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An experiment is described that utilizes the truncation of the Hamiltonian in the rotating frame by
a radio-frequency field designed to yield an isotropic shift for the dipolar coupling. This approach
allows the measurement of a normally orientation-dependent coupling constant by a single isotropic
value. The dipolar isotropic shift is closely related to the field-dependent chemical shift in solids due
to the second-order dipolar perturbation observed in magic-angle spinning experiments. In the
rotating frame, larger shifts of up to 1000 Hz can be observed for the case of a one-bond C–H
coupling compared to a shift of a few Hertz in the laboratory-frame experiment. In addition to the
isotropic shift, a line broadening due to theP4~cosb! terms is observed when the experiment is
carried out under magic-angle sample spinning~MAS! conditions, leading to the requirement of
higher-order averaging such as double rotation~DOR! for obtaining narrow lines. As an application
of this new experiment the separation of CH, CH2, and CH3 groups in a 2D spectrum under MAS
is demonstrated. Implemented under DOR it could be used as a technique to select carbon atoms
according to the number of directly attached protons. ©1996 American Institute of Physics.
@S0021-9606~96!00221-8#

I. INTRODUCTION

Truncation of laboratory-frame Hamiltonians by a static
Zeeman field1,2,3 is a very important concept in high-field
nuclear magnetic resonance~NMR! spectroscopy. The
Hamiltonian is transformed into a frame rotating with the
Zeeman frequency of the nuclei, the zero-order or static
terms are retained and all higher-order terms are neglected.
This approximation works well if the Zeeman interaction is
much larger than all terms in the internal Hamiltonian and is
often referred to as the high-field approximation.2,3 It is cer-
tainly recognized that this approximation is not always ad-
equate to describe a spin system and in such cases higher-
order terms must be included in the rotating-frame
Hamiltonian. The next level of approximation is to include
all terms derived from second-order static perturbation
theory, the so-called second-order corrections.2,3 In the aver-
age Hamiltonian approach2–5 these terms show up in the
first-order average Hamiltonian. In the laboratory frame the
second-order contributions to the Hamiltonian are propor-
tional to v i

2/vz , wherevi is the strength of the interaction
andvz is the Zeeman frequency. This leads in many cases to
a field-dependent chemical shift inversely proportional to the
B0-field which can be used to identify second-order effects.
Higher-order terms can be calculated but are rarely used
since they are much smaller and not important at high fields.

One example of an important second-order effect in the
laboratory frame is the quadrupolar interaction in high mag-
netic fields.6 Since quadrupolar-coupling constants can be as
large as several megahertz,6 the second-order terms cannot
always be neglected even for the highest Zeeman fields cur-

rently available. This effect is known as the second-order
quadrupolar shift6 and leads to aB0-field dependent isotropic
shift in spectra of quadrupolar nuclei and an additional an-
isotropy which transforms as the sum of a second- and a
fourth-rank tensor. To eliminate the resulting broadening re-
quires the use of dynamic-angle spinning~DAS! or double
rotation ~DOR! techniques7,8,9 or the combined use of
multiple-quantum spectroscopy and magic-angle sample
spinning.10

A second important example of a second-order effect in
the laboratory frame is the Bloch–Siegert shift.2,3,11A strong
rf-field off-resonance from a nuclear Larmor frequency
causes an rf-field-dependent shift.2,3,12The shifts are usually
small except in the case of spin decoupling for two nuclei
with very similar Larmor frequencies, as in the case of
19F–1H double-resonance experiments. In such cases, shifts
of several ppm have been observed.13

Some years ago, a Zeeman field-dependent isotropic
shift in solids was observed under magic-angle sample spin-
ning ~MAS! and proton decoupling;14 the effect was inter-
preted as a dipolar shift arising from the second-order con-
tribution of the heteronuclear dipolar couplings. The
observed shifts are in the order of a few Hertz for a one-bond
C–H coupling at a typicalB0-field of 4.7 T and can therefore
be neglected for most practical purposes. The effect has been
analyzed in terms of the Floquet formalism15 and it has been
shown that the shift is accompanied by a broadening of the
same order of magnitude as the shift.

