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A nuclear magnetic resonance method is presented which produces linear, isotropic proton-detected
local-field spectra forINS spin systems in powdered samples. The method, heteronuclear isotropic
evolution sHETIEd, refocuses the anisotropic portion of the heteronuclear dipolar coupling
frequencies by evolving the system under a series of specially designed Hamiltonians and evolution
pathways. The theory behind HETIE is presented along with experimental studies conducted on a
powdered sample of ferrocene, demonstrating the methodology outlined in this paper. Applications
of HETIE for use in structure determination in the solid state are discussed. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1844296g

I. INTRODUCTION

The determination of the molecular structure is central to
our understanding of complex chemical systems. During the
past century, structural techniques such as X-ray crystallog-
raphy and more recently liquid state nuclear magnetic reso-
nancesNMRd have tremendously advanced our comprehen-
sion of molecular processes in nature. However, some
systems such as the prion protein,1,2 spider silk,3 amyloid
fibrils,4 and frozen snapshots of protein folding5 are not ame-
nable to liquid state NMR structural studies or X-ray crys-
tallographic techniques. In such systems where these other-
wise robust techniques fall short, solid-state NMR has
become a valuable technique. Solid-state NMR utilizes inter-
actions such as dipole-dipole couplings and/or chemical shift
anisotropysCSAd, which are present in solids and are very
sensitive to molecular structure. In particular, dipole-dipole
couplings, due to their dependence upon the distance be-
tween the interacting spins, have already provided useful
structural constraints for molecules in solids.6

Although there have been many attempts to further de-
velop the use of dipolar couplings for use in structure deter-
mination, the progress of these methods has been impeded
by the Zeeman field-induced angular dependence of the di-
polar frequencies, which hinders the extraction of the desired
distance information from the spectrum. In the presence of a
large Zeeman field, taken to be along theẑ axis, the hetero-
nuclear dipolar Hamiltonian between anI andSspin is given
by

HD
HF = vD

3 cossuLd2 − 1

2
s2IZSZd, s1d

whereuL is the angle that the internuclear vectorrWIS makes
with respect to the Zeeman field. The dipolar coupling con-
stant is given byvD=gIgS/ urWISu3 where gI and gS are the
gyromagnetic ratios of spinI andS, respectively. For a pow-
dered sample, the spectrum consists of a typical Pake pattern
for a pair dipole coupled spinsfFig. 1sAdg since the eigen-
values ofHD

HF depend uponuL. This anisotropic broadening
limits resolution, lowers sensitivity, and complicates spectral
assignments of dipolar couplings in solids. One of the main
objectives of developing a dipolar coupling based structural
technique is to remove the anisotropic nature of observed
couplings.

Since the anisotropy of the dipolar frequencies in a pow-
dered sample is due to the presence of a large Zeeman field,
many methods have been developed which either evolve the
system in zero field7,8 or make the system appear to have
evolved in zero field through the application of some
multiple-pulse sequence.9–12 The zero-field dipolar Hamil-
tonian is given by

HD
ZF = vDfIW ·SW − 3sIW · r̂ ISdsSW · r̂ ISdg

= vD o
m=−2

2

s− 1dmA2,m
IS suIS,fISdT2,−m

IS , s2d

where A2,m
IS suIS,fISd and T2,m

IS are second-rank spatial and
spin tensors, respectively, andsuIS,fISd are polar angles re-
lating the spin quantization axis torWIS. The eigenvalues of
HD

ZF are independent ofuIS andfIS, which, even for a pow-
dered sample, result in three sharp peaksfFig. 1sBdg.

Tycko9–11 demonstrated for a homonuclear spin system
that the dipolar Hamiltonian in high-field can be manipulated
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by a series of rotor-synchronized radiofrequencysRFd pulses
such that the system appears to evolve under an effective
Hamiltonian proportional toHD

ZF over the duration of the
pulse sequence. Although Tycko’s zero field in high field
sZFHFd methodology has only been demonstrated for homo-
nuclear spin systems, it is possible to extend the method to
create an isotropic zero-field Hamiltonian for the hetero-
nuclear case.HD

HF can be rewritten as follows:

HD
HF = vD

3 cos2suLd − 1

2
2IZSZ

=
2

3
vDA2,0

IS suLds3IZSZ − IW ·SW + IW ·SWd

=
2

3
vDA2,0

IS suLdsT2,0
IS + T0,0

IS d

3
2

3
vDF o

l=0,2,4
Csl,0,2,0,2,0dFl,0

+ Cs2,0,2,0,0,0dF2,08 G , s3d

where the CsL ,M , lspace,mspace, lspin,mspind are Clebsch–
Gordon coefficients, andFl,0 are combined spin and space
spherical tensors given by

F0,0=
1
Î5

o
m=−2

2

s− 1dmA2,m
IS suL,fLdT2,−m

IS ,

F2,0=
1

Î14
SA2,1

IS suL,fLdT2,−1
IS + A2,−1

IS suL,fLdT2,1
IS

+ o
m=−2

2

s2umu − 2dA2,m
IS suL,fLdT2,−m

IS D ,

s4d

F4,0=Î 2

35
S−

1

2
fA2,2

IS suL,fLdT2,−2
IS + A2,−2

IS suL,fLdT2,2
IS g

+ o
m=−2

2

s3 − umudA2,m
IS suL,fLdT2,−m

IS D ,

F2,08 = A2,0
IS suL,fLdT0,0

IS .

The scalar termF0,0 is rotationally invariant to any combined
rotation of space and spin and hence is proportional to the
zero-field HamiltonianHD

ZF in Eq. s3d. If a pulse sequence is
implemented which removes all the second and fourth rank
tensors in the combined space of spin and space fromHD

HF,
then the zero-field Hamiltonian is obtained with a maximum
scaling factor given bysMAX =2/15. The resulting spectrum
obtained would consist of three sharp peaks at frequencies
0 Hz and ±3vD / s20pd Hz. For an INS spin system, the
homonuclear couplings between theI spins can in principle
be removed without removing the heteronuclear interactions
since theI and S spins can be independently manipulated
under high-field conditions.

