedded in SO (3), as shown 
in Fig. 27. 

Figure 28 is a basin image for the recursive expansion 
procedure, illustrating the number of iterations required for 
convergence to the surface in Fig. 27. The recursive expan­
sion procedure has rotational symmetry about the z axis, so 
that it is again sufficient to consider a single slice through 
SO (3). The qualitative difference between Fig. 28 and Figs. 
12 and 13 is striking. There is no fractal, nonconvergent set 
in Fig. 28. Rather, Fig. 28 reveals that the basin of the stable 
invariant set is the entire SO (3) space, excluding the z axis 
and the equator. InitiaJ points appear to converge in a 
smooth, structureless manner. 

The simplicity of the dynamics for the recursive expan­
sion scheme suggested by the simplicity of the basin image in 
Fig. 28 can be explained by representing the rotation opera­
tors as 3 X 3 matrices in the ! x ,y,z I basis. We can then treat 
recursive expansion as a function acting on Rzz , the matrix 
element that specifies the extent of inversion. From Eq. (44), 
we have 

[R (anzz = cos $. 
The first iterate R (P) has the matrix element 

[R (allzz = cos2 $. 

(48) 

(49) 

Equations (48) and (49) show that the underlying one-dimen­
sional mapping for the recursive expansion procedure is 

fIx) = x 2
• (50) 

f has a superstable fixed point at x = 0, with a basin that is 
the open interval ( ...... 1, I), and a:1l unstable fixed point at 
x = 1. 

With x = cos $, the superstable fixed point is at $ = 1T / 
2, corresponding to the surface in Fig. 27, and the basin is the 
open interval (0,1T), corresponding to the entire SO (3) space 
excluding the z axis and the equator. The lines that separate 
differently shaded regions in Fig. 28 are cross sections 
through surfaces of constant $ embedded in SO (3). 

2. Retrograde compensation 

Shaka and Freeman6 have proposed. iterative schemes 
which generate pulse sequences for narrowband inversion, 

z 

y 

x 

FIG. 27. The surface in SO (3) comprising the locus of points that corre­
spond to rotations creating transverse (xy) magnetization when acting on a 
density operator I .. i.e., "generalized 17'/2 rotations." 
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which they refer to as retrograde compensation. As with the 
recursive expansion procedure discussed above, the retro­
grade schemes use inversion, phase shifting, and concatena­
tion operations. One scheme is defined by 
S = SotS 0- 1)60(SO)120' i.e., a concatenation of the initial se­
quence, the inverse sequence phase shifted by 60°, and the 
initial sequence phase shifted by 120·. For this scheme, the 
equator of SO (3) is an unstable invariant set. However, every 
point on the z axis is superstable with respect to displace­
ments in thexyplane. To see this, write the initial pointR (a) 
in the general form 

R (u) = Rz(r)R (e), (51) 

where the z component of e is zero. The first iterate R (13) is 
then 

R ({3) = Rz(r + 21T/3)R (E)Rz( - 1T/3)R (- e) 

(52) 

Iflel issmall,R (a) is c10se to thez axis of SO (3). To first order 
in lEI, Eq. (52) reduces to 

R (a) = Rz(r), (53) 

demonstrating that each point on the z axis is individually 
fixed and superstable. 

Figure 29 is a basin image for the retrograde scheme. As 
with the recursive expansion procedure discussed earlier, the 
basin image suggests simple dynamics. All initial points not 
on the equator apparently converge smoothly to the z axis. 
Again, it can be shown that there is an underlying one-di­
mensional mapping whose properties imply the simplicity of 
Fig. 29. If the initial point in SO (3) is written in the form of 
Eq. (44), then Eq. (48) still holds. Equation (49) is replaced by 

[R (f3)]zz = !eas3 5 - icos2 5 + icos 5 +~. (54) 

The underlying mapping is, therefore 

g{x) = !(x3 
- 3x2 + 3x + 3). (55) 

FIG. 28. Basin image for the recursive ex­
pansion scheme of Levitt and Ernst de­
signed to produce '/T/2 rotations which are 
broadband in WI' The basin of the surface 
in Fig. 27 is shown in a cross section of 
SO~3) containing the z axis. The basin is 
the entire space, excluding the z axis and 
the equator. 

g has a superstable fixed point at x = 1 and an unstable fixed 
point at x = - 1 corresponding to the superstable and un­
stable fixed points at thez axis and the equator, respectively. 
In addition, g has an unstable fixed point at x = 3 which has 
no analog in the function on SO (3). All initial values of x in 
the interval ( - 1,1) converge to 1 under iterations of g. 
Therefore, all initial points in SO (3) for which 5 is in the 
interval (0,1T), which is to say the entire space excluding the 
equator and the z axis, converge to the z axis. 

Pulse sequences generated by applying the 
SI = SolS 0- 1)60ISobo scheme to an initial single 1T pulse ex­
hibit population inversion performance as a function of the 
rf amplitude very similar to the results in Fig. 23. Shaka and 
Freeman also propose a scheme represented by 
S = So(S 0- 1)90(SO)180 for generating narrowband inversion 
sequences. The latter scheme has the property that, when 
viewed as a function on SO(3), it maps the surface in Fig. 27 
onto the z axis. This property results in the narrowband in­
version features of the iterate sequences. However, lineariza­
tion near the z axis leads to eigenvalues of ± i, so that initial 
points near the z axis do not converge geometrically to the z 
axis. 

C. Heteronuclear decoupllng sequences tor liquId state 
NMR 
1. Waugh sequences 

Beginning with the MLEV schemes of Levitt and Free­
man,33 several authors have demonstrated pulse se­
quences3.4·33-38 and iterative schemes for generating such se­
quences,3.4 designed to remove heteronuc1ear couplings in 
liquid state NMR, e.g., to decouple protons from \3e nuclei, 
allowing the observation of the 13e spectrum without line 
splittings caused by the coupled protons. The decoupling 
sequences are designed to be effective over a large range of 
proton resonant frequencies. Waugh has given a criterion for 
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evaluating liquid state decoupling sequences36
: a good de­

coupling sequence is one for which the net rotation exper­
ienced by an isolated spin is independent of the resonance 
offset over a large range of offsets. In addition, Levitt, Free­
man, and Frenkie13 and Waugh4 have demonstrated particu­
lar iterative schemes yielding pulse sequences which pro­
duce net rotations of nearly zero over a large range of offsets. 
These constitute efficient decoupling sequences. 

