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COMMUNICATIONS 

High-Order Selective Sequences in Multiple-Quantum NM 

In a recent letter (1) we showed that multiple-quantum NMR transitions 
can be selectively excited, corresponding to the absorption of only groups of n 
photons. By a phase-shifted pulse sequence, a zero-order average Hamiltonian 
S’Pol is produced which is &-quantum selective, i.e., contains only matrix elements 
between states differing in energy by n/&o,, (k = 0, 1, 2, . . .). In general, 
the propagator for any time-dependent sequence of pulses and delays may be 
written from average Hamiltonian theory (2) as U = exp(-ifi(n,t,)), where 
I, is the cycle time, n, is the number of cycles, and fi is the effective time- 
independent Hamiltonian 

E;r = gp0' + $p + ,yp + . . . + X(j) + . . . 

The quantity X(O) is the zero-order or average Hamiltonian; Z’(j) is termed a correc- 
tion term of orderj, and is proportional to (t,>j. For t, + 0, S??(O) is the dominant 
term, and this is the term we made selective in our preliminary work which 
demonstrated 0, 4-quantum selectivity in oriented benzene. 

A crucial aspect of this work, which allowed ljfitJ[ -+ 0, was a time- 
reversible excitation A, which produced, independent of the cycle time, an 
effective subcycle Hamiltonian Ho with all multiple-quantum components. 
In many systems (isotropic solutions, for example) t, cannot be made vanishingly 
small while keeping multiple-quantum components in E-i,. In this case the 
terms SC(j) for j # 0, which are not necessarily selective, will contribute to a 
and ruin the selectivity. Thus a critical question is whether an excitation can 
be designed in the most general case such that the nonselective contributions 
to Z?(j) are reduced, making selective excitation generally applicable to spectro- 
scopic systems and to large values of n. In this communication we show for the 
first time the result that an excitation can be produced with an effective &’ 
which is nk-quantum selective for all terms X(j) up to arbitrarily high j. 
This is done by a successive sequence of phase cyclings (described below) 
and can be used to produce highly nk-quantum selective excitation even 
when time reversal is not possible or when t, cannot be made small enough 
to neglect correction terms. 

We define aj-order nk-quantum selective sequence as one in which all terms 
SP) (i CC j) in the average Hamiltonian expansion are nk-quantum selective, i.e., 
they are invariant to a rotation of (b = 2dn about the axis of quantization. 
These terms therefore can be decomposed into irreducible tensor operators 
T$A with components p = nk (k = 0, 1, 2, . . .) and ranks I 2 Ip 1 .I We 
define phase cycling, shown in Fig. la, as follows. We start with a sequence with 
an effective Hamiltonian I? = Ho = X,j”) + Xhl) + . . . , which is applied for a 
time ArP, called a subcycle. The subcycle sequence is then repeated with the 

i Pure n-quantum selectivity (k = 1) is also possible 
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FIG. 1. (a) Phase cycling. If 4 = 2&i, this process increases the &-quantum selectivity 
of the sequence by one order over the selectivity of A,,. (b) Phase cycling combined with sym- 
metrization increases the selectivity by two orders. (c) Time reversal enhances the selectivity. If 
this entire sequence is used for l?,, @oA~pll = llHZZAri/l, where H,, is the direct dipolar 
Ramiltonian. 

phase of all radiation shifted by C#I = 2&z. This new sequence has an effective 
I-Iamiltonian Z?*, which is related to Z?, by a rotation of -4 about the z axis, 
FZ* = exp(i+Z,)h, exp(-i+Z?). 

This phase shift is repeated n times to form a cycle.2 The average ~amiltouia~ 
for the cycle is 3V”’ = Cm %$$~in, which is nk-quantum selective even if 
nonselective. If B, is already j-order selective, we can show that a similar 
expression holds for the nonselective part of %Y), j’ ~j + 1. Therefore, $ 
I?‘, is j-order nk-quantum selective, the sequence obtained from a0 by phase 
cycling is (j + I)-order nk-quantum selective. Starting from any Z?Zo, phase cycling 
increases the selectivity of the cycle to one order greater than the selectivity 
of the subcycles, while lengthening the sequence by factor of tz. Using phase 
cycling alone, aj-order nk-quantum sequence (k = 0, 1, 2, . . .) can be designed 
from a nonselective sequence by (j + 1) phase cyclings, requiring n’j+l’ subcycles. 

The number of subcycles needed can be reduced by the principle of sym- 
metrization and the well-known fact (2) that all odd-order terms 9P2j+l) vanish 
for a symmetric sequence. Thus, the symmetrized sequence illustrated in Fig. lb 
will raise the selectivity by two orders, if Z!Zo is already (2j + 1)-order 
selective, but this sequence requires only 2n subcycles instead of the n2 sub- 
cycles required for two phase cyclings. Starting with a nonselective Bo, a 2j-order 
selective sequence requires n(2n)j subcycles ((j + 1) phase cyclings andj sym- 
metrizations) and a (2j + 1)-order sequence requires (2n)j*l subcycles ((j -i- 1) 

2 Other permutations of the n values of I#J are also acceptable and may be advantageous in 
many cases. 
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phase cyclings and (j + 1) symmetrizations). For example, a third-order 
4k-quantum selective sequence requires 64 subcycles (two phase cycles and two 
symmetrizations) and can be written schematically (O:+ = 0, I:$ = n/2, 2:~# = rr, 
3:$ = 37772) as 

(01233210) (12300321) (23011032) (30122103) 

(30122103) (23011032) (12300321) (01233210). 

In our previous work we incorporated time reversal in the sequence for fi, 
shown in Fig. Ic. The quantity fip appears as a unitary transformation on If,,, 
so that fi, can contain multiple-quantum coherence if i~,TII 2 1. However, 
ll%“‘A~x4 = lIfL&ll, so llSYJ”‘Ar,/ can be made arbitrarily small by reducing 
the ratio hr;lA~~. In this case, even a zero-order selective sequence will be 
effective. If time reversal is impossible, Ho will not contain multiple-quantum 
coherences unless lllL;loA7,11 k 1, and a zero-order selective sequence is useless 
However, if a high-order selective sequence is used /I~oA~pII need not 
small, and time reversal is not necessary for selectivity. We expect that a combina- 
tion of high-order selectivity and time reversal, when possible, will give the 
best results. Applications of these sequences to selective excitation in multiple- 
quantum NMR will be described in a full paper, together with a quantitative 
treatment of selectivity. 
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