Geometric dephasing in zero-field magnetic resonance
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Geometric phases acquired randomly can give rise to coherence dephasing in nuclear spin systems,
equivalent to spin relaxation. We calculate the form and extent of this geometric dephasing in a
number of model systems involving the motion'd®e nuclei in shaped containers. The dephasing

is calculated in two ways: first, using an analytical treatment of the diffusive motion of individual
nuclei, and second, using ensemble averaged propagators. The effects of applying additional
magnetic fields to these systems are discussed brieflyl9@¥ American Institute of Physics.
[S0021-96087)01408-9

I. INTRODUCTION fect the stategthe eigenvectopsthereby giving rise to phase
shifts and to transitions between quantum states.

In conventional high-field magnetic resonance the  The phase shifts can be detected directly using interfer-
nuclear spin Hamiltonian is dominated by the large Zeemamnce experiments? but an alternative approach, useful in
term, and other termgésuch as dipole—dipole couplings or magnetic resonance, is to consider their effect on transition
quadrupolar interactionsct as small perturbations. The to- moments. If motion causes two spin states to acquire differ-
tal Hamiltonian depends on the relative orientation of theent phase shifts, then the coherent superposition of these
magnetic field and the perturbing Hamiltoniégenerally re- ~ States will acquire a phase shift equal to the difference be-
ferred to some molecular coordinate Syslemnd so the tween the two individual shifts. If the motion is continuous
nuclear spin energy levels, and hence the transition frequer@nd coherent, then the transition phase shift will increase
cies, depend on molecular orientation. Interactions of thidinéarly with time, which is equivalent to a change in the
kind are said to beanisotropig and in randomly oriented transition frequency. In this manner, Berry’s phase gives rise

samples, such as powders, they give rise to broad spectr!d freauency shifts and splittings. If the motion is incoher-
lines. ent, the resulting random acquisition of Berry’s phase could

In mobile phases molecular motion affects the relativegive rise to coherence dephasing, which is equivalent to spin
orientation of the field and the perturbing molecular Spinrelaxationé? Here, we calculate the extent of this relaxation in

H 131
Hamiltonian, thus modulating the nuclear spin energy levelsPur® nuclear quadrupole resonar®&R) studies of*'Xe

If the motion is fast compared with the width of the distri-
bution of energy levels, the Hamiltonian will be averaged,
resulting in narrower lines; if the motion is isotropitor

example, molecular tumbling in liquiighe Hamiltonian Il. THEORY
will be completely averaged to its isotropic value. The un-

derlying anisotropy does, however, remain important, as it i?reatment§ Berry’s phase was treated as a necesgay-

a major source of relaxation: Components of the Hamil- . : )

tonian which are modulated at the fr n f 2 nucl Fnetrlc phase correction to théynamicphase calculated us-
onia \ch are modulated at the irequency ot a nuclear, .o agiabatic approximatiochin zero-field magnetic
spin transition give rise to transitions, resulting in relaxation.

| field . he ab ¢ resonance, motion will not change the essential form of the
h zero-field magnetic resonance the absence of an ®familtonian, or its magnitude, but will only change the ori-

ternal field automatically renders the interactions isotropicem‘,ﬂiOn of its principal axes. Berry solved this problem by
The choice of any external or molecular coordinate system ig5|cylating the evolution under a static Hamiltonian and then
arbitrary, and so the nuclear spin energy levels cannot desqging a correction term arising from the motion. It is also
pend on orientation. It might therefore seem that adiabati?)ossime to transform the problem into a frame of reference
motion of the system cannot have any effect on the resoyhose motion exactly matches the motion of the Hamil-
nance; however, as shown by Betfy,such an assumption tonian, so that in this new frame the Hamiltonian is indeed
is not correct. While adiabatic motions do not change thestatic. As this transformation is a gauge transformation, it
energy leveldthe eigenvalues of the Hamiltoniarthey af-  will modify the Hamiltonian by the addition of a gauge field.
The Hamiltonian,7Z, must be replaced by