The same effect should be observable for the symmetric
part of the chemical-shielding tensor if theB0-field is not
along one of the principal axes of the chemical-shielding
tensor and for the antisymmetric part as well. Both induce
fields orthogonal to theB0-field

16,17 and can therefore give
rise to a second-order effect, which would show up as a
field-dependent chemical shift. To our knowledge, no experi-
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mental proof of this effect has been reported in the literature.
We have performed and analyzed an experiment closely

related to the field-dependent dipolar shift, which exploits
the second-order effects in the rotating frame. Using the rf-
field to truncate the interaction is often referred to as second
averaging2 and has the advantage that the observed second-
order effects are not scaled by the Zeeman interaction,vz

21,
but by the rf-field,vrf

215~gB1!
21. TheB1-fields are typically

three to four orders of magnitude smaller than theB0-field
and lead therefore to much larger second-order effects than
the laboratory-frame experiments. For the case of a one-bond
C–H dipolar coupling we have calculated and observed
second-order shifts of up to 1000 Hz for a field strength of
vrf/~2p!5100 kHz compared to a shift of a few Hertz ob-
served commonly in the laboratory-frame experiment.14,15

The experiment is related to the zero-field NMR experiment
at high fields.18 However, there the goal is to generate an
isotropic dipolar-coupling Hamiltonian at high fields,
whereas in our experiment the anisotropic dipolar coupling is
transformed into an isotropic shift in the rotating frame.

A common feature of all second-order effects is that they
depend on the square of the interaction tensor scaled by the
size of the truncating field. If the interaction itself transforms
as a second-rank tensor, the square of the interaction can be
decomposed into a sum of a scalar, a second-rank tensor, and
a fourth-rank tensor.19 The scalar part is the part which gives
rise to the isotropic shift. The second- and fourth-rank ten-
sors are responsible for the observed powder broadening
which is always associated with the second-order shift. The
powder broadening of the lines can be eliminated partially by
MAS or completely by DOR.

The material is presented as follows. In Sec. II we ana-
lyze the most straightforward implementation of the pro-
posed experiment and present numerical simulations~static,
MAS, and DOR! to show the basic features of the second-
order dipolar shift in the rotating frame. An improved ver-
sion of the experiment is then analyzed within the framework
of average Hamiltonian theory. In Sec. III we show an ex-
perimental realization of this technique and demonstrate a
potential application to separate the signals of CH, CH2, and
CH3 groups in a 2D spectrum under MAS.

II. THEORETICAL CALCULATIONS AND NUMERICAL
SIMULATIONS

A. Basic theory

The basic experiment that we are considering is a simple
nutation experiment~Fig. 1! where we observe the nutation
frequency of the spin duringt1 under an applied rf-field of
strengthvrf5gB1. Assuming a static heteronuclear two-spin
system (S– I ) and neglecting the chemical-shielding tensor,
we can describe the Hamiltonian in the rotating frame during
t1 by

H5vD~V!•2SzI z1v rf•Sx . ~1!

The orientation-dependent second-rank dipolar-coupling ten-
sor is

vD~V!52
m0

4p
•

gSg I\

r SI
3 •P2~cosb!

5
d

2
•P2~cosb!, ~2!

P2~cosb! is the second-rank Legendre polynomial, and
V5~a,b,g! is a set of three Euler angles describing the ori-
entation of the dipolar-coupling tensor in the laboratory
frame. We can analytically diagonalize this Hamiltonian and
for an initial state of

s~0!5Sy ~3!

and under a phase-sensitive detection operator

D5Sy1 i •Sz ~4!

we obtain two transition frequencies duringt1,

v6~V!56v rfA11FvD~V!

v rf
G2. ~5!

The corresponding signal intensities are

S~v6!5
1

4 H 16A11FvD~V!

v rf
G2J . ~6!

These two lines represent the nutation frequency and the cor-
responding quadrature image, because the effective nutation
axis is slightly tilted off thex-axis due to the influence of the
dipolar coupling. If we assume that the field strengthvrf is
substantially larger than the maximum value of the dipolar-
coupling tensorvD~V!, we can expand the square root in Eq.
~5! in a power series and obtain

v6~V!56v rf•H 11
1

2 FvD~V!

v rf
G22 1

8 FvD~V!

v rf
G4

1
3

48 FvD~V!

v rf
G62•••J . ~7!