Even though the anisotropy has been removed leading to
sharp spectral features, the spectrum under the zero-field
Hamiltonian fEq. s3dg for an INS system can still be quite
difficult to interpret. Consider the scenario of anI2S system
where the dipole-dipole coupling between theI spins has
been removed, and, through some method, the zero-field di-
polar Hamiltonian between theI and S spins has been cre-
ated. The resulting zero-field Hamiltonian is given by

HD
ZF = o

m=−2

2

fvD
S1s− 1dmT2,m

S1 A2,−m
S1 suS1,fS1d

+ vD
S2s− 1dmT2,m

S2 A2,−m
S2 suS2,fS2dg

= vD
S1s3SZIZ

1 − SW · IW1d + vD
S2s3SZIZ

2 − SW · IW2d

= HD,S1
ZF + HD,S2

ZF , s5d

where a collinear geometry has been chosen for the
I2S system. The spectra corresponding to evolution of
the total magnetization of the I spins,
1/3o j=X,Y,ZTracefI j expsitHD

ZFdI j exps−itHD
ZFdg are shown in

Figs. 2sAd and 2sCd for two different sets of dipolar cou-
plings. The signals contain features that are not simply re-
lated to the couplings. This is due to the fact that typically

FIG. 1. Simulated spectra for a heteronuclear dipole coupled spin system
under sAd high-field andsBd zero-field conditions. A dipolar coupling of
vD / s2pd=2000 Hz was used.sAd Pake pattern for a heteronuclear spin
system, where the distribution in frequencies is due to the anisotropy ofHD

HF

in Eq. s1d. sBd The zero-field spectrum consists of three sharp lines at fre-
quencies at 0 Hz and ±3000 Hz.
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the zero-field couplings do not commute with one another,
i.e., fHD,S1

ZF ,HD,S2
ZF gÞ0. The corresponding spectra therefore

contain features which are not linear in the number of spins,
making interpretation difficult. This is in contrast to standard
proton-detected local-fieldsPDLFd spectroscopy as shown in
Figs. 2sBd and 2sDd. Here the high-field HamiltonianfEq.
s1dg was used for one crystallite orientationsuL=0°d. In the
absence of homonuclear dipolar couplings, the resulting
spectra are linear in the number of spins, with the splitting of
each doublet equal to the effective heteronuclear coupling. In
most PDLF experiments, the protons are decoupled from one
another and evolve under the heteronuclear coupling to an-
other nucleus, typically a13C. Most PDLF experiments have
been implemented in oriented phases where nonzero, mo-
tionally averaged dipolar couplings exist. This results inN
sharp doubletssfrom N protonsd where the motionally aver-
aged heteronuclear dipolar couplings can be interpreted quite
readily.13,14 Applications of PDLF spectroscopy to solids
have also been performed; however, the resulting spectra
consist ofN overlapping Pake patterns, due to the anisotropy
in Eq. s1d, which are difficult to interpret.15,16

Recently an alternative method was proposed, called
homonuclear isotropic evolutionsHOMIEd, which produces
isotropic dipolar spectra for pairs of homonuclear coupled
spin systems.17 The HOMIE method works as follows: from
Eq. s1d the observed dipolar frequencies are proportional to
vDs3 cos2sud−1d. If another Hamiltonian is generated with
frequencies proportional tovD sin2sud, the anisotropic con-
tribution to the combined signal is cancelled using the rela-
tion sin2sud+cos2sud=1. Unlike the ZFHF method, only the
frequencies are combined in order to remove the anisotropy.

If the HOMIE methodology is applied to anINS system un-
der homonuclear decoupling, an isotropic proton-detected
local-field spectrum, such as those shown in Figs. 2sBd and
2sDd, should be obtainable in powdered samples.

In the following paper, the HOMIE methodology is ap-
plied to heteronuclear spin systems in order to produce iso-
tropic dipolar spectra. The method, called heteronuclear iso-
tropic evolutionsHETIEd, produces isotropic proton-detected
local-field spectra. For anINS spin system, HETIE generates
N doublets with splittings proportional to the heteronuclear
coupling. The basic theory for HETIE is first presented, fol-
lowed by a set of multiple-pulse sequences which can be
used to implement the HETIE method. Finally, the HETIE
method is applied to a sample of ferrocene in order to ex-
perimentally validate the method.

II. THEORY

The Hamiltonian for anINSspin system in the solid state
under sample rotation and RF radiation is given by

Hsys= HIIstd + HISstd + HIstd + HSstd + HRF
I std + HRF

S std, s6d

whereHIIstd andHISstd are the homonuclear dipolar and het-
eronuclear isotropic scalar and dipolar couplings.HIstd and
HSstd are the chemical shift and CSA Hamiltonians for theI
andS spins, respectively, andHRF

I std andHRF
S std are the RF

Hamiltonians applied to theI andS spins, respectively. The
explicit forms of the various Hamiltonians are given by

HIIstd = o
i, j

vD
ij fui jstdgs3IZ

i IZ
j − IWi · IWjd, s7d

HISstd = o
j

s2vD
j fu jSstdg + JjdIZ

j SZ, s8d

HIsSdstd = o
j

V j
IsSdfu jstd,f jstdgIZ

j sSZd, s9d

HRF
IsSdstd = vRF

IsSdstd†IXsSXdcosffRF
IsSdstdg + IYsSYdsinffRF

IsSdstdg‡,

s10d

where ustd and fstd in Eqs. s7d–s10d are the angles which
relate the principal axis system of the various interactions in
Hsys to the laboratory frame defined by the Zeeman axis. The
angles,ustd and fstd, are shown to be time dependent in
order to take into account the possibility of mechanical rota-
tion of the sample. Under mechanical rotation at a frequency
vr about an axis which makes an angle ofur with respect to
the Zeeman field, the spatial factors inHsys, vIntfustd ,fstdg,
transform as

vIntfustd,fstdg = o
m=−2

2

dm,0
2 surdexps− imvrtd

3vInt
m surot.fr,frot.frd, s11d

where dm,0
2 surd is the reduced Wigner-rotation matrix ele-

ment, andvInt
m surot.fr ,frot.frd represents the spatial part ofHInt

in the rotor frame. For example, the explicit form of either
vD

ij fui jstdg or vD
j fu jSstdg is

FIG. 2. Comparison of zero-field proton-detected local-field spectroscopy
with high-field proton-detected local-field spectroscopy for two sets of cou-
plings. InsAd andsBd, vD

S1/ s2pd=300 Hz andvD
S1/ s2pd=700 Hz insCd and

sDd. vD
S2/ s2pd=1000 Hz in all cases. The zero-field HamiltonianfEq. s5dg

was used insAd and sCd, and the spectra corresponding to the evolution of
the total I magnetization. InsBd and sDd, a high-field Hamiltonian,H
=2vD

1−2IZ
1IZ

2+2vD
1−3IZ

1IZ
3, for a single crystallite orientationsuL=0°d was used

to calculate the evolution of transverse magnetization of theI spins.
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vDsustdd = vD
3 cos2sustdd − 1

2

= 1
4f3 cos2surot.frd − 1gf3 cos2surd − 1g

+ 3
4 sin2surot.frdsin2surdsinf2svrt + frot.frdg

+ 3
4 sins2urot.frdsins2urdsinsvrt + frot.frd. s12d

As can be seen from Eq.s12d, vDfustdg will contain terms
proportional both to sin2surot.frd and cos2surot.frd. In the fol-
lowing, the subscriptsrot.fr will be dropped, and all angles,u
andf, will be written in the rotor frame.