In Berry’s original papef, and in many subsequent
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where U is a unitary matrix describing the transformation
into the moving frame andl has been set equal to unity. The
first term has the same form as the original Hamiltonian
(now statig, while the second term is the additional gauge
field. For continuous rotation around some axis,the ap- QT T
propriate transformation it =exp(—iwgl ,t), Where wg is [+3/2>
the rotation rate, and so the gauge fietdwgl ,, has the
form of a “fictitious magnetic field” along the rotation axis
(this behavior is familiar in high-field magnetic resonance,
where transformation into a rotating frame acts to reduce or
remove the Zeeman field
Clearly the effect of this fictitious magnetic field will
depend on the form of the static Hamiltonian, which for gas-
eous™®Xe in zero field is the quadrupolar interaction, a sys-
tem studied extensively in PrincetéhThe 33Xe nucleus
has spinl =2, and its energy levels are split into two degen-
erate pairs in the presence of an electric field gradient. Mos';G 1 Aoolication of i field dicular t - .
L . . . . 1. Application of a magnetic field perpendicular to an axially symmet-
nuclei in a gas sample do not expe”ence a, field grad|ent, bl{ﬁ: quadrupolar interaction in a sp%mucleus. The solid lines show the
those near the walls of the container experience a substantiglact result obtained by diagonalizing Ee), while the dashed lines were
field gradient, and in small containers rapid exchange of gasalculated by diagonalizing the approximate adiabatic Hamiltonian shown in
atoms between wall sites and the interior causes the nuclei - (9)- If [wg|<|wg] the major effect is to split thex3) levels, with a
. . . splitting 2wg , while the|=3) levels remain largely unaffected.
experience a net quadrupolar coupling to the entire
containert®!! Clearly the details of this coupling will depend
on the size and shape of the container. For a cylindricaame must then be modified by the addition of a gauge field,
container thg co_upllng will be a?<|ally symmetrlc, with the —wgly, Wherewg is the rotation rate. Hence
symmetry axis lying along the axis of the cylinder. The mag- ) 1
nitude of the coupling is largest for cylinders in which at ~ 7Z"=wg[lz— 31 (1+1)]— wgl. 3
least one of the spatial dlmenS|on§ is sufficiently small t,hatl'his can be expanded in the normal basis set to give
the gas atoms are close to a container wall much of the time.
This situation has been extensively studied in Princeton -3
and Stuttgart. In the Stuttgart experimeht$;**designed to wg  — wg 0 0
implement an NMR gyroscope, the container is a flat cylin-
der of approximately 20 mm diameter and 2 mm height, —v3 _ _ 0
. . - WR wq WR
giving rise to a quadrupole splitting of about 0.5 Hz. Clearly, ,M 2
such small splittings cannot be detected by conventional 7~ —V3
means, but optical pumping and detectfbt allow the split- 0 TOR Y o R
ting to be readily measured. The details can be found
12,13 P ; ; -3
elsewher€;*213put the principles can be easily summarized. 0 0 —— wg (O2)
Optical pumping in the presence of a static field is used to 2 4
create a substantial spin magnetization along some axis. This @
magnetization is then allowed to evolve freely under the quaWhile this matrix can be diagonalized directfya much
drupolar Hamiltonian, and the magnetization remaining issimpler result can be achieved by assuming that the motion
detected optically. This time-domain signal is then Fourieris adiabatic(see Fig. L If |wg|<|wq|, then four of the off
transformed to obtain the NQR signal. diagonal elements in E¢4) can be ignored, giving the much
For a static container the quadrupolar Hamiltonian issimpler adiabatic Hamiltonian
most conveniently written in an axis system whasaxis is
. . . ) g 0 0 0
aligned with the symmetry axis of the quadrupolar interac-
0 —wg —owgp O
0

tion R =
, 2 1 ']@d 0 COR T YQ
.%sz[IZ_§|(|+1)]y (2) O O 0 wQ

where g, is the size of the average quadrupolar coupling.This has eigenvalues efg, wg, and —wq* wg, and so the
This has eigenvalues of w,, and allowed transitions with allowed transition at frequencyeig will be split into two,
frequencies of 0 andaZ,. Appelt et al. have studied the with frequencies d4=* wg, that is, a splitting of &g.

effect of rotating the container about some axis while observ-  Within the adiabatic limit the fictitious field only affects
ing the NQR spectrun? a system closely related to that of the|=3) levels, and so it is appropriate to treat these central
Tycko® Suppose the container is rotated around an axis devels as a fictitious spig- Note, however, that a true spin-
right angles to the container axis. This axis may be arbitrarilys nucleus would be split by the field to give eigenstates sepa-
assigned as the axis, and the Hamiltonian in the rotating rated by=+3wg, only half the splitting observed in this case.

)
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This effect is equivalent to a well known effect in high-field
NMR studies of quadrupolar nucl&:® When a half-odd-
integer spin nucleus is excited with a weak radio frequency
field, which only excites the central transition, the effective
field strength is increased by a factor lof 3.

The exact form of the signal observed in an optically
detected experiment obviously depends on the choice of ini-
tial state and detection operator. Throughout this paper we
make a particularly simple choice: We choose both the initial
state and the detected state to consist of Zeeman magnetiza-
tion along the rotation axis. This has the major computa- 6=0
tional advantage that the detection operator is not affected by I<-2@g—>
the rotating frame transformation, and also corresponds to a
sensible choice in a possible experiment we discuss below!G. 2. Calculated spectra from xenon atoms in a cylindrical container

Other choices of initial state and detection operator will 0fundergoing rotation around an axis at an an@l® the cylinder axis; an
', ~ expansion around one of the quadrupolar transitions is shown. Note that this

course, givet slightly diﬁe‘.rem_ results, bl'.'t the_ broaq prin'figure includes the effects of the &#) intensity weighting predicted for the
ciples described below will still apply. With this choice of excitation and detection scheme described. In general, the quadrupolar line
initial state and detection operator, we may calculate thés split into four, but as#)—0, the intensity of the two outer lines tends to

: : - zero, while as#—90° the inner and outer lines overlap. The splitting be-
NQR S|gnal observed from a rotating cyllnder as tween the inner pair of lines changes sigrdas increased, and at the magic

angle this splitting passes through zero, resulting in a three line spectrum.

s(t)=tr[1 &~ 7adl & 7ad] 6)

=2+3 c0%2wqt)cog wgt). (7)  will have zero intensity, and so this limit is not very

S : : ._interesting. Second, for rotation at the magic angk
This situation can be generalized to consider rotation 9 9 gl (

around an axis at some arbitrary angléo the quadrupolar = arccos(’1/3)) Eq.(12) simplifies to
axis. In this case the Hamiltonian is f(t)=5+3 cogv3wrl), 13