Limiting this expansion to the first two terms is equivalent to
a second-order static perturbation treatment. We can rewrite
the square of the second-order Legendre polynomial as a
sum of a zeroth-order, second-order, and fourth-order Leg-
endre polynomial19 to obtain the following expression:

FIG. 1. Basic pulse sequence which can be used to measure the second-
order dipolar isotropic shift in the rotating frame. After an initial
~p/2!x-pulse the magnetization precesses about a rf-field along1x during t1
and is then detected duringt2. The experiment can be transformed into a
phase-sensitive version by the addition of another~p/2!x-pulse aftert1 to
generate the second data set needed for States-type processing.
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vD
2 ~V!5

d2

4
@P2~cosb!#2

5d2•F 1201
1

14
P2~cosb!1

9

70
P4~cosb!G . ~8!

Substituting Eq.~8! into Eq. ~7! and neglecting all higher-
order terms in Eq.~7! leads to the following approximate
expression for the nutation frequency:

v6~V!'6H v rf1
d2

2v rf
•F 1201

1

14
P2~cosb!

1
9

70
P4~cosb!G J . ~9!

In addition to the expected nutation frequencyvrf we obtain
another isotropic termd2/~40vrf! which shows the inverse
proportionality to the rf-field strength typical for second-
order corrections. For a one-bond C–H coupling constant of
d/~2p!546.6 kHz and a rf-field strength ofvrf/~2p!550 kHz,
we calculate a shift of 1086 Hz. Besides this isotropic con-
tribution there are two orientation-dependent terms which
transform as second- and fourth-rank tensors. They are the
source of a broadening of the nutation spectra. Under static
conditions we therefore expect a broad line due to the
P2~cosb! and P4~cosb! terms in Eq.~9!. These powder
broadenings can be removed partially by recording the spec-
tra under magic-angle spinning~MAS! ~Refs. 20, 21, 22! or
completely by double rotation~DOR!. In this implementa-
tion of the experiment dynamic-angle spinning~DAS! could
also be used to fully remove the second- and fourth-rank
tensor powder broadenings.7,8,9

The above treatment is only correct if the rotation in-
duced by the rf-field is substantially faster than the mechani-
cal rotation due to MAS or DOR, i.e., ifvrf@vr . If the
mechanical rotation is much faster than the rf-field,vrf!vr ,
the order of the averaging processes has to be reversed and
no second-order dipolar isotropic shift can be observed. In
the intermediate regime wherevrf'vr , the system becomes
complicated and a theoretical description is no longer pos-
sible in terms of consecutive averaging processes. In this
case, a multimode Floquet23 description or numerical simu-
lations have to be used.

The Hamiltonian in Eq. ~1! does not include the
chemical-shielding tensor of both theS- and theI -spin. The
chemical-shielding tensor of theI -spin has no influence on
the observed transition frequencies or intensities. TheS-spin
chemical-shielding tensor, however, gives rise to basically
the same type of shifts as the dipolar-coupling tensor, except
for the presence of additional cross terms. The full Hamil-
tonian including both chemical-shielding tensors is

H5vD~V!•2SzI z1vS~VS!•Sz1v I~V I !•I z1v rf•Sx ,
~10!

whereVS and VI are sets of Euler angles describing the
relative orientation of the principal-axes systems~PAS! of

theS- andI -spin chemical-shielding tensors, respectively, in
the laboratory frame. The Hamiltonian of Eq.~10! leads to
the following four transition frequencies:

vm~V,VS!56v rfA11FvD~V!6vS~VS!

v rf
G2. ~11!

Equation~11! can be expanded in a power series of the ten-
sors and treated in a manner similar to the case of dipolar
coupling shown in Eqs.~7!–~9!.

B. Numerical simulations

In order to analyze and verify the theoretical calculations
in Sec. II A, we have performed numerical simulations on a
heteronuclear two-spin system using the NMR-simulation
packageGAMMA .24,25 Three different sets of simulations
were performed under static, MAS, and DOR conditions.
The coupling constant was set tod/~2p!546.6 kHz, which
corresponds to a one-bond C–H coupling ofrCH51.09 Å.
No chemical-shielding tensor was included for either spin
since the size of the shift induced by the chemical-shielding
tensor is much smaller than the size of the shift induced by a
one-bond C–H coupling. Assuming an anisotropy of the
chemical-shielding tensor ofd550 ppm, a carbon resonance
frequency of 100 MHz, and a rf-field strength of 90 kHz, we
calculate an isotropic shift of 25 Hz compared to a shift of
more than 1000 Hz induced by the dipolar coupling. The
powder average was performed over 376 different orienta-
tions using the formalism of Cheng26 to attain optimal cov-
erage of the sphere. The static spectra were obtained by a
frequency-domain simulation, which calculated the transition
frequencies and probabilities. The spectra were convolved
with a Gaussian line of width 100 Hz.