Waugh's criterion reduces the decoupling problem to 
the consideration of the response of an isolated spin to the 
pulse sequence. The relevant propagator space is therefore 
SO (3). However, because both the MLEV scheme of Levitt, 
Freeman, and Frenkiel and the Waugh scheme involve the 
permutation of pulses, they do not yield unique functions on 
SO (3). This can be seen in general from the following argu­
ment. Suppose the initial sequence, with propagator U, is 
composed of M pulses with propagators V;. Then; 

(56) 

Permuting a pulse gives a new version of the sequence with a 

z 

t __ e_ 

t 

FIG. 30. Implementation 
of heteronuclear decou­
piing by making the origin 

x of SO(3) superstable in all 
directions. This generates 
the unit operator with in­
creasing iterations. 

propagator Up: 

FIG. 29. Basin image for the retrograde 
compensation scheme ofShaka and Free­
man. This scheme generates narrowband 
inversion sequences. The basin of the z 
axis is shown, in a cross section of SO(3) 
containing the z axis. The basin is the en­
tire space, excluding the equator. The 
equator is an unstable invariant set. 

Up = V M _ I ••• VI V M (57) 

(58) = ViiIUVM' 

Since the transformation V M depends on parameters in the 
Hamiltonian, for example, W I and ~w, as well as the phase of 
the permuted pulse, the relationship between U and Up de­
pends on those parameters. If the scheme involves permut­
ing pulses, the initial point in the propagator space does not 
alone determine the series of iterate points. That series de­
pends on the Hamiltonian parameters and the precise form 
of the initial sequence. 

Waugh's scheme may be applied to any initial sequence 
of 1T/2 pulses. One version of the scheme is to permute a 1T/2 
pulse from the end of the sequence to the beginning, to form 
a version of the permuted sequence with an overall phase 
shift of 180', and finally to concatenate the permuted se­
quence with the phase-shifted, permuted sequence. The 
scheme generates a new sequence that is also composed of 1T / 
2 pulses, so that the scheme may be applied iteratively. 

Despite the fact that there is no unique function on 
SO (3), we can apply a fixed point analysis to Waugh's scheme 
with some modification. First, we show that the origin of 
SO (3) is a stable fixed point, as shown in Fig. 30, over particu­
lar ranges of WI and Aw. Suppose that the initial rotation is 
R (a). If the phase of the last 1T/2 pulse in the initial pulse 
sequence is 0, then the net rotation of the first iterate se­
quence is R (13): 

R (Il) = R z (1T)R (X)R (a)R ( - X)R z ( - 1T)R (x)R (a)R ( - X). 

(59) 

R (X) is the rotation produced by the permuted 1T /2 pulse, as a 
function of WI and D.w: 
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(60) 

If R (a) is the unit operator, th~n so is R (fl), which implies 
that the origin of SO (3) is a fixed point. IfEq. (59) is evaluated 
to first order in I a I, the result 

p = [O,O,2ax cos 0 sin 8(1 - cos X) + 2aysinxcos 8 

+ 2az(cos2 8 cos X + sin2 8)] (61) 

is obtained. with 

x = lxi, (62) 

tan 8 = /lw/w l · (63) 

The linear transformation relating i3 and a in Eq. (61) has a 
doubly degenerate eigenvalue of O. The third eigenValue is 
Aw , given by 

Aw = 2(cos2 8 cos X + sin2 8). (64) 

The eigenvector with eigenvalueAw is (0,0,1). This eigenvec­
tor and eigenvalue are independent of the phase of the per­
muted pu.lse. In addition, the same eigenvalues and the ei­
genvector (0,0, 1) are obtained if a 11'/2 pulse is permuted from 
the beginning of the initial sequence to the end, rather than 
from the end to the beginning, or if the order of concatena­
tion is reversed. 

In the language of the fixed point theory, it is the stabil­
ity of the orgin of the propagator space SO (3), namely the 
behavior in Fig. 30, that causes the Waugh scheme to gener­
ate pulse sequences producing net rotations of nearly zero 
over a range of resonance offsets and rf amplitUdes. Equation 
(64) specifies precise limits on those parameters for which the 
origin is in fact stable, i.e., for which Aw <; 1. The limits speci­
fied by Eq. (64) therefore suggest the maximum decoupling 
bandwidths attainable with the Waugh scheme. For exam­
ple, if WI = w~, the origin is stable if l.::1wl < 1. 732w~. If 
.:iw = 0, the origin is stable if2wV3<;wl<4w~ /3. 

The decoupling bandwidths achieved by specmc iterate 
pulse sequences depend not only on the stability of the ori­
gin, but also on the choice of the initial sequence and on the 
dynamics of the iterative scheme over the entire SO (3) space. 
In Sec. IV, basin images were used to reveal the dynamics of 
iterative schemes for broadband population inversion and to 
guide the choice of initial sequences. The absence of a unique 
function on SO (3) makes the treatment of decoupling 
schemes less straightforward. For the Waugh scheme, it is 
still possible to construct a basin image, if we take the follow­
ing conditions: 

1. Only a single combination of Aw and WI values is 
considered at a time. 

2. Both the direction of permutation and the order of 
concatenation are reversed from one iteration to the next, in 
such a way that the same 11'/2 pulse is permuted each time. 