SR 2 1 . corresponding to a triplet with intensities 1:4:1. This situa-
A= ogllz= s 11+ 1]~ wll, COK6) + 1, sin( 0)]-8 tion is equivalent to that studied by Tyckesing single crys-

® tal ®Cl NQR studies of sodium chlorate. Finally, consider
As before, this Hamiltonian can be greatly simplified if we rotation around an axis perpendicular to the quadrupolar
assume that the rotation is adiabatic, and this approximataxis, that is,f=/2. This is just the simple case described by
adiabatic Hamiltonian has eigenvalues of Eqg. (3), and Eq.(12) simplifies to f(t)=cos(wgt) as ex-
pected, giving rise to a two line spectrum.

wg* 3wgr cog0), - 0ot 30RL,
where I1l. INCOHERENT MOTION
As described above, coherent motion of the quadrupole
{=\/co$(0)+4 sirt(0)=4—3 cos(6). (10) d P

axis can give rise to line splittings. Now suppose that the

(The significance of this form fof is discussed further in the Motion is incoherent, and different for each nucleus in the
section on magnetic fields belowin this case the signal sample. In this case each nucleus will experience different

intensities also depend af and the calculated NQR signal 2nd varying splittings, giving rise to inhomogeneous line
is broadening.

This situation cannot arise in the system described
s(t)=2+3 cog( )+ 3 sirf( 0)cog2wqt) f(1), (11 above: As the motion of the quadrupole axis is due to the
macroscopic motion of the sample container, each nucleus

where will experience the same motion. It can, however, arise in a
{+cog ) 3cog6)—¢ relat.ed system involving the diffusion &t*Xe gas around a
t)= 2 coz{w;ﬂ(T } toroidal container.
The local geometry of a torus is like that of a cylinder,
{—cog 0) 3cog6)+¢ and so a*Xe nucleus at some point in the torus will expe-
+ T2 COS{ th(T (12) rience an average quadrupolar coupling with near cylindrical

symmetry(Fig. 3). The symmetry axis lies along the appar-
The NQR line is, in general, split into four components, asent cylinder axis, that is, tangential to the torus. As the xenon
shown in Fig. 2. However, there are several special cases @tom moves round the torus, the direction of its quadrupole
which the number of lines is reduced. First, consider rotatioraxis will vary, and this variation takes the form of rotation
around the quadrupolar axig=0. In this case the quadru- around an axis threading the torus, perpendicular to the
polar lines are split into two. However, using the excitationquadrupole axis. This situation is identical to that described
and detection scheme described above, the quadrupolar linebove, and so each nucleus will acquire Berry phases, but as
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FIG. 3. Schematic depiction of a xenon atom in a torus. As long as the tube
radius, r, is small compared with the torus radiug, the xenon nucleus
experiences an average electric field gradient with local cylindrical symme-
try. Hence the nucleus has an axially symmetric quadrupolar coupling to the
container, with a symmetry axis directed along the local cylinder axis, that is ©) diffusing
tangential to the torus. As the atom moves around the torus the local cylin- __JL_J A

der axis changes, causing the quadrupole axis to rotate.

. . . . -2 0 2
the phases acquired are different for different nuclei the ef- o ®Q

fect will appear as line broadenmg instead of Sp|ltt|l(|§$;]. FIG. 4. Calculated spectra fdf*Xe nuclei in a toroidal container. Static

4). nuclei only experience the quadrupolar interaction, and so give a simple
During any short period of time, the motion of any given three line spectrunta). Nuclei which move around the torus at a constant

xenon atom can be considered constant. and so the effect &ﬁe experience a fictitious magnetic field which splits the quadrupolar tran-

h | il . is th ; d’ . £ sitions (b). Diffusive motion of nuclei around the torus corresponds to an

the nuclear Hamiltonian is that o §tea y rotation at a re‘lncoherent distribution of rotation rates, and so gives line broadenirgs

guency wg. Over an extended period this frequency will instead of splittings.

vary. However, the total phase acquired by an eigenstate dur-

ing any time period depends only on the average rotation

rate, wg, during that time, even for the non-Abelian case of

18 B
degenerate state§:®Hence for any given nucleus the nuclei in a small region of the torus, and then detect

s(t)=2+3 cog2wet)cog wit). (14) signals from nuclei in a different region, at an angular dis-
tance ¢ around the torus. Clearly, signals will only be de-
tected from nuclei which have diffused from the excitation
s(t)=2+3 cog2wqt)cogw), (15 region to the detection region, and so the signal intensity will
- . . depend on the extent of such diffusion. However, any nuclei
wherew, called the winding, is the total angular distance " ;

. . -~ which are detectable must have acquired Berry phases cor-
traveled by a nucleus. This simple form can be easily ratio-

nalized. For a geometric phase shift, such as a Berry phas[aespondmg to motion through an angje and so the signal

the phase shift depends only on the path traveled, and Jritepsny will also be mod.ulated by a dgs terf”- In particu- .
) . . ar, it should not be possible to detect any signal from nuclei
independent of the way in which the system moves alon

. : hich have traveled a quarter of the way round the torus,
that path. The cos() dependence arises from mterferenceWhere cobml2)=0.

