Volume 17, number 1

HIGH RESOLUTION NMR OF ¹⁵N IN SOLIDS*

M.G. GIBBY[†], R.G. GRIFFIN, A. PINES and J.S. WAUGH

Department of Chemistry and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Received 24 July 1972

¹⁵N NMR spectra, obtained in the solid state by transfer of polarization from protons, are reported for (NH₄)₂SO₄, NH₄NO₅, and glycine.

NMR chemical shifts and electron coupled interactions of nitrogen hold considerable intrinsic interest because of the role played by the N atom in peptide bonds, nucleotides, and other compounds, but they have been little studied. The abundant ¹⁴N isotope suffers from small gyromagnetic ratio $\gamma(^{14}N)$ = 1.934×10^3 A sec/G and from quadrupole relaxation broadening of many of its resonances. ¹⁵N, while of spin 1/2, also has a small magnetic moment $\gamma(^{15}N)$ = -2.712×10^3 A sec/G and is of low natural isotopic abundance (0.365%). It also often displays inconveniently slow spin-lattice relaxation [1]. Thus most workers who have studied ¹⁵N have resorted to isotopic enrichment [2], although recently some Fouriertransform spectra have been obtained in natural abundance [3].

A recently introduced double resonance method [4] offers a considerable improvement in this situation when the rare ¹⁵N spins (S) are coupled to abundant spins (I), usually protons. When the rotating frame relaxation time $T_{1\rho}(I)$ of the abundant spins is long, a limiting gain in power signal-to-noise ratio (i.e., a saving in time) of

 $G=N_I\gamma_J^2I(I+1)/N_S\gamma_S^2S(S+1)$

is obtained. For ¹⁵N in typical organic compounds,

[†] Hertz Foundation Fellow.

 $G > 10^5$ is not atypical, though $T_{1\rho}$ (I) will rarely be long enough to take advantage of this full improvement. Fig. 1 shows a spectrum obtained in 10 min from the naturally occurring ¹⁵N in 150 mg of (NH₄)₂SO₄ at room temperature in a field H_0 of 22 800 G. Because $T_{1\rho}$ (H) is relatively short in this compound, the protons were repolarized every 8 sec and only 25 I-S contacts were made per polarization. Thus $G \approx 10^3$, but this still represents a substantial saving in time by comparison with conventional Fourier techniques [3].

A line width of ≈ 150 Hz arises primarily from dipolar coupling with ¹⁴N in the (solid) sample: this could be reduced by further decoupling at the ¹⁴N frequency or by sample rotation about the magic axis [5]. The latter would also destroy information concerning the anisotropy of the chemical shift.

The spectrum of fig. 1a shows no such anisotropy anyway, the site symmetry being very high. A more typical situation is that of the nitrate ion in NH₄NO₃ (fig. 1b). This spectrum was obtained from an isotopically enriched (30%) powder sample at room temperature, where the crystal structure is orthorhombic with C_{2v} site symmetry at the nitrate nitrogen [6], one N-O bond being 0.02 Å shorter than the other two. Note that the chemical shielding tensor displays a perceptible departure from axial symmetry, betraying a distortion of the local distribution away from the D_{3h} symmetry which would be exhibited by a free NO₃ ion.

Measurements of chemical shielding anisotropies could be of great value to the study of proteins, nucleic

80

^{*} Supported in part by the National Institutes of Health and in part by the National Science Foundation.

Fig. 1. Proton-enhanced nuclear induction spectra of ¹⁵N obtained at room temperature, $H_0 = 22.8$ kG. (a) The result of a 10-min accumulation on natural abundance (NH₄)₂SO₄. (b) Chemical shielding anisotropy powder pattern of the nitrate ion in NH₄NO₃. The spectrum was obtained from a 30% enriched sample; the single line due to NH₄⁺ at 352 ppm is not shown. Principal elements of the chemical shift tensor, referenced to NO₃ in 5MnH₄NO₃-2MnHO₃ aqueous solution, are -83, -57 and +140 ppm.

acids, and other substances of biological importance. A preliminary measurement of glycine shows, interestingly enough, that the ¹⁵N shift has no detectable anisotropy, and that within our experimental resolution its shift is identical to that of NH_4^+ in $(NH_4)_2SO_4$ and NH_4NO_3 .

References

 T. Saluvere and E. Lippmaa, Chem. Phys. Letters 7 (1970) 545;

E. Lippmaa, T. Saluvere and S. Laisaar, Chem. Phys. Letters 11 (1971) 120.

- [2] W. Bremser, J.I. Kroschwitz and J.D. Roberts, J. Am. Chem. Soc. 87 (1965) 4087, and references therein; J.A. Happe and M. Morales, J. Am. Chem. Soc. 88 (1966) 2077; M. Alei Jr., A.E. Florin and W.M. Litchman, J. Phys. Chem. 75 (1971) 1758; T. Axenrod and M.J. Weider, J. Am. Chem. Soc. 94 (1971) 3541.
 [3] J.M. Briggs, L.F. Farnell and E.W. Randall, J. Chem. Soc.
- D (1971) 680;
 P.S. Pregosin, E.W. Randall and A.I. White, J. Chem. Soc. D (1971) 1602;
 R.L. Lichter and J.D. Roberts, J. Am. Chem. Soc. 94 (1972) 2495;
 P.S. Pregosin, E.W. Randall and A.I. White, J. Chem. Soc. 1 (1972) 513.
- [4] A. Pines, M.G. Gibby and J.S. Waugh, J. Chem. Phys. 56 (1972) 1776; Chem. Phys. Letters 15 (1972) 373;
 M.G. Gibby, A. Pines and J.S. Waugh, J. Am. Chem. Soc., to be published.
- [5] E.R. Andrew, Progress in nuclear magnetic resonance, Vol. 8, Part 1 (Pergamon, London, 1971);
 J. Schaffer, S.H. Chin and S.I. Weissman, private communication.
- [6] R.W.G. Wyckoff, Crystal structures, Vol. 2 (Interscience, New York, 1960), ch. 7a, p. 371;
 M.T. Riggin, R.R. Knispel and M.M. Pintar, J. Chem. Phys. 56 (1972) 2911.