The basic ideas behind HETIE follow from the HOMIE
method.17 As in the HOMIE experiments, rotor-synchronized
multiple-pulse sequences are used in order to create certain
average Hamiltonians18,19 which will act sequentially on the
system in order to obtain isotropic dipolar spectra. The nec-
essary Hamiltonians used in HETIE aresup to an overall
constantd

H = o
j
SkvD

j 3 cos2su jSd − 1

2
+

Jj

2
k8DIX

j 2SZ, s13d

HEVO = o
j

gvD
j sin2su jSdfexpsi2f jSdI+

j + exps− i2f jSdI−
j g2SZ,

s14d

H±1
DET = o

j

fvD
j sins2u jSdfexps±if jSdI+

j + exps7 if jSdI−
j g2SZ.

s15d

The pulse sequences which generateH, HEVO, andH±1
DET are

given in the following section. Since the heteronuclear cou-
plings between theI spins commute, and the homonuclear
interactions between theI spins are assumed to have been
removed, the evolution for eachI spin can be calculated
independently from one another.

Starting withrs0d=o jajIZ
j , evolution underH for a time

t gives

rstd = exps− itHdrs0dexpsitHd

= o
j

aj†IZ
j cosfksu jSdtg − 2SZIY

j sinfksu jSdtg‡

= r0std + r1std, s16d

where

r0 = o
j

ajIZ
j cosfksu jSdtg, s17d

r1 = − 2o
j

ajSZIY
j sinfksu jSdtg, s18d

where ksu jSd=kvD
j f3 cos2su jSd−1g /2+Jjk8 /2. The coher-

ences inrstd, r0, andr1, can be distinguished by their rota-
tional property under az rotation; therefore, the signal origi-
nating from each term will be considered separately, which is
depicted in Fig. 3. Evolution for a timet underHEVO gives
the following:

r0st,td = exps− itHEVOdr0stdexpsitHEVOd

= o
j

ajIZ
j cosfksu jSdtgcosf2gsu jSdtg

− 2ajSZIY
j cosfksu jSdtgsinf2gsu jSdtgcoss2f jSd

− 2ajSZIX
j cosfksu jSdtgsinf2gsu jSdtgsins2f jSd,

s19d

r1st,td = exps− itHEVOdr1stdexpsitHEVOd

= o
j

− aj2SZIY
j sinfksu jSdtg†cos2fgsu jSdtg

− sin2fgsu jSdtgcoss4f jSd‡

+ aj2SZIX
j sinfksu jSdtgsin2fgsu jSdtgsins4f jSd

− ajIZ
j sinfksu jSdgsinf2gsu jSdtgcoss2f jSd, s20d

wheregsu jSd=gvD
j sin2su jSd. After application ofHEVO, the

terms proportional toI± are removed by phase cycling, leav-
ing only thez components of the density matrix. As before,
the z magnetization at the end ofHEVO is given by

kIZst,tdl0 = Trfr0st,tdIZg = o
j

aj cosfksu jSdtgcosf2gsu jSdtg,

s21d

kIZst,tdl1 = Trfr1st,tdIZg

= o
j

aj sinfksu jSdtgsinf2gsu jSdtgcoss2f jSd. s22d

If the f jS dependence of Eq.s22d were absent,
Eqs. s21d and s22d could be added or subtracted to
give cosfksu jSdtgcosf2gsu jSdtg±sinfksu jSdtgsinf2gsu jSdtg
=cosfksu jSdt72gsu jSdtg, where the anisotropicu jS depen-
dence could be removed if

FIG. 3. The basic procedure in order to obtain isotropic proton-detected
local-field spectra. An initial density matrix,rs0d=o jajIZ

j evolves underH
fEq. s13dg to give az magnetizationsZd term,sr0d, and single-quantumsSQd
term,sr1d. Both of these terms then evolve underHEVO fEq. s14dg, and only
the z components are kept. Next, evolution occurs fromr0st ,td andr1st ,td
under H1

DET fEq. s15dg into SQ coherence. The SQ coherences are then
converted back intoz magnetization for detection, using eitherH1

DET for the
pathway originating fromr0 or H−1

DET for the pathway originating fromr1.
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3
2kt = 7 2gt. s23d

Thef jS dependence in Eq.s22d can be removed by evo-
lution under the Hamiltonians,H±1

DET given in Eq.s15d. The
pathway originating fromr0 evolves for a timetDET under
H1

DET. Next a filter is applied that only allows single-quantum
coherences through as shown in Fig. 3. FinallyH1

DET is ap-
plied again for a timetDET, the z component of magnetiza-
tion is measured to give the corresponding signal of

S0 = TrfIZr0st,t,tDETdg

= − o
j

aj cosfksu jSdtgcosf2gsu jSdtgsin2f2fsu jSdtDETg,

s24d

where fsu jSd= fvD
j sins2u jSd. Along the pathway originating

from r1, the system first evolves for a timetDET underH1
DET.

Again a filter is applied that only allows single-quantum co-
herences through as shown in Fig. 3. Finally,H−1

DET sinstead
of H1

DETd is applied for a timetDET, and thez component of
magnetization is measured to give

S1 = TrfIZr1st,t,tDETdg

= o
j

aj sinfksu jSdtgsinf2gsu jSdtgsin2f2fsu jSdtDETg

3cos2s2f jSd. s25d

The requirement of applyingH−1
DET instead ofH1

DET for the
pathway originating fromr1 is to generate an additional
coss2f jSd factor as shown in Eq.s25d. Assuming thef jS

angles are uniformly distributed over the intervalf0,2pg for
eachu jS, the powder average overf jS generates a factor of
1/2 for Eq. s25d and a factor of 1 for Eq.s24d. The
f jS-averaged signals from Eqs.s24d and s25d can then be
combined as follows:

1

6p
E

0

2p

dfsS0 ± 2S1d = − o
j

ajCjstDETd

3†cosfksu jSdt ± 2gsu jSdtg‡. s26d

Equations26d requires only one of the solutions to Eq.s23d
to be satisfied, thus completely removing the anisotropic por-
tion of the signal. The corresponding signal intensities for
spin j , ajCjstDETd, are given by

ajCjstDETd

=
aj

3 F1

2
E

0

p

du jS sinsu jSdsin2f2fvD
j sins2u jSdtDETgG

=
aj

6F1 + o
n=−`

`
J2nsZjd

16n2 − 1G , s27d

whereZj =4fvD
j tDET, andJ2n are spherical Bessel functions.