between signals from the two different quadrupolar transi- . : I

. . . . . The second class of experiments involves excitation and

tions, which acquire equal and opposite phase shifts\of . o . .
detection of all the nuclei in the torus. In this case nuclei

num-ll;zer r\:v'gdlcvg:’\g' Iﬁ le;at\?v(:léfei?sC;nnvzgt(ﬁ?oar::}?g:g with different windings will be detected, and the total signal
N, OY 7 ! y will depend on the probability distribution of acquired wind-

tional rotation. The periodicity of the cosine function in Eq. inas. The motion of gas atoms around a torus can be de-
(15) shows that the behavior of the system is independent of 93 . 9 e ; .
scribed by one dimensional diffusion, with a probability den-

the winding number achieved by an individual nucleus, bUtsity function

depends only on the additional fractional rotation. This sug-

gests two possible types of experiment which might allow 1

these Berry phases to be detected. AW)= 207 at exp(—w?/4 dt), (16)
The first class of experiment involves selective excita- 2\ dt

tion and detection of specific nuclei. Suppose we excite alivhered is the one-dimensional diffusion coefficient mea-

This can be simplified by writingv=wgt, giving
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sured in rads ! Multiplying Egs. (15) and (16) together  1IV. COHERENCE DEPHASING
and integrating over all possible windings gives the total

observable signal The discussion in the previous section shows that inco-

herent motion can lead to the random acquisition of Berry

_| . phases, and thus to a loss of signal coherence. Recently,
S(t)—f./)(w)s(t)dw 17 Serebrennikov and Steiner have described a more general
approactt®~?>which can be applied to many types of inco-
=2+3 cog2wqt)exp(—dt), (18)  herent motion, including the diffusive motion of gas in a

showing that the signal from the quadrupolar transitions deorus.

cays exponentially with a rate equal to the diffusion coeffi- ~ Serebrennikov and Steiner start from the gauge field,

cient(the central line, which is not split by the fictitious field, Which in zero-field magnetic resonance takes the form of a

remains unbroadengdNote that this decay occurs not be- fictitious magnetic field. If the gauge field commutes with

cause nuclei acquire large winding numbers, but because tiB€ main Hamiltonian, then evolution under the two terms

distribution of fractional windings becomes asymptotically can be considered separately. They then use the Fano—

flat. Zwanzig projection operator method®?’ to calculate an
The one-dimensional diffusion coefficiert, is related ~ensemble averaged propagator for evolution under the inco-

to the conventional three-dimensional diffusion constant, herent gauge field,

by d=D/3R?, whereR is the radius of the torugee Fig. 3. d ¢

For xenon at standard temperature and pre$%ube<5 &<p(t)>=f (ADA ) p(t"))Hdt', (21

x10® m?s™%, so a torus with a radius of a few millimetres 0

will have a Berry dephasing time constant of a few secondsyhereA(t) is the super operator corresponding to the gauge
shorter than that of other relaxation mechanisms. In such fie|q, and for continuous rotatioA= —iwgl . If the corre-

torus the typical rotation rate will be smaller than the qua-|aiion time of the motion is short compared to the rate of

drupolar coupling, and so the adiabatic approximation is reaghange ofp(t), Eq. (21) can be approximated by
sonable. Small deviations from adiabaticity will result in a

slightly faster loss of signal, but at very high diffusion rates d - ,
the signal should once again become sharp, as predicted by dt {p(1))= J-0<A(t)A(t Ndt(p(t),
average Hamiltonian theofy. _ _

An interesting analogy exists between our system and@nd the problem reduces to calculating the integral
one discussed recently by Goldman, Fleury, and rGué t .
They consider the effect of rotating a sample around an axis J (A(D)A(L"))dt’. (23
parallel to the static field while observing its conventional 0
high field NMR spectrum. When a conventional radio fre-  Clearly, the value of this integral depends on the form of
quency coil is used for excitation and detection, such rotatioRhe motion. For motion around a tords= _inix, and at
has no effectassuming that the static field is homogengous any point in time the angular velocities of the individual
If, however, the radio frequency coil produces a field radialatoms will have a Maxwell distribution. Now suppose that at
to the static field, sample rotation results in a shift in thejntervals  the motion of each atom changes such that the
NMR frequency equal to the rotation rate. This is exactly theyg|ocities still have a Maxwell distribution but the velocities

They predict that similar effects would be seen for motion ofihis case

a toroidal sample within a solenoidal radio frequency coil

(22)

2

wrapped around the torus. Finally, they consider the effect of ft ~ R ,_ Gy
incoherent motion, such as diffusion of the sample within a O<A(t)A(t )dt'= 2 bo 24)
toroidal container. In this case they predict that the random ) - .,
distribution of phase shifts should result in signal loss. wherec is the root mean square velocify rads~).