The MAS and DOR spectra were calculated using Flo-
quet theory.23,27,28 We can rewrite the time-independent
Hamiltonian of Eq.~1! under magic-angle sample spinning
in the following time-dependent form:

H~ t !5vD~V~ t !!•2SzI z1v rf•Sx

5F (
m522

2

D0,m
2 ~a,b,g!•dm,0

2 ~u!•e2 imvr tG• d

2

•2SzI z1v rf•Sx5 (
m522

2

H~m!
•e2 imvr t, ~12!

where Dm,n
2 ~a,b,g! are the Wigner rotation matrix

elements19 with the Euler anglesa, b, andg representing the
orientation of the crystallite relative to the rotor-fixed frame;
dm,n
2 ~u! is the reduced Wigner rotation matrix element;19 u is
the angle of the sample rotation axis with the static magnetic
field; vr is the spinning speed; andd is the anisotropy of the
dipolar coupling as defined in Eq.~2!. The Floquet Hamil-
tonian is then given by28

HF5(
n,m
f,w

uf,n&^fuH~n2m!uw&^w,mu, ~13!
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whereuf,n& are the composite basis function of the Floquet
space. For the DOR spectra we perform a two-mode Floquet
simulation25,28with

H~ t !5 (
m1522

2

(
m2522

2

H~m1 ,m2!
•e2 im1v1t

•e2 im2v2t,

~14!

H~m1 ,m2!5D0,m1

2 ~a,b,g!•dm1 ,m2

2 ~u1!•e
2 i zm2

•dm2,0
2 ~u2!•

d

2
•2SZI Z1v rfSX•d0,m1

•d0,m2
,

~15!

and

HF5 (
n1 ,n2
m1 ,m2

f,w

uf,n1 ,n2&^fuH~n12m1 ,n22m2!uw&

3^w,m1 ,m2u. ~16!

Dm,n
2 ~a,b,g! are the Wigner rotation matrix elements19 with

the Euler anglesa, b, andg describing the orientation of the
crystallite relative to the first rotor-fixed frame.u1 andu2 are
the inclination angles of the two axes about which the
sample is rotating with the frequenciesv1 andv2, respec-
tively. z is the phase difference between the two rotors, and
dm,n is the Kronecker delta function. Numerical diagonaliza-
tion of this Hamiltonian with the Floquet space limited to
un2mu<10 ~MAS! and un12m1u<4, un22m2u<4 ~DOR!
was used to calculate the frequency-domain spectrum under
MAS or DOR using the appropriate density and detection
operators28 to obtain the relative intensities of the transition
frequencies. Again a powder average over 376~MAS! or 100
~DOR! different orientations was performed and the resulting
spectra were convolved with a 100 Hz Gaussian line. The
spinning speed was set to 5 kHz in the case of MAS and to 1
kHz and 5 kHz in the case of DOR.

Figure 2 shows the simulations for the static, MAS~u
554.74°!, and DOR~u1554.74°,u2530.12°! case for four
different field strengthsvrf/~2p! between 30 kHz and 90
kHz. The zero point of the frequency axis is always set to the
basic nutation frequencyvrf/~2p! to facilitate a comparison
of the spectra at different field strengths. In the static case,
we see a broad line due to the superposition of theP2~cosb!
andP4~cosb! powder patterns. The width of the line scales
with the inverse of the field strength,vrf

21 . The MAS spectra
show a much narrower line than the static spectra~note the
different scale of the frequency axes in Fig. 2! with the ex-
pectedP4~cosb! powder pattern, which again scales with the
inverse of the rf-field strength. The DOR spectra show a
single sharp line with spinning sidebands. The isotropic po-
sition ~i.e., the center of gravity! of all the spectra is shifted
as can be seen best from the DOR spectra. This second-order
shift scales linearly with the inverse of the field strength,
vrf

21 , as expected from the theoretical calculations.

C. Improved experiment

The main shortcoming of the experiment as shown in
Fig. 1 is its sensitivity to rf-field inhomogeneities. Since the
desired effect is superimposed on the basic nutation fre-
quencyvrf , any inhomogeneity of the rf-field will lead to a
substantial broadening of the resonance lines. For a solid-
state NMR probe, we can expect a Gaussian distribution of
the inhomogeneity with a width of roughly 5% of the rf-field
strength.29 In the case of a 100 kHz rf-field, the inhomoge-
neity would lead to a line with 5 kHz half-width which
would make the observation of a shift of the order of 1 kHz
very difficult.