The signal intensity is a maximum whenZj <3.8 with C
<0.24aj, andC→aj /6 asZj →`.

III. PULSE SEQUENCES

There exist two additional challenges in implementing
the requisite Hamiltonians for the HETIE experiments over
that of the HOMIE experiments. First of all, the homonuclear
dipole-dipole interactions between theI spins sand theS
spins if there is more than one presentd must be removed,
since the above theory deals only with a set of noninteracting
I spins coupled to a singleS spin. The second requirement is
that the CSA of theI spins must also be removed. Since the
heteronuclear dipolar coupling and the CSA of theI spins
both have second-rank spatial components and are linear in
the spin operatorIZ, they can only be separately manipulated
by also applying pulses on theS spin.

Although there exist numerous ways to produce the nec-
essary Hamiltonians for the HETIE method, one set of rotor-
synchronized pulse sequences is shown in Fig. 4. These se-
quences represents a hybrid of theRNn

n sequences20 with the
CNn

n sequences.21 The details of the sequences are given in
Appendix A. The zeroth-order average Hamiltonians18 for
the sequences shown in Fig. 4 areH fFig. 4sAdg, HEVO fFig.
4sBdg, H+1

DET fFig. 4sCdg, and H−1
DET fFig. 4sDdg. It is worth

pointing out that thep-pulse applied to theS spin is neces-
sary in order to retain the heteronuclear coupling but to re-
move the CSA and chemical shift of theI spins.

For the case whenvRF
I =s15/2dvr, the zeroth-order av-

erage Hamiltonian for the sequence shown in Fig. 4sAd is
given byH fEq. s13dg, with k andk8 given by

FIG. 4. Basic pulse sequences used to createH, HEVO, H±1
DET needed for

HETIE. sAd The pulse sequence which creates HfEq. s13dg to lowest order
and the corresponding propagatorUstd. vRF=s15/2dvr, and the total time
step for propagatorUstd is t=8p /vr. sBd The pulse sequence which creates
HEVO fEq. s14dg to lowest order and the corresponding propagatorUEVOstd
with vRF=s27/4dvr andt=8p /vr. sCd andsDd are the pulse sequences and
corresponding propagators forH1

DET andH−1
DET fEq. s15dg, respectively, with

vRF=s15/2dvr. The shadedI pulses represent underlying Y phasesp /2d
while clearI pulses haveX s0d phase.
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k8 =
4

3p

k =
4

3p

3 cos2surd − 1

2

=k̄
3 cos2surd − 1

2
. s28d

For vRF
EVO=s27/4dvr, the sequence shown in Fig. 4sBd gen-

erates a zeroth-order Hamiltonian given byHEVO fEq. s14dg,
with g given by

g = cosSp

4
−

p

2
zEVODcosspzEVOd

sin2surd
2pf4zEVO

2 − 1g

=ḡ sin2surd, s29d

wherezEVO=vr /vRF
EVO.

Finally, for vRF
DET=s15/2dvr, the sequences shown in

Figs. 4sCd and 4sDd, produce zeroth-order Hamiltonians
given, respectively, byH1

DET and H−1
DET fEq. s15dg, with f

given by

f =

cosSp

4
Dsins2urdcosSp

4
−

p

4
zDETDcosSp

2
zDETD

pfzDET
2 − 1g

= f̄ sins2urd, s30d

wherezDET=vr /vRF
DET. Note that in order to create the samef̄

dependence in bothH−1
DET as inH1

DET, the order of the com-
posite 180° pulses had to be switched, as shown in Fig. 4sDd.

To simplify the experiment, a solution can be found for a
single rotor axis. Under this condition, the evolution must
satisfy

U vD

t + t
Sk̄t

f3 cos2surd − 1g
2

f3 cos2sud − 1g
2

± 2ḡt sin2surdsin2sudDU = U kvDt

st + td
U = svD. s31d

When ur Þ0°, t and t must both be a multiple of the
rotor period. In addition,H±1

DET must be nonzero at the given
rotor axis, which means solutions near 90° and 0° must be
discarded due to the sins2urd dependence in Eq.s30d. From
Eq. s31d, the rotor angleur that the sample must be spun at in
order to remove the anisotropy is given by

ur = arccosSÎ3k̄t ± 8ḡt

9k̄t ± 8ḡt
D . s32d

IV. EXPERIMENT

An experimental implementation of HETIE was tested
on a natural abundance sample of ferrocenefFesC5H5d2g
which was doped with 2% by weight cobaltocene
fCosC5H5d2g in order to shorten theT1 relaxation time of the
ferrocene protons from,60 s to 1 s. The sample was pre-
pared by melting the two compounds together, and the result-
ing mixture was ground to a powder and packed into a 4 mm

MAS rotor. The experiment was performed at a1H resonance
frequency of 300.986 MHz, exactly on resonance for the
protons of ferrocene. A rotor angle ofur =73.9° was selected
using the “1” solution to Eq.s32d and t=t for use with the
sequences shown in Fig. 4. The angle was set externally to
73.9° ±0.2° with the use of a protractor and a long rod which
was exactly coaxial with the spinning axis. The “one-pulse”
1H spectrum obtained under the conditions of the HETIE
experiment is shown in Fig. 5. The1H linewidth is 5.6 kHz
and is clearly not isotropic due to the1H–1H dipolar cou-
plings and the1H CSA which are only scaled when spinning
at 15 kHz atur =73.9°.

The full experiment required to generate the signals from
the various pathways depicted in Fig. 3 is shown in Fig. 6. A
total of 12 separate scans is necessary to generate a point in
the indirect dimension. The sum of experimentsX1, X2, Y1,
andY2 gives the signal,S0 fEq. s24dg, which results from the
pathway originating fromr0 in Fig. 3. Summing experiments
X3, X4, Y3, andY4 gives the signal,S1 fEq. s25dg, which
results from the pathway originating fromr1 in Fig. 3. Note
that experimentsX3, X4, Y3, andY4 have to be repeated
twice in order that the total signal,S=X1+X2+Y1+Y2
+2* sX3+Y3+Y4+X4d, is isotropicfEq. s26dg.