The signal from a toroidal sample rotating at a constant N general, the gauge field does not commute with the
frequency,wg, is main Hamiltonian. However, as long as the motion is slow

may be replaced by its “adiabatic” form
s(t)=exp(i wpt)exp(—iwgt), (19
0 0 0O

where w, is the Larmor frequency and the initial amplitude 0 0 1 0
and the effects of relaxation have been ignored. As before, |;= 010 0 (25
for incoherent motion the total phase acquired depends only 000 O

on the average rotation ratei, and hence the winding,
w=wgt. For an ensemble of molecules each undergoing ranthis doescommute with the quadrupolar Hamiltonian, and

dom diffusion we can apply Eq$17) and(16) to obtain so the method can be used. The eigenvalues bf are real
_ . _ and negative, and so this operator should cause coherence
S(t) = expiwot) exp(—d1), (20 dephasing. This is confirmed by detailed calculation: Com-
making clear the analogy with E¢18). bining evolution under the two operators gives
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been wound into a helixFig. 5. Nuclei in the helix will
experience an average quadrupolar coupling which is cylin-
drically symmetric, with the symmetry axis tangential to the
helix. Motion of gas molecules around the helix will cause
the quadrupolar axis to rotate, but the axis about which this
rotation occurs is not perpendicular to the quadrupole axis,
as was the case for the torus. Instead the rotation axis, and
hence the axis of the fictitious field, is directed at some
angle, 6, to the quadrupole axis, wher® depends on the
pitch of the helix.

Clearly, this situation is equivalent to the case of the
rotating cylinder, described in E¢B), and so the signal will
be described by Eq¢11) and (12). As before, we can re-
place the rotation rate by its average value, and then write
w=wgt. Hence

)= §+<;cgs(0) CO{W(300320)—§”

{—cog 0)
+TCO W

Unlike a torus, a helical container has ends, and so the mo-
tion of gas atoms is described by bounded diffusion, rather
than free diffusion. In the limit of infinite length, however,

_ - , _ , this becomes irrelevant, and E¢L6) remains applicable.
FIG. 5. Schematic depiction of a xenon atom in a helical container. A xenor)j_|ence
nucleus far from the ends of the helix experiences a average electric fiel

gradient with local cylindrical symmetry, and so has an axially symmetric

3cog0)+¢

5 (30

quadrupolar coupling with a symmetry axis directed tangential to the helix. ~ S(t) =2+ 3 co$(8) + 3 sirf( #)cog2wt)F (31
with
p(t)=ex;1Cin(f§—%l(l +1))t—(c27'IA)'(2/2)t]p(0), {+cog ) 3cogh)—¢\2
and starting from and detecting gives )
—cog 6 3cog6)+
s(t)=2+3 co$2th)exp(—(c27-/2)t), (27 +§2—;{) ex;{—dt # (32

which has the same form as H3.38).

In fact, the two Eqs.(18) and (27) are completely In general, the decay of signal intensity is biexponential. As
equivalent, as shown below. For diffusive motion, describecexpected, Eq32) simplifies toF =exp(—dt) for the case of
by Eg. (16), the root mean square distance moved by anya torus(6=/2) and
particular atom during a timeis 2 d=. During this time the -
atom has an “apparent velocity” equal to the distance it has F=3+3exp(—3dY (33
moved divided byr. Clearly, this apparent velocity has a for a helix at the magic angle.

M Il distributi ith - . . .
xwell distribution, with a root mean square apparent ve As with the case of the torus, it should be possible to

locity of perform experiments to detect geometric dephasing in heli-
J2dr 2d ces. Indeed, the behavior dfXe in helical containers

c= r N (28 should provide an excellent test, as the predicted biexponen-

) ) ) tial relaxation should provide an unambiguous indicator of

Equation(27) then predicts a dephasing rate of these effects. The case of a helix close to the magic angle is

c2r 2d 7 particularly sensitive, as the two dephasing time constants
- = %5=4 (29 are expected to be very different.

These calculations can also be performed using the

identical to that in Eq(18). coherence dephasing formalism of Serebrennikov and

Steiner’®*~?°n this case

V. MOTION IN A HELIX ~ ] ~ ~

A=—iwg(l, cog ) +I, sin(H)). (39
Similar, but more complex behavior should emerge if

the xenon gas is placed in a cylindrical container which hadMaking the same assumptions as bef(8ec. I\V) gives
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{+cog ) c’r (3cog6)—¢\?
F=——F—exg——5t|———
27 2 2
+§—cos{6) c?r [(3cog0)+¢
2t T2 N2

C

which is clearly equivalent to Eq32) with d=c?7/2. ©
The equations above have all been written using vari- ®)
ables which are convenient for the calculations involved, but (a)
which may not be convenient for describing actual helical -
containers. Any helical container may be formed from a tube time

of lengthL wrapped in a helix around a cylinder of radiRs _ _ o

d b h h h b d FIG. 6. Geometric dephasing due to diffusion of xenon atoms around a torus
(assumed to _e mucf greater t an t e tube ra Du§up- causes the quadrupolar signal to decay exponentially to(agrdhe signal
pose the fractional pitch of the helix 5 (so that the height from a tube bent around a torus, but without the ends joigeeRa), decays

of the helix iSpX L). Then the helix angle is more slowly but eventually reaches z€hy. If the tube is bent round a half
torus (=) the signal decays to a constant valae

2
, (39

signal

p
0 arcco{ \/1+—pz) (36)
the angular length of the helix is tion of final positions will be flat and independent of the
starting position. The distribution of acquired windings,
L however, will not be flat, as the range of windings which
¥= R\/W’ (37) may be achieved depends on the starting position of each
nucleus. Integrating over all possible initial positions gives
and the angular diffusion constant is 1wl
1 w
_ D AW, )=~ (1— —) (40)
d= 3R2(1+ p2) ' (38) t—oo lﬁ l,b

where D is the conventional three-dimensional diffusion (note that for a true torug=, as the motion is unbounded
constant. Note that in the limg—0 these reduce t6=/2, Hence
=L/R, andd=D/3R? as expected for a torus.