In order to overcome this problem, we use a different
type of nutation sequence which compensates for the nuta-
tion due to the rf-field but not that due to the second-order
dipolar shift. Three different approaches to achieve this goal
are shown in Fig. 3. They all rely on the fact that the rotation
due to the second-order shift scales with the inverse of the
field strength,vrf

21 , while the nutation due to the rf-field
scales linearly with the field strength,vrf . Assuming that the
inhomogeneity is proportional to the rf-field strength, these
sequences will reduce the broadening due to rf-field inhomo-
geneities substantially. The sequence in Fig. 3~a! implements
this by rotating the spins by~2p!x at a field strengthvrf and
then back by~2p!2x at a lower field strengtha3vrf wherea

FIG. 2. Simulation of the second-order dipolar isotropic shift in the rotating
frame for a dipolar-coupling constant ofd/~2p!546.6 kHz, corresponding to
a C–H distance ofrCH51.09 Å. The powder averages were performed using
376 ~static and MAS! or 100~DOR! different orientations and the resulting
frequency-domain spectra were convolved with a Gaussian line of width
100 Hz. In the MAS and DOR simulations, Floquet theory was used to
describe the time-dependent Hamiltonian. The MAS rotation frequency was
set to 5 kHz and the DOR frequencies were 1 kHz and 5 kHz. The origin of
the frequency axis was set to the basic nutation frequencyvrf/~2p! in order
to facilitate a comparison of the spectra at different field strengths. The DOR
spectra exhibit clearly the dependence of the additional shift on the inverse
rf-field strength. The broadening in the static and MAS spectra is due to the
P2~cosb! andP4~cosb! powder orientation dependent terms which are av-
eraged out by DOR. Note that the frequency axis for the static spectra is
different from that for the MAS and DOR spectra. More details of these
simulations can be found in the text.
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is a scaling factor describing the relative intensities of the
two applied rf-fields. The sequence in Fig. 3~b! achieves the
same goal by inserting delays between the~p/2!2x-pulses to
create a lower time-averaged field for the back rotation. The
practical implementation used in all the experiments pre-
sented in the next section is shown in Fig. 3~c!. In this ver-
sion delays are inserted between the~p/2!x-pulses as well as
between the~p/2!2x-pulses. This has the advantage that the
basic nutation due to the rf-field is better compensated than
with the pulse sequence of Fig. 3~b!.

We can analyze the Hamiltonian under the influence of
these three pulse sequences most easily within the frame-
work of average Hamiltonian theory~AHT!.2–5 In order to
simplify the calculation of higher orders of average Hamil-
tonians, a program inMathematica30 using the spin-1/2
simulation packageSOME ~Ref. 31! was developed to analyti-
cally calculate the first four orders of average Hamiltonians
for pulse sequences consisting of delays and pulses with ar-
bitrary phases and amplitudes. Starting from the Hamiltonian
in Eq. ~10!, we can calculate the zeroth to third order for the
pulse sequence shown in Fig. 3~a!,

H̄~0!5v I~V I !•I Z , ~17!

H̄~1!52
12a2

a21a
•FvD~V!21vS~VS!

2

2v rf
•SX

1
2vD~V!vS~VS!

2v rf
•2SXI ZG , ~18!

H̄~2!5
11a3

a31a2
•FvS~VS!

313vS~VS!vD~V!2

2v rf
2 •SZ

1
vD~V!313vD~V!vS~VS!

2

2v rf
2 •2SZI ZG , ~19!

H̄~3!5
12a4

a41a3

•F38 •vD~V!416vD~V!2vS~VS!
21vS~VS!

4

v rf
3 •SX

1
3

8
•

4vS~VS!
3vD~V!14vS~VS!vD~V!3

v rf
3 •2SXI ZG .

~20!

As expected, the zeroth-order average Hamiltonian is zero in
the S-spin operators due to the averaging properties of the
rotation by the rf-field. For the case of equal field strength
~a51! the coefficients in front of the odd orders are zero
leading to a vanishing contribution from the odd-order aver-
age Hamiltonians as expected for a symmetric pulse
sequence.5 However, foraÞ1 all orders contribute to the
average Hamiltonian. The second-order dipolar shift is mani-
fest in the first-order average Hamiltonian~which is equiva-
lent to second-order perturbation theory! in form of the
vD~V!2/~2vrf!SX term. The second-order and third-order av-
erage Hamiltonians describe higher-order corrections to the
Hamiltonian. In the second-order average Hamiltonian the
dipolar-coupling term appears as a coupling while the third-
order term has again the form of a shift. Depending on the
size of the interaction and the rf-field strength it can be nec-
essary to include these higher-order terms to obtain an accu-
rate description of the spin system.

Neglecting the chemical-shielding tensors~vS(VS)50,
v I(V I)50! again as in Sec. II A and expanding the powers
of the dipolar-coupling tensor (vD(V)n) in a sum of Leg-
endre polynomialsPn~cosb!,19 we obtain the following ex-
pressions for the four orders of average Hamiltonians:

H̄~0!50, ~21!