The spectrometer used in these experiments was an
infinity-plus spectrometersVarian Inc., Palo Alto, CAd. A
Chemagneticssnow Varian, Inc., Palo Alto, CAd 4 mm
Apex-HX MAS probe was used. The RF amplitudes for the
sequence were calibrated by finding the maximum intensity
of the requiredp /2-pulse on proton. Thep-pulse on13C was
calibrated using cross polarization and observing where the
cross-polarized signal’s phase was inverted after the applica-
tion of a fixedp-pulse. The pulse sequence was rotor syn-
chronized by controlling the spinning speed atvr / s2pd
=15 kHz±3 Hz.

One of the difficulties with implementing the HETIE
sequence was keeping the requirements of RF and rotor syn-
chronization within experimental limitations. The specific

FIG. 5. 300.986 MHz one-pulse1H solid-state NMR spectrum of FeCp2

spinning 15 kHz atur =73.9° showing the normally broad, featureless nature
of the 1H signal without the application of the HETIE method.
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experimental limitations that had to be dealt with were the
fact that the probe could only spin the sample up to 20 kHz,
and the maximum achievable RF power wasvRF/ s2pd
=150 kHz. In the experiments used in the HETIE sequence,
the spinning speed usually set the ceiling for the maximum
RF power used in the experiment. Although a RF power of
150 kHz could be produced, the RF pulse quality diminished
with increasing RF power. For this reason, better perfor-
mance was often achieved at RF powers of,100 kHz,
which was the RF used in the HETIE experiments below.

V. RESULTS AND DISCUSSION

The sequences shown in Fig. 4 fort=t yields a scaling
factor ofs=0.0817fEq. s31dg. Although ferrocene is an ideal
sample due to the scaled dipolar couplings and high molecu-
lar symmetry, there exist more than 30 different structures in
the Cambridge Structure Database with C–H bond lengths
varying in the range of 0.99 to 1.1 Å. We have restricted our
analysis of the bond lengths to more modern neutron diffrac-
tion studies where the method has a better chance of detect-
ing the proton positions. In an attempt to predict the expected
values for the observed scaled couplings, the bond lengths
were taken from the neutron structure with the best experi-
mental parameters.22 In these studies, the complex Cp mo-
tions were taken into account in the diffraction analysis. This
analysis gave a variable interpretation of the carbon-proton
internuclear distancessstandard deviation=0.02 Åd for room
temperature samples of ferrocene. We used the structure
found in the Cambridge Structure DatabasesCSD ref.
#FEROCE29d which reports C–H distances of 1.04, 2.18,
and 3.28 Å within the Cp ring. In addition to the work by
Brock and Fu,22 there has been much discussion on the

proper interpretation of the ferrocene diffraction data,23 and
we hope that NMR might be able to provide some additional
insight.

The only C–H couplings considered are those located
within the Cp ring of the ferrocene, since the other protons
are much farther away with couplings reduced by the fast
motion of the Cp ring. The ring motion also affects the ob-
servable couplings since the motional time scale is much
greater than that of the coupling strengths; the molecular
motion scales the observed couplings by a factorP2fcossudg,
whereu is the angle between the C–H vector and the axis of
fast motion. For the case of rotation about the Cp axis, the
observed couplings are scaled byP2fcoss90°dg=−1/2.

It is important to consider the uncertainties in the C–H
distance when comparing the theoretical and experimental
dipolar coupling results. Using the neutron diffraction data22

and the associated standard deviation from the different
analyses of the same diffraction data, we expect the unique
observed dipolar couplings of room temperature ferrocene
between a single13C on the ring and the protons as scaled by
the HETIE experiment to be 1026±232, 111.5±12,
33±2.4 Hz. The error in these scaled couplings may seem
quite large; however, the 1/r3 dependence of the coupling
amplifies errors at small distances.

These scaled coupling values are determined from the
ideal scaling factor,s=0.0817, which lacks any inclusion of
interactions or higher-order terms in the average Hamiltonian
which might degrade the performance of the sequence in
addition to possible pulse and phase errors. Exact numerical
simulations were performed on a three spin,I2S system,
where only the two closest protons to the13C in the Cp ring
were considered. The simulations shown in Fig. 7 were per-
formed with a weak homonuclear interactionsAd without
and sBd with a proton CSA. As is shown in Fig. 7sAd, the
peaks are isotropic and at the correct frequenciessas deter-
mined from the scaling factor,s=0.0817d. It should be noted
that since the spectral range is determined by the spinning
speed divided by the number of evolution units per dwell
s15/8 kHzd, the largest C–H coupling is actually under
sampled and is effectively folded in from the edges of the
spectrum. This is an unfortunate artifact; however, it is nec-
essary given our maximum RF restrictions and spinning
speeds. Smaller couplings, which are expected to be of great-
est interest for structure determinations, will typically be
within the spectral window given by the current experimen-
tal constraints.

Figure 7sBd shows the results of a simulation on a more
realistic sample with nonzero Euler angles relating the axes
of the interactions, as well as a 5 kHz CSA on each of the
protons. Figure 7sBd indicates that the weaker coupling
peaks are virtually unaffected while the larger coupling
peaks have some additional broadening which we attribute to
a higher-order cross term in the average Hamiltonian be-
tween the CSA and the heteronuclear dipolar coupling, since
the underlying heteronuclear dipolar coupling is significantly
larger. The CSA values used in Fig. 7sBd are in excess of
what has previously been seen for the CSA of protons in
ferrocene24 with a Dss=si−s'd of −6.5±0.1 ppm. In addi-
tion, further numerical simulations using typical values for

FIG. 6. Actual experiments performed for the demonstration of HETIE
methodology to obtain isotropic proton-detected local-field spectra. The
pulse sequence, along with the corresponding phase cycle, is presented.
Definitions of U, UEVO, and U±1

DET are given in Fig. 4, which include the
series of 180° pulses which are not explicitly shown in this figure. The
points in t1 are parametrized by 2n+m, n=h0,1,2, . . .j and m=1 for odd
numbered points andm=0 for even numbered points. For the above experi-
ment, t=t=s2n+md316p /vr. The first four experiments correspond to
evolution alongr0 in Fig. 3. The last four experiments correspond to evo-
lution alongr1 in Fig. 3. The last four experiments have to be performed
twice as required from Eq.s26d. This sequence is similar to that used in the
HOMIE methodsRef. 31d.
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heteronuclear scalar J couplings showed that the signal is not
sensitive to J couplings, even with the inclusion of the CSA.