1
VI. MOTION IN SHORT HELICES AND TRUNCATED "= 2P G oo - 12 |20 cos(6)+1)
TORUSES (cog )+ {)(3cog6)+ )% [ Y(3cogh)—{)
The discussion above concerning the motion of nucleiin =~ ~ 7 co 2
helical containers depends on the assumption that the con-
tainer is infinitely long, so that end effects can be ignored. <(COS( ) —{)(3 cog 9)_02)005( (3 cog 6) + )
While this greatly simplifies calculations, and is probably 4 2 '

appropriate for helical containers with many turns, it clearly (41)
cannot be applied to the motion of nuclei in short containers.

This problem is most conveniently approached using theAs usual, this equation can be greatly simplified at particular
concept of winding, developed in Sec. lll. For finite helices values ofé. For a helix of zero pitch6=7/2),

S(t)= f AW, P)s(t)dw, (39) F=sinc(y/2), (42)

» ) i o where sinck) =sin(x)/x. The limiting signal is zero when
where the probability density function for windings now de- y=21, as seen in Fig. 6. Similarly, for a helix at the magic

pends on the angular length of the helix see Eq.(37)], angle

and s(t) is given by Eqs(11) and (12) as before. The ex-

pression forAw,y) is complicated as the equations for hin-  F=32+1 sin@(v34/2). (43

dered diffusion must be used, but the problem can be easily

solved numerically. The results for two specific cases ar; THE EFFECT OF MAGNETIC FIELDS

shown in Fig. 6. These cases involve truncated torises

is, #=/2), but similar results occur for other types of short Finally, we consider the effects of additional applied

helix. This nonexponential relaxation may provide anothemagnetic fields. While such fields could be applied along any

possible experimental test of our predictions. axis, an interesting case involves fields directed parallel or
A simple analytical solutiorran be obtained for the lim-  perpendicular to the quadrupolar axis. For simplicity we con-

iting signal from a short helix at infinite time. Individual sider only systems in which the rotation axis is perpendicular

nuclei may start anywhere in the helix, with a flat distribu- to the quadrupolar axis; in the absence of additional mag-

tion of initial positions, and at very long times the distribu- netic fields, such systems are described by equations of the
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where wy, is the strength of the applied magnetic fi¢ike
Fig. 7(d)]. As before, incoherent motion is treated by writing
w=wgt and integrating over(w), giving

@ ()
L M¢ S(t)=2+3 cog 2wqt)cog wyt)exp —dt). (45)
e

The effects of the fictitious and applied magnetic fields have
the same form, and so can be treated separately. The ficti-
tious field creates line broadening as before, while the ap-
plied magnetic field splits thébroadenegfquadrupolar lines
into a doublet.

Alternatively, since the applied and fictitious fields have
the same form, the applied magnetic field can be treated as a
fictitious motion around the torus. Unlike the real physical

© ® ‘JUL motions of the different nuclei, this fictitious motionigen-

© (d)
S [

tical for all the nuclei in the torus, and so must produce
splittings rather than broadenings. For this reason magnetic
fields cannot be used to remove the effects of incoherently
acquired Berry phaseshey can be used to remove the ef-
fects of coherently acquired Berry phases, as demonstrated

(& () m by Tyckoe).
W M W .'M, M Jk, Another simple case is when the applied field is directed

parallel to the quadrupolar axighis could be achieved by
200 0 20 200 0 2mg wrapping a solenoidal coil around the contajndhe signal
can be calculated directly as

FIG. 7. Calculated spectra frofi*Xe nuclei in a cylindrical container un- 2 2 2

dergoing coherent rotation in the presence of a magnetic field. For all spec- s(t)= ﬂ + ﬂ cog wet) +3 cog2wet)

tra except(a) the right-hand multiplet is also shown on an expanded hori- w% 2w,2: F Q

zontal scale.(a) No rotation and no magnetic field; the quadrupolar

transitions at*2wq are unsplit.(b) The effect of rotation around an axis Sopt

perpendicular to the quadrupolar axis; the quadrupolar lines are split into X|co cog w,:t)

two by the fictitious field Eq. (7)]. (c) The effect of rotation around an axis 2

at an angle of 45° to the quadrupolar axis; the quadrupolar lines are split into

four and the line intensities are affectdelgs.(11) and(12)]. Note that the oy . [3ont)| 46
central line has been truncatéd) As case(b), but with an additional static + Z_Q’F siny 2 Sln(w,:t) ' (46)

magnetic field applied parallel to the fictitious field; the two fields sum
together increasing the splitting of the quadrupolar lifeg. (44)]. (e) As where
case(b), but with an additional static magnetic field applied parallel to the

quadrupolar axis; this results in an apparent tilt of the rotation axis, and a _ 2 2_1[ 2 2
spectrum similar to that seen {0). (f) As case(b), but with an additional W \/(wM/Z) t o 2\/wM +(2wr) (47)

static magnetic field applied perpendicular to the quadrupolar and rotation . .
axes; this augments the fictitious field, but also results in the central lindS the total effective field strength. Note that, as eXpeCtEd’

being split.(g) and (h) As case(b), but with an additional static magnetic Eq. (46) reduces to Eq(7) when wy—0.