H̄~1!52
12a2

a21a
•

d2

2v rf
•SX3F 1201

5

70
P2~cosb!

1
9

70
P4~cosb!G , ~22!

H̄~2!5
11a3

a31a2
•

d3

2v rf
2 •2SZI ZF 1701

3

28
P2~cosb!

1
27

385
P4~cosb!1

9

154
P6~cosb!G , ~23!

FIG. 3. Three different pulse schemes designed to implement the compen-
sated version of the second-order dipolar shift experiment. In~a! a
~2p!x-pulse is followed by a~2p!2x-pulse with lower rf-field strength. This
leads to a compensation of the basic rotation due to the rf-field, but the
rotation due to the second-order effect is retained because the second-order
effect scales withvrf

21 and not withvrf . In ~b! the same effect is achieved by
using four~p/2!2x-pulses spaced by a delayD. This leads to a lower effec-
tive field for the back rotation resulting again in a cancellation of the basic
nutation frequency but not of the second-order effect. In~c! delays are
inserted in both the forward and the back rotation. The delayD1 was usually
set to 0.3ms ~the shortest possible value on our instrument! andD2 was
varied to observe different dipolar shifts ensuring that the timing of the
pulses for both rotations is the same and producing experimentally superior
compensation of the basic nutation frequency than the sequence in~b!.
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H̄~3!5
12a4

a41a3
•

3d4

8v rf
3 •SXF 3

560
1

5

308
P2~cosb!

1
459

20020
P4~cosb!1

9

770
P6~cosb!

1
9

1430
P8~cosb!G . ~24!

In this representation, the second-order dipolar isotropic shift
is clearly manifest in the termd2/~40vrf!SX . Compared to the
basic experiment described in Sec. II A, the shift is scaled by
the factor2(12a2)/(a21a). If the experiment is performed
under MAS, the different Legendre polynomials in Eqs.
~21!–~24! are scaled byPn~cosu!, whereu554.74° is the
magic angle at which the sample is spinning.3 This leads to
the scaling factors P2~cosu!50, P4~cosu!527/18,
P6~cosu!52/9, andP8~cosu!511/72. Under DOR, the dif-
ferent Legendre polynomials in Eqs.~21!–~24! are scaled by
p5Pn~cosu1!•Pn~cosu2!, whereu1554.74° andu2530.12°
are the two angles about which the sample is spinning.32,33

The numerical scaling factors for these two angles arep50
for n52 andn54, p'20.086 forn56, andp'20.049 for
n58.

Based on the different orders of the average Hamiltonian
@Eqs.~21!–~24!# we would expect the second-order average
Hamiltonian to become important for the case of equal field
strengths for the forward and back rotation~a51! sinceH~2!

is in this case the first nonvanishing term. For a one-bond
C–H coupling and a rf-field strength ofvrf/~2p!590 kHz the
coupling term is in the order of 50 Hz. However this descrip-
tion is only correct for an isolated two-spin system. If strong
homonuclear couplings are present they give rise to the so-
called self-decoupling effect2 and no splitting of the line can
be observed.

The pulse sequences in Figs. 3~b! and 3~c! have been
analyzed in the same way. The different orders of the aver-
age Hamiltonian show the same operator terms as the ones
presented in Eqs.~17!–~20!, except for an additional 2SYI Z
and SY term in H̄ ~2!. The scaling factors in front of the
orders are different and more complicated, but the numerical
values for a given effective field strength are very similar.

If we analyze the dipolar isotropic shift for a CH2 three-
spin or a CH3 four-spin system, we find that the shift due to
the different dipolar couplings is additive. For a CH2 group,
we find the following first-order average Hamiltonian:

H̄~1!52
12a2

a21a
•

1

2v rf
$@v1D~V1!

21v2D~V2!
2

1vS~VS!
2#•SX12v1D~V1!vS~VS!•2SXI 1Z

12v2D~V2!vS~VS!•2SXI 2Z

12v1D~V1!v2D~V2!•4SXI 1ZI 2Z%. ~25!

For a CH3 group, we find that the shift is the sum of the
square of all three C–H dipolar couplings scaled by the rf-
field strength. The fact that the different carbon atoms show
an isotropic shift depending on the number of directly at-

tached protons can be used to separate the different CHx
groups in a 2D spectrum where thev1 dimension shows the
second-order dipolar shift and thev2 dimension displays a
normal MAS spectrum. Special consideration must be taken
in the case of fast internal motions. These motions can par-
tially average out dipolar couplings as is the case for CH3
groups. If the motion is faster than the cycle time of the pulse
sequence, only a scaled dipolar coupling will appear in the
dipolar-shift experiment. For CH3 groups, which rotate rap-
idly about their symmetry axis, the scaling factor is
P2~cos 70.5°!'0.33.