Finally, Fig. 8 shows a comparison betweensAd an ideal
simulation andsBd the actual experimental signal. The first
thing to note is that the spectrum of Fig. 8sBd is a power
spectrumsufsvdu2d which is necessary to facilitate the com-
parison with the simulation, since the signal to noise was
quite low. Second, there appears to be a large zero peak in
the experimental spectrum which has been truncated so that
the peaks of interest are more clearly displayed. The origin
of this peak is somewhat uncertain; however, we suspect that
it is related to either residual couplings to more distant pro-
tons or the signal decay caused by the accumulation of pulse
and phase errors, but this requires further investigation.

The largest coupling peaks in the experimental spectrum

appear to be close to the correct frequenciessminus the spec-
tral foldingd at 1090±10 Hz, which corresponds to a bond
distance of 1.019±0.003 Å. The next largest coupling peaks
occur at 147±10 Hz, which corresponds to a distance of
1.99±0.041 Å, which is different from the neutron diffrac-
tion distance of 2.18 Å as shown in Fig. 8. The smallest C–H
coupling peak cannot be observed unless the large zero peak
is subtracted, which is shown in Fig. 9. The peaks roughly
occur at 31.5±15 Hz, which corresponds to a distance of
3.52±0.60 Å, which is within the range of the neutron dif-
fraction distance of 3.28 Å.

The HETIE method can provide a valuable complement
to existing methods in solid-state structure determination.
Consider determining the structure of anI3S system as
shown in Fig. 10. The HETIE method provides information
about the heteronuclear bond distances in a powdered sample
sD1S, D2S, andD3S in Fig. 10d. If either the angles between
the various heteronuclear dipolar vectors could be deter-
mined su12,u23,u13d or the homonuclear distances
sD12,D13,D23d then the structure of the system would be
determined. Determining all the homonuclear distances for
an abundant spin species such as1H is problematic in solids,
since extracting the dipolar couplings becomes almost im-

FIG. 7. Simulation of the performance of the HETIE pulse sequencesFig. 6d
using theSIMPSONprogramsRef. 32d. The heteronuclear dipolar couplings of
vD

12/ s2pd=13.425 kHz andvD
13/ s2pd=1.458 kHz were used in both simu-

lations, and a homonuclear dipolar coupling ofvD
23/ s2pd=1 kHz was used.

sAd Ideal CH2 spin system in the absence of CSA.sBd Nonideal spin system
with the CSA of 5 kHz for each proton.

FIG. 8. HETIE experiment and simulation comparison for FeCp2. sAd The
simulation uses the couplings as determined from diffraction studiessRef.
22d. sBd The experimental power spectrum was acquired at 300 MHz.ur

=73.9° andvr / s2pd=15 kHz.
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possible due to the increasing spectral complexity with in-
creasing number ofI spins. However, there exists a variety of
methods which in principle could provide the angles between
the heteronuclear dipolar vectors by performing either
dipole-dipole correlation experiments or dipole-CSA
correlations.25–27 In addition, coupling the HETIE method
with dynamic angle spinning techniques28 not only improves
the scaling factors of the HETIE experiment, but also cor-
relations between the isotropic heteronuclear couplings and
the isotropic chemical shifts could be obtainedsAppendix

Bd. In the future, application of HETIE along with these
correlation techniques may help to solve structural problems
in the solid state which are not amenable to current method-
ologies.

VI. CONCLUSIONS

A methodology, heteronuclear isotropic evolution
sHETIEd, was presented which produces isotropic proton-
detected local-field spectra of powdered samples. HETIE
works by removing the anisotropic portion of the hetero-
nuclear dipolar coupling frequency by having the system
evolve under carefully designed Hamiltonians and evolution
pathways. In this paper, HETIE was shown both theoretically
and experimentally to produce linear, isotropic, proton-
detected local-field spectra. The heteronuclear coupling val-
ues as determined by the HETIE experiment on a ferrocene
sample actually agree quite well with the “known structure,”
given the uncertainties in the interpretation of ferrocene dif-
fraction studies. Thus far we have made only a single study,
but with additional refinement of the HETIE sequence, we
anticipate this method may yield valuable structural insight
into many solid-state systems.
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APPENDIX A: PULSE SEQUENCE DETAILS

The Hamiltonian for anINS under mechanical rotation
and RF irradiation is given by

Hsys= HIIstd + HISstd + HIstd + HSstd + HRF
I std

=HINTstd + HRF
I std, sA1d

where the equations and forms for the various terms inHsys

are given in Eqs.s7d–s10d. The basic Hamiltonians needed
for the HETIE method require finding a particularHRF

I std
such that the spin system appears to evolve, in some aver-
aged sense, underH fEq. s13dg, HEVO fEq. s14dg, andH±

DET

fEq. s15dg. Transforming into an interaction frame defined by
HRF

I std, the propagatorUst1,t0d can be written as

Ust1,t0d = T expS− iE
t0

t1

dt8Hsysst8dD
=Vst1,t0dT expS− iE

t0

t1

dt8ĤINTst8dD , sA2d

whereT is the Dyson time ordering operator and

FIG. 9. HETIE experiment and simulation comparison for FeCp2. sAd The
simulation is the same as in Fig. 8.sBd The zero-peaksubtractedexperi-
mental power spectrum was acquired at 300 MHz.ur =73.9° andvr / s2pd
=15 kHz.

FIG. 10. An I3S system. HETIE, in principle, can determineD1S, D2S, and
D3S. In order to fully determine the structure, either the relative anglessu12,
u13, andu23d or the homonuclear distancessD12, D13, andD23d need to be
determined.
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Vst1,t0d = T expS− iE
t0

t1

dt8HRF
I st8dD , sA3d

ĤINTstd = V†st,t0dfHIIstd + HISstd + HIstd + HSstdgVst,t0d.

sA4d

For short enough times, the propagator in Eq.sA2d can be
approximated as

Ust1,t0d = Vst1,t0dexps− itH̄d, sA5d

wheret= t1− t0, andH̄ is the average Hamiltonian18 over the

time intervalt. H̄ is given by

H̄ = o
n=0

`

H̄snd, sA6d

whereH̄snd is thenth order average Hamiltonian. The zeroth-

sH̄s0dd and first-ordersH̄s1dd average Hamiltonians are explic-
itly given by

H̄s0d =
1

t
E

t0

t1

dt8ĤINTst8d, sA7d

H̄s1d = −
i

2t
E

t0

t1E
t0

t8
dt8dt9fĤINTst8d,ĤINTst9dg, sA8d

In the following, the aim will be to create zeroth-order aver-

age HamiltoniansH̄s0d which are equal toH, HEVO, and
H±1

DET.
The set of pulse sequences that were used to createH,

HEVO, and H±1
DET while removing both the CSA and homo-

nuclear dipolar interactions are shown in Fig. 4. Each of
these pulse sequences are composed of small blocks given by

fsp/2dX − sp/2dY − sp/2dXgffsp/2dY − sp/2dX − sp/2dYgf1
.