3. The permuted pulse is assumed to have a phase ofO. 
Basin images for various offsets, with WI = w~, are shown in 
Fig. 31. For the Waugb scheme, there is no rotational sym­
metry about the z axis, so that it is necessary to specify the 
azim uthal angle of the pictured slice. The images in Fig. 31 
hold for initial points in the xz plane. If, as in Ref. 49, the 
initial pulse sequence is four 11'/2 pulses of phase 0, i.e., a 
single 211' pulse, then initial points for all values of WI and.:iw 
do in fact lie in the xz plane. 

Figure 31 indicates that the size of the region of the xz 
plane of SO (3) that converges rapidly to the origin decreases 
as the offset increases and the origin makes the transition 
from superstability to instability. The dynamics become ap­
parently more complex. Note that at Aw = 2w~, where 
Aw = 1.227, there are still certain initial points that do con­
verge to the origin. The origin still has two superstable direc­
tions. The overall instability of the origin is reflected in the 
fact that not all initial points near the origin coverge to the 
origin. 

Basin images such as those in Fig. 30 can be used to 
guide the selection of an initial pulse sequence, although the 
procedure is necessarily somewhat different from that em­
ployed in Sec. IV. One approach would be to define an off­
set-independent basin for the iterative scheme as the inter­
section of the basins for all offsets in the relevant range. A 
search for an initial sequence whose locus of points in SO (3) 
lies within the offset-independent basin could then be con­
ducted. A second, less restrictive approach would be to 
search for an initial sequence such that, for each particular 
offset value, the single point in SO (3) lies within the rapidly 
convergent region for that offset. 

It has been demonstrated, although without a fixed 
point analysis, that the decoupling bandwidth of pulse se­
quences generated by the Waugh scheme can be enlarged by 
the use of an appropriate initial sequence.37

•
38 

2. MLEV sequences 

Levitt, Freeman, and Frenkiel have developed an itera­
tive scheme that generates pulse sequences for heteronuc1ear 
decoupling known as MLEV -4, MLEV -16, etc.3 The devel­
opment of the MLEV sequences has stimultated much of the 
subsequent work on decoupling and composite pulses. With 
Waugh's criterion for evaluating decoupHng sequences in 
mind, we can analyze the MLEV scheme in terms ofit!! fixed 
point properties in SO (3). 

The MLEV scheme operates on an initial sequence com­
posed of an even number of composite 11' pulses. The compos­
ite 11' pulses are all of the same type, with overall phases of 
either fY' or 18fY'. Four versions of the initial sequence are 
formed: the initial sequence itself, the initial sequence with 
an overall phase shift of 180·, the initial sequence with one 
composite'11' pulse permuted from the end to the beginning, 
and the permuted sequence with an overall phase shift of 
18fY'. In the simplest case of the MLEV scheme, the four 
versions are concatenated to form an iterate sequence. Al­
though the full MLEV theory aHows considerably more 
flexibility in the construction of iterates, we consider only 
the simplest case as an example. 

Assume that the initial sequence produces a net rotation 
R (a), and that the permuted composite pulse produces a ro­
tation P. Then the rotation produced by the first iterate se­
quence is R (~): 

R ( ~) = R z (11')pR (a)p -IR z ( - 11')P 

XR (a)p -IR z (11')R (a)Rz( - 11')R (a). (65) 

If R (a) is the unit operator, then so is R (fJ). The origin of 
SO (3) is therefore fixed. If we express P in the general form 
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FIG. 31. Basin images corresponding to the iterative scheme for heteronuclear d>';IC(lapling developed by Waugh. In this case. the underlying function on 
SO (3) depends on the resonance offset. Basins of the origin of SO (3) are shown for r~~.orumce Off.<.etsAlti/ l<1? equal to 0.0 (al, O.SO (b), 1.0 (cl, and 2.0 (d), in thexz 
plane of SO(3). The basin decreases in size with increasing offset. In (d), the origin is un.~table. 

(66) 

we can evaluate Eq. (65) to first order in lexl: 

1,3 = [0,0,2 sin 'TJ2 sin 'TJ3a", + 2 Sin'TJ2 COS 'TJ3ay 

+ 2(cos 'TJ2 + l)az]. (67) 
Equation (67) bears an obvious resemblance to Eq. (61), so 

that the dynamics of the MLEV and Waugh schemes are 
similar in the neighborhood of the origin. The linear trans­
formation relating ex and 13 in Eq. (67) has a doubly degener­
ate eigenvalue of 0 and a third eigenvaJ.ue..tM given by 

..tM = 2(cos 'TJ2 + 1). (68) 

In view of Eq. (66), the extent of population inversion pro-
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FIG. 31. ~continued) 

duced by the composite 11 pulses that comprise the MLEV 
sequences is - COS'TI2' Equation (68) then implies that the 
stability condition A. M <; 1 is the same as the condition that 
the composite 11 pulses produce an inversion greater than 
1/2. For a given form of composite 11 pulse, this inversion 
requirement dictates particular ranges of CUt and ~cu. 

D. Selective excitation of multiple quantum coherence 

Iterative schemes have been developed for selectively 
exciting mUltiple quantum coherences in coupled spin sys-

tems. 2 The objective is to excite coherences only between 
spin states that differ in their Zeeman quantum number by a 
multiple of a particular integer n, i.e., nk-quantum coher­
ences. In a coupled spin system, the effect of a pulse sequence 
is not necessarily to produce a rotation. Rather, the propaga­
tor for the initial sequence is a general unitary transforma­
tion Uo> which may be written in terms of irreducible tensor 
operators Tim (q)66: 

Uo exp ( - iA ), (69) 
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I 

A = L L L CI",(q) Tlr:;,· (70) 
q I m=-I 

The index q is necessary because there may be several inde­
pendent operators with the same I and m. A must be Hermi­
tian, which implies 

C1_",(q) = (-1)"'C1",(q)*. (71) 

For any particular arrangement of coupled spins, the propa­
gator space is a subspace of the space of operators in the form 
ofEqs. (69) through (71). The real and imaginary parts of the 
coefficients Clm (q) may be treated as the coordinates of 
points in the multidimensional propagator space, just as the 
components of a are the coordinates of the point R (a) in 
SO (3). 