In this context we should analyze other effects which
can show up in the same way as the dipolar shift. The most
important ones are the isotropic chemical-shift offset~DvS!
and the anisotropic chemical-shielding tensor (vS(VS)). The
chemical-shielding tensor transforms also as a second-rank
tensor and therefore gives rise to the same type of effects as
the dipolar coupling. The relative size of the effect due to the
chemical-shielding tensor can be easily estimated. For an
aliphatic carbon atom the anisotropy of the chemical-
shielding tensor is usually smaller than 50 ppm leading to a
second-order shift which is by a factor of 20 smaller than the
shift due to the dipolar coupling at a 100 MHz carbon reso-
nance frequency. The additional shift induced by the isotro-
pic chemical-shift offset can be much larger and cannot al-
ways be neglected. However it is very easy to compensate
for the offset and correct the obtained second-order shifts by
the amount due to the isotropic chemical-shift offset. Based
on Eq.~18! we find in first order

H̄~1!52
12a2

a21a
•

DvS
2

2v rf
•SX . ~26!

It is important to note that for the pulse sequences of Fig.
3 the rf-field strength is no longer the important factor for the
comparison with the mechanical rotation frequency. Here we
have to compare the cycle time of the full pulse sequence
with the MAS rotation frequency. The above treatment is
only valid if the cycle time of the pulse sequence is consid-
erably shorter than the cycle time of the mechanical sample
rotation. If the MAS speed approaches the cycle time of the
pulse sequence, the consecutive averaging approach breaks
down and other theoretical models have to be employed to
accurately describe the system. This breakdown has also
been observed experimentally~spectra not shown! in the case
of the MAS experiment described in the next section. For a
rotation frequency ofvr /~2p!510 kHz the spectra started
deviating from the expected form for a cycle time of the
pulse sequence oftc>50 ms. In addition to the shifted
second-order peak, a zero-frequency peak started to appear.
This implies that the consecutive averaging approach is in
this case only valid forv r•tc<p.

It is necessary to discuss the limitations of the average
Hamiltonian approach concerning the convergence of the se-
ries of Hamiltonians. The condition for convergence is34,35

maxuv0i2v0 j u•tc<2p, ~27!

wherev0i are the eigenvalues of the Hamiltonian@Eq. ~10!#.
In our case, assuming that the dipolar coupling tensor is

8263Ernst et al.: Dipolar shifts in the rotating frame

J. Chem. Phys., Vol. 104, No. 21, 1 June 1996



larger than the chemical-shielding tensor, the maximum tran-
sition frequency isd/252p•23.3 kHz for a one-bond C–H
coupling. This leads to a maximum cycle time oftc<43ms.
For a rf-field strength ofvrf/~2p!>50 kHz this condition is
usually fulfilled.

The first-order average Hamiltonian of Eq.~18! shows
another interesting feature. The cross term between the
chemical-shielding tensor and the dipolar-coupling tensor
generates a contribution to the first-order average Hamil-
tonian of the formvD(V)vS(VS)/vrf•2SXI Z . The size of
this coupling term depends strongly on the relative orienta-
tion of the two tensors and is of importance in the case of
continuous-wave decoupling in isolated heteronuclear two-
spin systems. A detailed analysis of this effect is in prepara-
tion and will be published elsewhere.36

III. EXPERIMENTAL REALIZATION

All experiments were performed on a home-built spec-
trometer operating at a proton Larmor frequency of 301.2
MHz, using a commercial 4 mm MAS probe assembly from
Chemagnetics. As a test sample we used13C a-labeled ala-
nine which was diluted 1:5 with unlabeled alanine to reduce
homonuclear13C–13C interactions. In all experiments the
pulsed version of the nutation sequence@Fig. 3~c!# was used
rather than the power-switched version@Fig. 3~a!#. The prac-
tical advantages of the pulsed versions are that only one
pulse length needs to be calibrated and that the compensation
of the basic nutation frequency is superior to that obtained
with the power-switched version. The delayD1 was usually
set to the minimum possible value of 0.3ms andD2 was
varied to obtain spectra with different shifts. This version of
the pulse sequence ensures that the timing of the forward and
backward rotation is the same and experimentally produced a
much better compensation of the basic nutation frequency
than the sequence shown in Fig. 3~b!. For all experiments,
cross polarization~CP! ~Refs. 2, 3, 37! was used to increase
the sensitivity and to shorten the recycle delay. The decou-
pling field strength on the protons in all experiments was
;75 kHz and the MAS frequency was controlled by a home-
built spinning-speed controller.