sA9d

The sequence in Eq.sA9d has the advantage of being able to
remove the homonuclear dipolar coupling between theI
spins.29 The propagator for the block in Eq.sA9d can be
approximated by

Ustd < exps− 2iff1 − fgIZdexps− itcycH̄
s0dd, sA10d

where tcyc=f3p / svRFdg is the total time for the block of

pulses, andH̄s0d is the zeroth-order average Hamiltonian over

the timetcyc, calculated using Eq.sA7d. H̄s0d can be written as

H̄s0d = o
r

o
n

o
m

o
k=−m

m

o
p=−n

n

bk,p
m,nAm,k

r Tn,p
r , sA11d

whereAm,k
r are spatial tensors of rankm, and Tn,p

r are spin
tensors or rankn in the I spacesi.e., bothIZ andIZSZ are first

rank tensors in theI space, whereas 3IZ
i IZ

j − IWi ·IWj is a second-
rank tensor in theI spaced. The sum overr denotes different

terms in H̄s0d with the same values fork, p, m, and n sfor
example,vCSA

1 A2,0
1 IZ

1 and vD
S1A2,0

S1 IZ
1SZ each havek=0, p=0,

m=2, andn=1d.

The coefficientsbk,±1
2,1 sin front of terms likeI±

j and I±
j SZd

are given by

bk,±1
2,1 = − dk,0

2 surdvk
3/2 exps7 ifdexpS±i

p

4
D

3sexps7 iff − f1gdvk
3 − 1dcosSp

4
7

pkz

4
D

3cosSpkz

2
D 2

3pfskzd2 − 1g
, sA12d

wheredk,0
2 surd is the reduced Wigner matrix element,ur is the

angle that the rotor axis makes with respect to the Zeeman
field, z=vr /vRF, and vk=expfiskzpd /2g. The coefficients
bk,±1

2,2 sin front of terms likeIZ
i I±

j + I±
i IZ

j d are given by

bk,±1
2,2 = 2dk,0

2 surdexps7 ifdvk
3/2 expS7 i

p

4
D

3†vk
3 exps7 iff − f1gd + 1‡

3 cosSp

4
±

pkz

2
DcosSpkz

4
D 1

pf4 − skzd2g
. sA13d

Note that whenvk
3 exps±iff−f1gd=1, bk,±1

2,1 =0 while bk,±1
2,2

Þ0, and whenvk
3 exps±iff−f1gd=−1, bk,±1

2,1 Þ0 while bk,±1
2,2

=0. This is due to the fact that the units
fsp /2dXsp /2dYsp /2dXg and fsp /2dYsp /2dXsp /2dYg act like a
composite 180° pulseswith an additionalZ rotationd. Under
a 180° X pulse, I±→ I7, while IZ

i I±
j + I±

i IZ
j →−sIZ

i I7
j + I7

i IZ
j d,

hence the ability of these sequences to distinguish between
odd and even ranked spin tensors. This is part of the basis for
the RNn

h sequences which have been used extensively in
solid-state NMR.20 Note also thatb0,k

0,1=b0,k
2,1=0 for k=0, ±1,

andb0,0
2,0=0, so that these sequences are also compensated for

isotropic chemical shifts and theT2,0
i j component of the

homonuclear dipolar interaction in the RF interaction frame.
The extraZ rotation of phaseD=2ff1−fg in Eq. sA10d

propagates throughout the sequence by repeatedly applying
the basic unit while the sample is being mechanically ro-
tated. Defining the operator for a rotation of an anglef about
the ẑ axis asPZsfd=expf−ifIZg, the propagator overN ap-
plications of the basic unit is given by

UsNtcyc,0d = Tp
w=1

N

PZsDdexps− itcycH̄w
s0dd, sA14d

whereH̄w
s0d is the zeroth-order average Hamiltonian over the

wth application of the sequence in Eq.sA9d. Since the
sample is being mechanically rotated during the pulse se-

quence,H̄w
s0d is not equal toH̄s0d in Eq. sA11d, since the

coefficients of the spatial tensors inHINTstd are time depen-
dent fEq. s11dg and the length of the pulse sequence in Eq.
sA9d is in general not equal to a multiple of the rotor period.

H̄w
s0d is given by

H̄w
s0d = o

r
o
n

o
m

o
k=−m

m

o
p=−n

n

bk,p
m,nsnkdw−1Am,k

r Tn,p
r , sA15d

wherenk=expsikvrtcycd with tcyc being the time of the given
pulse sequencefin the case of Eq.sA9d, tcyc=3p /vRFg.
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If ND=2pq whereq is some integer, an average Hamil-
tonian for the whole propagator,UsNtcyc,0d in Eq. sA14d,
can be calculated as follows:

UsNtcyc,0d < PZsNDdTp
w=1

N

expf− itcycPZ
†sfw − 1gDdH̄w

s0d

3PZsfw − 1gDdg

< exps− iNtcycH̄
˜ s0dd, sA16d

whereH̄
˜ s0d is the zeroth-order average Hamiltonian over the

whole sequence, which is given by

H̄
˜ s0d =

1

Ntcyc
o
w=1

N

tcycPZ
†sfw − 1gDdH̄w

s0dPsfw − 1gDd

= o
r

o
n

o
m

o
k=−m

m

o
p=−n

n

Am,k
r Tn,p

r

3F 1

N
o
w=0

N−1

expsiwfpD + kvrtcycgdG . sA17d

For D=2pn /N andvrtcyc=2ph /N, only those terms of
the formAm,k

r Tn,p
r with k andp satisfying

kh + pn = NZ, sA18d

whereZ is an integer, will be present to lowest order, since

1

N
o
k=0

N−1

expSi
2pQ

N
D = 1 sA19d

if Q=NZ with Z an integer and equals zero in all other cases.
This is basis for theCNn

h sequences.21,30

The first half of the sequencesbefore the 180° pulse on
theS spind in Fig. 4sAd is comprised of two blocks of pulses
of the form given in Eq.sA9d with f=p and f1=0, which
are phase shifted by 90° from each other. This unit is then
repeated five times which makes, according to Eq.sA18d, the
whole sequence formally equivalent toC50

2 when vRF

=s15/2dvr. In this case, only those terms of the form

Am,0
r Tn,p

r will contribute to H̄
˜s0d. As discussed earlier, for se-

quences of the form of Eq.sA9d, the coefficientsb0,0
m,n for

terms of the formAm,0
r Tn,0

r are zero and thus do not contribute

to H̄
˜s0d. Additionally, because of the concatenation of two

sequences which are phase shifted byp /2 from each other,
terms of the formAm,0

r T2,±2
r will cancel and thus not contrib-

ute to H̄
˜s0d. Finally since expf−isf1−fdg=−1, terms of the

form Am,0
r T2,±1

r also will not contributefEq. sA13dg, leaving

only terms of only of the formAm,0
r T1,±1

r to contribute toH̄
˜s0d

fEq. sA12dg, which includes terms arising from both the CSA
sI±d and heteronuclear couplingssI±SZd. In order to distin-
guish between these two contributions, the sequence is re-
peated again with all the phases of the pulses shifted by 180°
in addition to applying a 180° pulse to theS spin. This has
the effect of refocussing the CSA terms but keeping the het-
eronuclear coupling terms. Such a pulse sequence motif is

used in all the sequences shown in Fig. 4. The average
Hamiltonian for the sequence in Fig. 4sAd is H fEq. s13dg.