The selective excitation scheme employs the phase shift­
ing and concatenation operations discussed in Sec. III. but 
without the restriction to odd N. The scheme [0,1 
X 360/n.2X360/n,oo.,(n - 1)X360/n] is used for selective 
nk-quantum excitation. Since an overall rf phase shift of cp 
has the effect of rotating the propagator about z by CP. the 
propagator for the first iterate sequence is U1, given by 

(72) 

with 

uri = exp( - iA (PI), (73) 
I 

A (PI = L L L exp[ - im(21Tpln)]CI", (q)Tlm (q). 
q I m= -I (74) 

Equation (74) depends on the property of irreducible tensor 
operators that 

Rz(cp )TI'"(q)Rz( - cp) = exp( - imcp ) Tim (q). (75) 

Since U1 is uniquely determined by Uo, the scheme defines a 
function on the propagator space. The function has a fixed 
point at the origin, because U1 is the unit operator if Uo is the 
unit operator. To evaluate the stability of the origin, we can 
evaluate U1 to first order in the magnitudes of the coeffi­
cients Clm (q) by adding the exponents A (PI • Using the identity 

"-I {n L exp[ - im(21Tp/n)] = 0' 
p-o , 

we find 

U1 = exp( - iA r ). 

m a multiple of n 

otherwise 
(76) 

(77) 

(78)i 

where the sum over m in Eq. (78) is restricted to multiples of 
n. Since U1 in Eq. (77) contains only irreducible tensor opera­
tors with m a multiple of n, it transforms a spin system from 
equilibrium to a state with only nk-quantum coherences. 

Equation (78) reveals that the origin is unstable, with 
eigenvalue n, with respect to displacements along axes in the 
propagator space that correspond to Tim (q) operators with m 
a multiple of n. The origin is superstable along other axes. 
Initial points near the origin move towards the origin along 
the superstab1e directions and away from the origin along 
the unstable directions upon iteration, as shown in Fig. 32. 
Since the Tim (q) axes with m a multiple of n are not them­
selves stable, however, the generation of nk-quantum selec-

FIG. 32. Dynamics of the iterative schemes for selective excitation of n­
quantum coherence. The propagator space is a multidimensional space in 
which the axes may be labeled as components of irreducible tensor opera­
tors Tim' For a phase-shifting scheme with phase t/J = 21T/n, the origin is 
superstable with respect to displacements along all axes except for those for 
which m is a mUltiple of n. A propagator that lies on such an axis only 
excites coherences whose orders are a multiple of n. A hypothetical flow of 
points in the propagator space is shown. Note that points may escape from 
the n-quantum axis when they are far from the origin. A more efficient n­
quantum excitation scheme would involve making the Tin axis stable. 

tive propagators is a transient result of the iterative scheme. 
Once a point is far enough from the origin that the lineariza­
tion leading to Eq. (77) is not valid, small contributions of 
undesired tensors may become larger, thus destroying the 
selectivity. The situation is analogous to the transient gener­
ation of narrowband inversion sequences by the scheme 
[0,120,240], as discussed in Sec. V. 

The selective excitation schemes of Warren et al. 2 were 
originally derived using average Hamiltonian theory. Theo­
rems concerning the average Hamiltonian of a pulse se­
quence that is the concatenation of shorter sequence units, as 
developed by Burum et aeo and Warren et aU were em­
pl.oyed. Due to its nature as a power series expansion, the 
application of average Hamiltonian theory to the very long 
sequences generated by an iterative scheme raises questions 
of convergence. Warren et al. dealt with the convergence 
problem by using a "time reversal sandwich" sequence as the 
initial pulse sequence. The time reversal sandwich has a pro­
pagator that lies close to the origin in the propagator space 
but at the same time has significant components of high­
order multiple quantum tensors. The fixed point analysis 
above also indicates that the selective excitation scheme will 
only act effectively on an initial propagator near the origin, 
although that conclusion is reached from a consideration of 
fixed points and their stability rather than a consideration of 
questions of the convergence of a series expansion. 

The MLEV decoupling sequences described above were 
also originally analyzed in terms of average Hamiltonian 
theory.3 As a complement to average Hamiltonian theory. 
the fixed point theory provides a unified description of the 
properties of iterative schemes. A fixed point analysis also 
furnishes the context for an investigation of the global dy­
namics of an iterative scheme. i.e., the dynamics over the 
entire propagator space. The fact that particular iterative 
schemes can be treated both by average Hamiltonian theory 
and by the fixed point theory suggests that there exists a 
connection between the two theoretical approaches. despite 
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their differences in viewpoint. One aspect of that connection 
is the similarity between the calculation of a zeroth order 
average Hamiltonian and the assessment of the stability of a 
fixed point, both of which are linearization processes. In Ap­
pendix C, we outline a subtle connection between th~ two 
theories which extends to all orders of the average Hamilton­
ian and all orders of iteration. 

VII. CONCLUSION 

A. Benefits of the fixed point theory 

The previous sections serve to demonstrate the wide ap­
plicability of the fixed point theory as a mathematic.al ba~k­
ground for the analysis and development of IteratIve 
schemes for generating excitation sequences. While iterative 
schemes have been developed by other authors without us­
ing the methods presented in this paper, the fixed point the­
ory is an advance over previous approaches in several impor­
tant areas. First, a unified set of concepts and the 
accompanying geometrical picture allow visualizations and 
comparisons of schemes and explanations of their essential 
features to be made. These concepts include the propagator 
space, functions on the propagator space, fixed points of the 
functions, stability of the fixed points, basins of stable fixed 
points, and loci of initial points. Second, the fixed point the­
ory demonstrates the importance of considering the action 
of an iterative scheme on the entire range of possible initial 
pulse sequence propagators, i.e., the dynamics on the entire 
propagator space. Features of a scheme such as the presence 
or absence of fractal, nonconvergent sets, the sizes and 
shapes of basins, symmetry restrictions, and the existence of 
unanticipated fixed points may have dramatic effects on the 
excitation properties of the sequences that are generated. A 
knowledge of these features allows comparisons of proposed 
schemes to be made and aids in the optimization of the per­
formance of a scheme by suitable choice of an initial se­
quence. Global features of the dynamics of an iterative 
scheme are often clearly revealed by numerical procedures 
such as the generation of basin images. Third, dynamical 
concepts allow a clear treatment of schemes that otherwise 
would not be considered or could only be treated with diffi­
culty. For example, traditional average Hamiltonian theory 
calculations are concerned with making an error term in the 
propagator vanish entirely. In the language of dynamics, this 
is the case of superstability. However, as shown in this paper, 
useful results are obtained from schemes in which fixed 
points are stable, but not superstable. Fixed points that are 
unstable, or stable in some directions and unstable in others, 
also lead to interesting and useful results. 