field applied perpendicular to the rotation axis and with a static orientation The form of Eq.(47) might seem unusual: Why should

in the laboratory frame. In the rotating frame this field appears to rotate inthe applied field be divided by two, while the fictitious field

the yz plane, modulating the Hamiltonian and creating modulation side-. 2 1nf his eff h | 'd b di di

bands in the spectrum. The detailed form of the spectrum depends on tHe not? In fact, t '_S_e ect has a_re‘? y been I_SCUSSG in Sec.

initial orientation of the applied field with respect to the quadrupolar axis; |l above. The fictitious magnetic fielgperpendicular to the

(9) corresponds to a perpendicular initial orientation, witifecorresponds  quadrupolar axisis selective for the central transition, and

to a parallel initial orientation. so its effective field strength is increased by a factor of 2.
The applied magnetic fieltharallel to the quadrupolar axis
affects all the transitions, and so its field strength is not
doubled in this way.

form of Eq.(3). In the case of incoherent motion this corre- ~ Another approach to this problem is to notice that just as
sponds to xenon atoms in toroidal containers. The results fgt magnetic field applied along the rotation axis is equivalent
coherent motion are depicted in Fig. 7. to a fictitious motion, a magnetic field along the quadrupolar
The simplest case is when the field is applied parallel tpXis is equivalent to a fictitious tilt of the rotation axis, or the
the rotation axis(perpendicu|ar to the quadrupo|ar axis and conversion of the torus into a helix. This fictitious tilt can be
parallel to the fictitious fielll In this case the applied and described by an apparent field strengig, and an apparent
fictitious fields simply sum together, and so for coherent mo{ilt angle, 6, where
tion of nuclei around the torus wg= g SiN(0) (48)

S(t)=2+3 cog2wqt)cog wrt+ wyt), (44) and
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wy=wg c0g 0) (49 The effect of an applied field along tlyeaxis is similar
to that of a field along the rotation axfthe x axig), in that
the applied field augments the fictitious field. Since, how-
wp= twg\coZ(0) + 4 Sirf(0) = wgl, (500  €ver, the applied and fictitious fields are now perpendicular_ it
iS necessary to use a vector sum to calculate the effective
where( is defined as beforisee Eq(10)]. This origin of this  fie|d strength. Furthermore, the initial state and detection op-

as before. Inserting these forms into E47) gives

form for { is now clear. _ erator are no longer parallel to the effective field axis, and so
~ Substituting the above into E46) gives, after exten-  the signal is subtly changdsee Fig. 7)]. In particular, the
sive rearrangement, central(zero-frequencytransition is split into three compo-
8sirf(6) 2cod(6) wgtl ngnts, as in the case of the fictitious heli>.< arising from fields
s(t)= 72 + z o} 5 directed parallel to the quadrupolar axis. Once again the

fixed magnitude of the applied field results in varying effec-
+3cog2wqt)f(t) (51 tive fields, and so makes it difficult to calculate the effects of
incoherent motion.
Finally, we consider the effects of a field perpendicular
to the rotation axis, but with a fixed direction in the labora-
} tory frame. In our transformed coordinate system, the direc-
tion of this field will vary as the container is rotated or as
{—cog0) 3cog0)+¢ nuclei move around the torus: The field can be parallel to the
+ 20 cog wet 2 quadrupolar axigalongz), perpendicular to ifalongy), or
o . . along some other direction in thez plane. The Hamiltonian
The similarity to Eqs(11) and (12) is obvious. The results aries constantly, even for rotation at a constant rate, and the
are not identical because the excnatlon. and detectiofyzmiltonian no longer commutes with itself at different
schemes are not the same: For the true tilted system thg,eq: thus the simple approach embodied in equation 6 is
initial state and detection operator were assumed to lie along possible, and it is necessary to perform an explicit time-
the tilted rotation axis(at some angle to the quadrupolar orgered integration. The instantaneous effect of the applied

axis), while in this fictitious system the initial state and de- ie|q will be some combination of a fictitious additional mo-
tection operator lie along the untilted rotation atighich is i and a fictitious tilt, as described above, but rotation of

perpendicular to the quadrupolar axighis changes the line e container will results in modulation of the Hamiltonian,
intensities, and also produces the splitting of the line at zerogg 5o modulation sidebands at multiples of the rotation rate
frequency(Fig. 7(c)]. =~ , _ are expected in addition to any splittings arising from the
As before, the fictitious helix also differs from a real o5/ and fictitious fields.
helix in that the applied magnetic field is the same for all £ this system the calculated spectrum depends not only
nuclei. Since the apparent tilt angle depends on the relativgy, he rotation rate and the strength of the applied field, but
sizes ofwr andwy , this angle will be different for different 556 on the initial orientation of the quadrupolar axis with
nuclei in the sample; indeed it will be different for the Samerespect to this field. Spectra are shown in Fig. 7 for two
nucleus at different tim.es. For this reason it is difﬁcult to yifferent orientations(g) shows the spectrum when the ap-
calculate the effects of incoherent motion, as the simple aMylied field initially lies along they axis, while(h) shows the
proaches used above are no longer applicable. It should kg e irum when the applied field initially lies along thasxis.
possible to use the approach of Serebrennikov and Steingfypile hoth spectra show similar modulation side bands, they
with an explicit evaluation of Eq23). o _ differ in many fine details. For the case of motion around a
Third, we consider the effects of a magnetic field appliedys it would be necessary to average the signal over all