The sequence shown in Fig. 4sBd is formally equivalent
to a C95

2 sequence whenvRF=s27/4dvr, which again lets
through terms of the formA2,±2

r Tn,±1
r from Eq. sA18d sthe

terms of the formAm,0
r Tn,0

r do not contribute due to the basic
pulse blocksfEq. sA9dgd. Due to Eqs.sA12d andsA13d, only
terms of the formA2,±2

r T1,±1
r contribute. The average Hamil-

tonian for the sequence in Fig. 4sBd is HEVO fEq. s14dg.
Finally, the sequences shown in Figs. 4sCd fformally

equivalent toC58
2g and 4sDd fformally equivalent toC512

2 g
generate average HamiltoniansH1

DET andH−1
DET, respectively,

when vRF=s15/2dvr. Both sequencesC58
2 and C512

2 let
through terms of the formAm,0

r Tn,0
r fEq. sA18dg, but the basic

blocks fEq. sA9dg prevent such terms from contributing to

H̄
˜s0d. Using Eq.sA18d, the sequence in Fig. 4sCd also lets
through terms of the formA2,±2

r T2,±2
r swhich are removed

removed by concatenating two pulse sequence blocks which
are phase shifted by 90° relative to each otherd and
A2,±1

r Tn,±1
r . Due to Eqs.sA12d and sA13d, only terms of the

form A2,±1
r T1,±1

r contribute toH̄
˜s0d. Using Eq.sA18d, the se-

quence in Fig. 4sDd lets through terms of the formA2,±2
r T2,72

r

swhich are removed removed by concatenating two pulse
sequence blocks which are phase shifted by 90° relative to
each otherd and A2,±1

r Tn,71
r . Due to Eqs.sA12d and sA13d,

only terms of the formA2,±1
r T1,71

r contribute toH̄
˜s0d. Note

that the order of the two composite 180° pulses are switched
in the sequence in Fig. 4sDd relative to those in Fig. 4sCd.
This is to ensure that the scaling factorf̄ fEq. s30dg is the
same for both sequences.

APPENDIX B: IDEAL HETIE SEQUENCE WITH
OPTIMAL SCALING FACTOR s

In trying to obtain the maximal scaling factors, all se-
quences used to generate the various HamiltonianssH, HEVO,
and H±

DETd are assumed to be comprised ofd pulsessi.e.,
unlimited RF power can be usedd. Additionally, the sample is
allowed to switch between different rotor angles during the
course of the experiment. The optimal sequences to produce
H and HEVO for a single IS spin system will now be pre-
sented.

While spinning the sample atur =0° for a total timet
=4Nt9, the sequence

sp/2dp/2
I − ft9 − spd0

I spd0
S− 2t9 − spdp

I spdp
S − t9gN − sp/2d3p/2

I

sB1d

produces an average HamiltonianH with k=k8=1 fEq. s13dg.
HEVO fEq. s14dg can be created by a variety of rotor-

synchronized RF pulse sequences, each resulting in a differ-
ent scaling factorg. A maximal scaling can be achieved forg
by applyingN, phase-incremented, rotor-synchronized units,
with the kth unit given by

fsp/2d0 − td − sp/2dpgfk
, sB2d

where td=2p / svrNd and fk=4p /N. The sequence in Eq.
sB2d is then repeated with an extrap phase shifted added to
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the pulses and is sandwiched between two 180° pulses on the
S spin. This helps to refocus the CSA terms while keeping
the heteronuclear couplings to lowest order. Spinning the ro-
tor at an angleur and applying the above sequence creates an
average Hamiltonian given byHEVO with g given by

g =
3N sin2surd

32p
sinS2p

N
D . sB3d

The factorg is maximal forur =90°. The total time required
to createHEVO using the sequence described in Eq.sB2d is
t=2mp /vr, where m is some integer due to the fact that
HEVO must be created over some integer multiple of rotor
periods. In the limit thatN→`, Eq. sB3d shows thatg
→3/16 for ur =90°.

With the above optimal sequences, the question of how
to obtain the maximum dipolar scaling,s, for a singleIS
spin pair can now be addressed. Consider the following se-
quence: the sample first rotates alongur =0° for a time t
while the sequence in Eq.sB1d is applied. The axis of rota-
tion is then changed tour =90° while the sequence in Eq.
sB2d is applied swith N→`d for a time t, which is some
multiple of a rotor period. From Eq.s23d, the anisotropic
component of the heteronuclear dipole interaction can be re-
moved whent= +4gt /3. The axis of rotation is then changed
to the magic angleur =cos−1s1/Î3d, for application ofH±1

DET.
Note that at the magic-angle, high-resolution chemical shift
spectra can be obtained, so a possible chemical-shift/
heteronuclear coupling correlation experiment can be per-
formed. Usingg=3/16givest=4t and gives a dipolar scal-
ing factor,s, of

svD =
vD

t + t
S t

2
s3 cos2sud − 1d + 2gt sin2sudD =

vD

5
, sB4d

which is the theoretical maximum scaling factor for creating
the zero-field Hamiltonian for a heteronuclear spin pair.

The above result is purely hypothetical since the limit
N→` is not realistic. In addition, for a system ofI spins
coupled to a singleS spin, the obtainable scaling factor is
reduced due to any homonuclear decoupling method used
since some of the experiment has to be performed away from
the magic angle. It can be imagined that an extremely large
RF is used to decouple theI spins from each other on a faster
time scale than that used to createH ,HEVO, andHDET. In this
scenario, the scaling factor would be reduced by at least a
factor of 1/Î3, since that is the largest scaling factor for any
pure multiple-pulse decoupling sequence.
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