B. Further applications 

To conclude, we briefly discuss several extensions and 
generalizations of the work described in the previous sec­
tions. 

The treatment of phase shift schemes in Sec. HI-V con­
centrates on their applications to population inversion, ei­
ther broadband or narrowband, in systems of isolated spins. 
Thus, the emphasis is on generating net rotations of 1T'. Simi­
larly, phase shift schemes that generate broadband or nar-

rowband 1T'/2 rotations may be constructed. Possible stabil­
ity properties for such schemes are shown in Fig. 33. A~ an 
example, the scheme [0,135,135,0] generates 1T'/2 rotatlOns 
that are broadband with respect to the rf amplitude when 
applied to an initial single 1T' /2 pulse. This result is shown in 
Fig. 34. An analogous narrowband 1T'/2 sequence would po­
tentially be quite useful in spatial localization experiments 
that rely on rffield gradients.6,20-22 Note that, in contrast to 
the recursive expansion procedureS discussed in Sec. VI B, 
[0,135,135,0] generates pulse sequences that produce net ~o­
tations of strictly 1T'/2 radians. This is because the stable 10-

variant set is the circle in Fig. 33(a), rather than the surface in 
Fig. 27. 

A more complex problem than simply minimizing or 
maximizing the excitation bandwidth of pulse sequences is 
the problem of tailoring the bandwidth, i.e., producing near­
ly complete excitation within specified ranges of some ex­
perimental parameter and no excitation outside of these 
ranges. A possible approach to this problem is the construc­
tion of an iterative scheme with more than one fixed point.67 

Consider, for example, the case of two stable fixed points, 
one at the origin of the propagator space and the other at a 
point that represents the desired excitation. As shown in Fig. 
35, each fixed point may have its own basin, with the two 
basins separated by a boundary. If the initial pulse sequence 
is chosen so that initial points in the propagator space lie in 
the basin of one fixed point over the specified range of the 
parameter and in the basin of the other fixed point for other 
values of the parameter, then the desired excitation profile 
may be achieved in the iterate sequences. An example of this 
is the development of an WI-selective 1T' pulse with a sharp 
rectangular bandwidth. 67 

Lastly, the development of iterative schemes for excita­
tion in coupled spin systems, or multilevel spectroscopic sys­
tems in general, is an area that remains largely unexplored. 
Obvious goals include the design of schemes for population 
inversion and the excitation of transverse magnetization 
over large ranges of spin coupling constants. Improved 
schemes for the selective excitation of multiple quantum co­
herences are also desirable. As suggested by Fig. 32, a 
scheme under which the entire n-quantum axis is a stable 
invariant set would overcome the transient nature of the ex­
isting schemes. Schemes for heteronuclear and homonuclear 

(a) (b) 
y y 

FIG. 33. Dynamical properties of iterative schemes for generating broad­
band (a) and narrowband (b) 11'/2 rotations. Shown is the xy plane ~f.S<? (3). 
The origin is a fixed point. The circle at a radius of 11'/2 from the ongm ~s an 
invariant set. For broadband excitation, the origin is unstable and the CIrcle 
is stable. For narrowband excitation, the origin is stable and the circle is 
unstable. 
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1.0, 135, 135, 0 I 

FIG. 34. Simulations of the transverse magnetization Mxy excited as a func­
tion of the rf amplitude for pulse sequences generated by the scheme 
[0,135,135,0] which has the stability properties of Fig. 32(a). Shown are re­
sults from a single 11'/2 pulse and its first three iterates, labeled 0-3, respec­
tively. 

decoupling in systems of many coupled spins may lead to 
improvements over the decoupling sequences that are cur­
rently in use. Stabilizing the origin of a multidimensional 
propagator space with respect to all directions is tantamount 
to complete decoupling, homonudear or heteronudear. A 
similarity between the selective excitation and decoupling 
problems exists, since a pulse sequence that is strictly 

(a) 

(b) 

2 

>. 

FIG. 35. A fixed point theory approach to tailored excitation. In (aI, a pro­
pagator space with two stable fixed points is shown. Around each fixed 
point is its basin, indicated by the dashed lines. An initial pulse sequence is 
chosen so that the corresponding locus of points in the propagator space 
! Uo l resulting from variatons in the experimental parameter A, indicated by 
the solid line, crosses the boundary between the basins at specified values of 
A. In (bl, the anticipated excitation profile of iterate sequences is shown. The 
excitation takes on primarily two values as a function of A, i.e., the values 
that correspond to the propagator U, and the propagator U2• Thus the itera­
tive scheme can generate a bistable response., allowing shaping of specific 
excitations and bandwidths. 

>(n + l)-quantum selective will decouple a system oln spins. 
n spins cannot absorb or emit more than n quanta. 

The application of the fixed point theory to the problems 
mentioned above will require further developments in sever­
al areas. The algebraic procedures that lead to the discovery 
of fixed points and the determination of their stability will. 
require a careful study of the properties of irreducible tensor 
operators. Efficient numerical methods for treating func­
tions on a multidimensional propagator space must be devel­
oped. In fact, even the structure of the propagator space for a 
coupled spin system, analagous to SO (3) for an isolated spin, 
is not immediately apparent. 