perpendicular to the quadrupolar and rotation ae® y jnitia| orientations. This system is related to the behavior of
axis in our usual notationFor a toroidal container this cor- spin< holes in GaAZ®

responds to a field in the plane of the torus, and everywhere
perpendicular to it. For a field along tlyeaxis the resulting
signal is

with

[+cog 6) 3cog6)—{¢
t)= 2—§ COoS wgt s

(52

VIIl. SUMMARY
2w+ 2w3 cOg2wgt)
s(t)= o2 +3 co32wqt)cog wet), Zero-field magnetic resonance experiments differ from
F (53) those in high field in that the absence of an external field
renders many interactions isotropic. In this situation, al-
wherewy is the applied field strength as before, but in thisthough the eigenvalues of the spin Hamiltonian are unaf-
case fected by slow motion of the system such motizan result
_ 2.7 in the acquisition of Berry phase shifts and the mixing of
WFT VORT Oy, (54) degenerate states. While coherent motion typically results in
in contrast to the form given in Eq47). In the present case frequency shifts and splittings, incoherent motion will gen-
both the applied and fictitious fields are selective for theerally result in coherence dephasing, and hence spin relax-
central transition, and so both field strengths are doubled. ation and line broadening. We have calculated the nature and

J. Chem. Phys., Vol. 106, No. 8, 22 February 1997



3016 J. A. Jones and A. Pines: Geometric dephasing in magnetic resonance

extent of this broadening in a variety of simple model sys- 7p. Hale, G. Wakerle, and M. Mehring, Appl. Magn. ResoB, 207
tems, and discussed possible experiments for detecting thesé&l993.
effects 8J. A. Jones and A. Pines, Chem. Phys. L2#7, 215 (1995.

. 9For example, L. J. SchiffQuantum Mechani¢s3rd ed.(McGraw-Hill,
The loss of signal coherence as a result of the random gj,ganore, 1968

acquisition of geometric phases may also be important in°z. wu, w. Happer, and J. M. Daniels, Phys. Rev. LB8, 1480(1987.
other NQR experiments, as well as in high field NNARN 11D, Raftery, H. W. Long, D. Shykind, P. J. Grandinetti, and A. Pines, Phys.
particular, Berry phases arising from the slow rotational dif-,Rev- A 50, 567 (1994.

. : ; . 125, Appelt, G. Wakerle, and M. Mehring, Phys. Rev. Lefl2, 3921
fusion of particles could be an important source of relaxation PP N, Fhy v

. . K K (1994.

in conventional NQR studies of colloidS. 133, Appelt, G. Wakerle, and M. Mehring, Phys. Lett. 204 210(1995.
1A, Abragam, Principles of Nuclear Magnetisn{Clarendon, Oxford,

ACKNOWLEDGMENTS 1961).

) 153, Vega, J. Chem. Phy68, 5518(1979.
We would like to thank Y. Lyanda-Geller, D. P. Arovas, °A. Wokaun and R. R. Ernst, J. Chem. Ph§g, 1752(1977).

S. Appelt, and M. Mehring for many stimulating discussions. A Zee, Phys. Rev. /88, 1 (1988.

( s : ) .
We also grateful to M. Ernst for much helpful advice. J. A. ;0 V- Zwanziger, M. Koenig, and A. Pines, Phys. ReviZ3107(1990.
Not as we erroneously stated in Ref. 8.

Jones would like to th_ank C. M. Dobson for his encourage<op v, . peereboom, H. Luigjes, and K. O. Prins, Physica58 260
ment and support. This work was supported by the Director (1989.

of the Office of Energy Research, Office of Basic Energy*'P. Meier, G. Kothe, P. Jonsen, M. Trecoske, and A. Pines, J. Chem. Phys.
Sciences, Materials Sciences Division of the U.S. Depart,,3" 6867(1987.

ment of Energy, under Contract No. DE-AC03-76SF00098. (jge " © oo &nd M- Cuen. 3. Magn. Reson. A18 11

Zyu. A. Serebrennikov and U. E. Steiner, Chem. Phys. 222, 309

M. V. Berry, Proc. R. Soc. London, Ser. 202, 45 (1984. (1994.

2Geometric Phases in Physjcedited by A. Shapere and F. Wilczek >*U.E. Steiner and Yu. A. Serebrennikov, J. Chem. P18, 7503(1994.
(World Scientific, Singapore, 1989 2Yu. A. Serebrennikov and U. E. Steiner, J. Chem. Ph@$, 7508(1994.

3J. W. Zwanziger, M. Koenig, and A. Pines, Annu. Rev. Phys. Chétn.  2°U. Fano, Phys. Rewl31, 259 (1963.

601(1990. 2R. Zwanzig, Physic&0, 1109(1964).

4T. Bitter and D. Dubbers, Phys. Rev. LeB9, 251 (1987). Y. Lyanda-Geller and D. P. Arovagrivate communication

5D. Suter, K. T. Mueller, and A. Pines, Phys. Rev. LéM, 1218(1988. 293, Jeener, J. D. Bell, P. Broekaert, E. Dumont, and M. Koenig, Adv. Magn.

5R. Tycko, Phys. Rev. Let68, 2281(1987. Reson.14, 95 (1990.

J. Chem. Phys., Vol. 106, No. 8, 22 February 1997