Finally, a crucial component of the development of new 
iterative schemes is likely to be the discovery of new ap­
proaches that can be performed on an initial pulse sequence, 
specifically operations that affect the pulse sequence propa­
gator in some well-characterized way. In summary, there 
remains ample place for experience, intuition, and inspira­
tion in the design of excitation sequences for coherent spec­
troscopy. 
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APPENDIX A: EXPRESSION OF ROTATIONS NEAR THE 
EQUATOR OF 50(3) 

In Eq. (23), the arbitrary rotation R (a) is expressed as 
the product of two rotations about axes in the xy plane: 

R (a) = Rr(lT)R (e). (Al) 

In this Appendix, we prove the generality of this expression 
by showing that r can always be chosen such that the z com­
ponent of e is zero. TIlls is equivalent to the requirement that 

Rz (lT)R (E)Rz( - 1T) = R ( - e) (A2) 

or 

Rz (lT)R (e)R z ( -IT)R (E) = 1. (A3) 

Using Eq. (AI), we have 

Rz (lT}R (e)Rz ( - IT)Rz(e) 

= Rz (1T)R r ( - IT)R (a)R z ( - 1T)Rr( - 1T)R (a) (A4) 

= Rr + 1r/2 ( -lTlR (a)Rr+ 1rI2(lT)R (a). (A5) 

In going from Eq. (A4) to Eq. (A5), we use the identities 
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(A6) 

Ry_ 1T/2(-1T)=R y+ 1T/2(1T), (A7) 

Consider now the line through the origin in the xy plane that 
is the intersection of the xy plane with a plane perpendicular 
to a and containing the origin. If r + 1T 12 is chosen to be the 
angle which that line makes with the x axis, then 

Ry+ 1Td -1T)R (a)Ry+ ... /2 (1T) = R (- a). (A8) 

Equation (A8) implies. Eqs. (A3) and (A2). Thus, we have 
established the generality of Eq. (A 1). 

In essence, Eq. (A 1) demonstrates the equivalence of 
two coordinate systems for specifying points in SO (3), one in 
which the coordinates are ax. ay, and az, the other in 
which the coordinates are r, EX, and Ey. Near the equator, it 
is possible to derive a linear transformation that relates the 
two coordinate systems. Suppose a point near the equator is 
R (a), with 

a = «0 + l), 

aD = 1T{cos r,sin r,O), 

Ox sin r - Oy cos r = 0. 

(A9) 

(Ato) 

(All) 

l) is the displacement from the equator. Equation (A 11) 
states that l) only as components towards the origin and 
alongz, but not tangent to the equator. To first order in 1l)1, 

R (a) can be written in the form ofEq. (AI) with 

E = ( - 20z sin rl1T + Ox cos2 r + Oy sin r cos r, 
20z cos rl1T + Ox sin r cos r + Oy sin2 r,O). (A12) 

If r = 0, Eq. (A 12) indicates that a displacement towards the 
origin, i.e., a nonzero {jx, becomes the x component of E. A 
displacement along z, Le., a nonzero oz, becomes the y com­
ponent of E. For an arbitrary r, the component of l) in the 
direction of the origin becomes the component of E in the 
direction of the origin. The component of Ii along z becomes 
the component of E in the direction tangent to the equator at 
«0. 

APPENDIX B: DYNAMICAL CONSEQUENCES OF 
SYMMETRY IN PHASE SHIFT SCHEMES 

1. Motivation .. 
In Sec. IV, we saw that a symmetric phase shift scheme, 

i.e., an iterative scheme of the form [4>,,4>2, ... ,4>2,4>,], pro­
duces a basin image with reflection symmetry in the xy plane 
of SO (3), as shown in Fig. 13. In Sec. V, the same symmetry 
was shown to lead to narrowband inversion sequences in 
which the excitation profile undergoes a progressive, rather 
than transient, narrowing with successive iterations. These 
features are attributed to symmetry in the dynamics of the 
function F on SO (3) that underlies the performance of the 
iterative schemes. In this Appendix, we give a concise state­
ment and proof of the dynamical symmetry that results from 
the symmetry of the phase shifts. In addition, we investigate 
the dynamical properties of schemes in which the phase 
shifts are antisymmetric, i.e., schemes of the form 
[4>,,4>2" •• , - 4>2' - 4>,]. A reflection symmetry with poten­
tial value in generating rotations about a constant axis is 
demonstrated. 

2. Symmetric phase shifts 

Consider two points R (a) and R (a') in SO (3) related by 
reflection in the xy plane: 

a = (ax,ay,az ), 

a' = (a",ay , - a z ). 

(BI) 

(B2) 

Equations (BI) and (B2) are equivalent to the statement 

R (a)-' = Rz (1T)R (a')Rz(1T)-'. (B3) 
We apply an arbitrary symmetric phase shift scheme to R (a) 
and R (a'), generating the iterate points R ( (3) and R ( (3'): 

R ((3) = R (aql)R (aql,)'" R (aql,)R (aql,)' (B4) 

R ({3') =R (a~,)R (a~J .. R (a~2)Ra~,), (B5) 

using the notation ofEq. 14.IfR (f3)andR ({3')havethesame 
relationship asR (a) and R (a') in Eq. (B3), then they are also 
related by reflection in the xy plane. In fact, 

Rz(1T)R (W)RA1T)-1 
= R'(1T}R (a~, )Rz(1T)-IR z (1T)R (a~)Rz(1T)-1 

X··· Rz(1T}R (a~2}Rz(1T)-IRz(1T)R (a~l)Rz(1T)-1 (B6) 

= R ( - aql,)R ( - aqj,)' •• R ( - aql,)R ( - aql, ). (B7) 

Comparing Eqs. (B7) and (B4), we see that 

Rz(1T)R ( W)Rz(1T)-' = R ( 1l)-I. (B8) 

The reflection symmetry of the two initial points is preserved 
in their iterates. Clearly, this holds to all orders of iteration. 

An immediate consequence of the reflection symmetry 
in the dynamics is that initial points in the xy plane of SO (3) 
must remain in the xy plane upon iteration. A point in the xy 
plane is certainly related to itself by reflection. Therefore, if 
such a point were mapped to a point above the xy plane upon 
iteration, it would necessarily also be mapped to another 
point symmetrically disposed below the xy plane. But this 
would contradict the fact that F, the underlying function, is 
one-to-one. 

Tlte above proof also bears on the locus of points in 
SO (3) that corresponds to a pulse sequence with variations in 
/:l.U). For any pulse sequence with symmetric phases, or 
phase-modulated pulse with an even phase function, it must 
be the case that the point in SO (3) corresponding to a reso-

nance offset .aU) is the reflection in the xy plane of the point 

corresponding to a resonance offset - .:1U). This statement 
is certainly true of a single pulse, as seen from Eq. (12). Any 
other pulse sequence with symmetric phases can then be con­
sidered to be generated from a single puise by applying a 
phase shift scheme with symmetric phase shifts. In particu­
lar, a pulse sequence with symmetric phases must produce a 
rotation about an axis in the xy plane on resonance. 

C. Antlsymmetric phase shifts 

If an iterative scheme has antisymmetric phase shifts, 
the dynamics of F display reflection symmetry in the xz 
plane. IftwopointsR (a) andR (a') are related by a reflection 
in the xz plane, 

a = (a",ay,az )' 

a' = (ax, - ay,az )' 

Equations (B9) and (B 10) are equivalent to 

(B9) 

(Bto) 
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(BII) 

If the first iterate R ( (3') is generated from R ( (3) by an anti­
symmetric phase shift scheme, then R ( 13') satisfies 

Ry(1T)R (I3'JRy(1T)-' 
= Ry(1T)R (a_;, )Ry(1T)-'Ry(1T)R (a~;,JRy(1T)-'" . 

XRy(1TJR (a~JRy(1T)-lRy(1TJR (a;,)Ry(1T)-' (B12) 

=R((3)-', (B13) 

whereR ((3)isthefirstiterateofR (a). Thus,R ((3')andR ((3) 
are related by a reflection in the xz plane. The reflection 
symmetry is preserved to all orders of iteration. 

In analogy to the symmetric phase shift case, the reflec­
tion symmetry in the xz plane constrains initial points in the 
xz plane to remain in the xz plane under iteration. Due to the 
rotational symmetry about the z axis exhibited by all phase 
shift schemes, initial points in any plane containing the z axis 
are constrained to that plane under iteration. 

If a phase shift scheme is not antisymmetric but can be 
made antisymmetric by subtracting a constant rPo from all 
phase shifts, then the dynamics exhibits reflection symmetry 
in a plane containing the z axis and with an azimuthal angle 

rPo· 
The locus of points in SO (3) for any pulse sequence with 

antisymmetric phases, or phase-modulated pulse with an 
odd phase function, must lie in the xz plane. The locus of 
points for a single pulse with a phase of zero lies in the xz 
plane, as may be seen from Eq. (12). Any pulse sequence with 
antisymmetric phases can be viewed as being generated from 
a single pulse with a phase of zero by an antisymmetric phase 
shift scheme. 

A potential application of antisymmetric phase shift 
schemes is in the generation of pulse sequences that produce 
rotations about a specific axis in the xy plane, i.e., rotations 
with a constant phase. In general., an invariant sets under a 
phase shift scheme exhibit rotational symmetry about z, as 
discussed in Sec. IV B. Thus, it is not possible to make a 
particular point in the xy plane a stable fixed point without 
making all other points that are related by a rotation about z 
also stable fixed points. However, if an anti symmetric phase 
shift scheme is applied to an initial pulse sequence for which 
the locus of initial points in SO (3) lies in a plane containing 
thez axis, e.g., a single pulse, then the relevant dynamics are 
restricted to that plane. If a point in the xy plane is stable, all 
initial points in the basin will converge to precisely the same 
point. 'Thus, sequences for broadband. excitation without sig­
nal phase variations may be generated. The significance of 
such sequences is discussed. in Ref. 9. One example of an 
anti symmetric scheme for broadband population inversion 
is [256,52,0,128,0, - 128,0, - 52, - 256]. 

APPENDIX C: THE RELATIONSHIP Of AVERAGE 
HAMilTONIAN THEORY TO A FiXeD POINT ANALYSIS 

Iterative schemes for selective multiple quantum excita­
tion and for heteronuclear decoupling in liquids were origin­
ally developed using coherent averaging theory. In Sec. VI, 
we showed that the same schemes could be analyzed with 
fixed point methods. The question naturally arises: is there a 
general connection between the two theoretical approaches? 

Here we demonstrate such a connection. In particular, we 
show that an iterative scheme with a superstable fixed point 
generates pulse sequences whose propagators equal the de­
sired propagator to increasingly high order in the sense of 
average Hamiltonian theory. This connection is implicit for 
the simple SO (3) case of a single spin-I!2 in comparing the 
work of Levitt, Freeman, and. Frenkiel3 and Waugh. 

Consider an iterative scheme that is equivalent to a func­
tion on the propagator space for a given spin system. The 
scheme generates pulse sequences S" S'2' etc. from an initial 
sequence So. The Hamiltonian during the ith sequence is 
assumed to be of the form 

(CI) 

whereAi(t) represents the dominant interaction, Bi(t) repre­
sents a perturbation, and A is an experimental parameter. 
The precise nature of the Hamiltonian terms is unimportant, 
but as a typical example Ai(t) might be the rf field interac­
tion, Bi(t) a spin coupling, and A the coupling constant. In 
other examples, ABi(t) could be a resonance offset or rf in­
homogeneity term. The sequence Si has a propagator 
Ui(t, A). With Ti being the total length of Sj' it is further 
assumed that Ui(Ti> 0) = Uo(To, 0), i.e., that the propagator 
for the initial sequence when A = 0 is a fixed point of the 
scheme. 

An average Hamiltonian theory analysis of the pulse 
sequences would proceed by writing the propagators in the 
form 

Ui(t, A) = Ui(t, O)Vi(t, A). (C2) 

Vi(t, A ) is the propagator in the interaction representation 
defined by Ai(t), i.e., the propagator for the Hamiltonian 

ini(t) = AUi(t, ot 1B/(t lUi(t, 0). (C3) 

V;(Ti> A) can be expanded using the Magnus formula: 

VI(Ti> A) = exp[ - i(AB ~o) + A '2B ~1) 

+ A 3 B ~2) + ... ) T;] . (C4) 

It might then be shown, possibly using theorems developed 
by Burum et aeo and Warren et al., '2 that the Magnus expan­
sion terms B III vanish for O<J<.ki> with ki increasing as i 
increases. Thus, VitTi> A ) is approximately the unit operator 
for a range of values of A that grows with successive itera­
tions. Ui(T/, A) then approximates the desired. propagator 
Uo(To, 0) for an increasing range of values of A upon iteration. 

Our goal is now to show that the above scenario is guar­
anteed to apply if Uo(To, 0) is a superstable fixed point of the 
iterative scheme. In other words, we seek to prove that iter­
ation ensures the disappearance of Magnus expansion terms 
up to an order k i that increases with i, without referring to 
the details of the spin system, the iterative scheme, or the 
pulse sequence. To do so, we make use of the following 
theorem: the terms Bi (]) vanish for O<J<kj if and only if the 
derivatives 

dnUi(Ti, A) I 
dA n .-t-o 

vanish for l<n<kj + 1. The theorem applies to any se­
quence Si with a Hamiltonian as in Eq. (el), not only to 
sequences generated iteratively. The theorem is proved most 
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directly by combining Eqs. (C2) and (C4) and expanding the 
exponential in Eq. (C4) in a Taylor series. The utility of the 
theorem in the current context is that it reduces the problem 
to an investigation of the derivatives of U/(Tj> A. ). 

To treatthe derivatives of U/(T/, A. ), we choose the form 

(C5) 

The components of Q, namely {Qm J, are Hermitian opera­
tors such that Eq. (C5) is a general expression for unitary 
operators in the propagator space. The components of C/ (A. ), 
which are real, are coordinates of U/(T/, A. ) in the propagator 
space. For a spin system, there is a finite number n of compo­
nents. The function that underlies the iterative scheme can 
be considered to be a function F that acts on the n-vectors 
C/(A. ): 

(C6) 

Since Uo(To, 0) is a fixed point, we define C to be ColO) and 
have 

(C7) 

We assume that F may be expanded in a Taylor series about 
C: 

F(C) = F(C) + D (F)(C - C) 

+ !D 2(F)(C - C)(C - C) + (C8) 

In Eq. (C8), the arguments A. and the subscripts i have been 
dropped for simplicity. The notation ~ (F) represents the 
mth derivative of Fwith respect to C evaluated at C, which is 
a matrix with nm + I elements. Multiplication of an n-vector 
by an nl -element matrix is defined so that the product is an 
n l - I -element matrix. 

The assumption that Uo(To, 0) is a superstable fixed point 
implies that the eigenvalues of D (F), the Jacobian of Fat C, 
are zero. For the moment, we adopt the stricter requirement 
that D (F) vanish entirely. With this requirement 

F(C)=C+!D2(F)(C-C)(C-C) + .... (C9) 

The leading term in the difference F (C)-C involves the sec­
ond power of (C - C). Using Eq. (C9) and substituting F (C) 
for C, we find 

F2(C) = C + AD 2(F)[D 2(F)(C - C)(C - Cll 

X [D 2(F)(C - C)(C - C)] + .... (ClO) 

The leading term in the difference F2(C) - C involves the 
fourthpowerof(C - C). ThusD (F2),D 2(F2),andD 3(F2), the 
derivatives of the function F2 with respect to C evaluated at 
C, must all vanish. Continuing in this way, it can be shown 
that the derivatives~(F/) vanish for 1<m<2i - 1. 

Next, we tum to the derivatives of C i (A. ) with respect to 
A.. Using the chain rule and Eq. (C6), 

dC/(A.) I =D(FI) dCo(A.) 1 (Cll) 
dA. A=O dA. A=O' 

d
2
C/(A.) 1 =D2(F/) (dCo(A.)) (dCo(A.)) 1_ 

dA.2 A=O dA. dA. A-O 

+D(Fl\d
2
CO(A.) I _ . (CI2) 

J d),,2 A-O 

Similarly, the m th derivative ofCi ()" ) can be written as a sum 

of terms that are products of derivatives ofF/ with respect to 
C and derivatives of Co()" ) with respect to A.. The highest 
derivative ofF/ that appears is D m (F /). Therefore, we arrive 
at the important result that the nth derivative of C j ()" ) van­
ishes at A. = 0 for I <m<2/ - 1. 

We are now in a position to examine the derivatives of 
U/(Tj> A. ). It can be shown by expanding the exponential in 
Eq. (C5) that the vanishing of the derivatives ofC/ (A. ) implies 
that 

dmU/(T/,),,) IA=O =0, 1<m<2j-1. (C13) 
d)"m 

Then, using the theorem stated above, the Magnus expan­
sion terms B \11 vanish for 0<j<2i - 2. This is the desired 
result, that the iterative scheme generates pulse sequences 
with propagators that are independent of the perturbation 
)"B;(t) in Eq. (CI) to increasingly high order in the sense of 
coherent averaging theory. 

If D (F) in Eq. (C8) is not zero, but has all its eigenvalues 
equal to zero, then there is an integer k such that D (F k ) 

vanishes. Then Eq. (C 13) holds with i replaced by if k when i 
is a multiple of k. The order to which the Magnus expansion 
terms vanish increases with every k iterations. 
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