Figure 4~a! shows the pulse sequence used to record the
2D spectra. Sign discrimination inv1 was achieved by the
States method.38 This was implemented by recording two
different sets of spectra with and without the first
~p/2!x-pulse on theS-channel. Before running the experi-
ments a tune-up of the phases and amplitudes of the four
different quadrature channels of the spectrometer was
performed.2,39 Care was taken to minimize the effects of
phase transients.2 Theoretical calculations show that such
phase transients introduce an additional phase modulation in
the t1 domain of the 2D experiment leading to an additional
splitting of the line, an effect which was also observed ex-
perimentally~Fig. 5!. The additional phase modulation was
used to experimentally minimize the phase transients by
matching the impedance of the probe to that of the
amplifier.2,39 After the tune-up no phase modulations could
be observed even after 100 iterations of the sequence. Figure

5 shows the projection ontov1 for two different spectra re-
corded under similar conditions without@Fig. 5~a!# and with
@Fig. 5~b!# optimization of the impedance matching of the
probe to the amplifier. No dipolar shift is expected since
D15D250.3ms in both spectra. The spectrum without tuning
of the phase transients@Fig. 5~a!# shows a large splitting due
to the additional phase modulation int1. After minimizing
the influence of the phase transients, the spectrum@Fig. 5~b!#
shows the expected single sharp line at zero frequency with a
half-width at half-height of 175 Hz and a Gaussian line
shape. Part of this line broadening is due to the apodization
of the signal int1 by a cos

2-window function and the limited

FIG. 4. Two pulse sequences used for measuring the second-order dipolar
isotropic shift. Sequence~a! gives a 2D spectrum with a standard 1D MAS
spectrum inv2 and the nutation spectrum inv1. In order to obtain a 1D
nutation spectrum, a projection ontov1 must be taken. The first~p/2!x-pulse
is used to generate the second data set for phase-sensitive States processing
in v1. Sequence~b! is a 1D version with single point acquisition. The
~p/2!y- and ~p/2!2y-pulses around the detection period are used to flip the
y–z plane in which the magnetization is precessing into thex–y plane for
detection and back to allow sign discrimination. This sequence requires that
the observed line is on-resonance.

FIG. 5. Influence of phase transients on thev1-projection of the 2D dipolar
isotropic spectra.~a! is a spectrum recorded without optimizing impedance
matching of the probe to the amplifier. The splitting is due to the additional
phase modulation induced by the phase transients.~b! shows the spectrum
recorded under similar conditions after minimizing the influence of the
phase transients. The spectrum shows the expected single sharp line at zero
frequency with a half width of the Gaussian line of 175 Hz. Since
D15D250.3ms no dipolar isotropic shift is expected.
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number of measuredt1 points ~64 complex!. Another spec-
trum recorded under similar conditions but with 256 com-
plex t1 points exhibited a linewidth of only 90 Hz.

Figure 6 shows 2D spectra demonstrating the dipolar
isotropic shift. All spectra were recorded with a rf-field
strength ofvrf/~2p!'75 kHz, a CP contact time of 0.5 ms,
and a spinning speed of 5 kHz. One hundred and twenty-
eight complext1 time points with 16 scans each were added
up with a recycle delay of 1 s. After a hypercomplex Fourier
transformation the resulting spectra show the expected fea-
tures ~Fig. 6!. The projection ontov2 shows the standard
MAS spectrum in all cases while the projection ontov1 rep-
resents the dipolar-shift or nutation spectrum. For the spec-
trum shown in Fig. 6~a!, the delayD15D250.3ms resulted in
no dipolar shift and a relatively sharp line at zero frequency
in v1. The spectrum in Fig. 6~b! was recorded with delays
D15D254.3ms inserted into the forward and the back rota-
tion of the sequence shown in Fig. 4~a! leading to a reduced
effective field strength but to no dipolar isotropic shift since
the effective field for both rotations is the same. The reso-
nance line is slightly broader in thev1 dimension due to the
lower average field strength but is still at zero frequency. For
the spectrum shown in Fig. 6~c! the delays were set to
D150.3ms andD254.3ms leading to a positive dipolar shift

and a broadening of the spectrum due to theP4~cosb! term
which is not averaged out by the magic-angle sample spin-
ning. For the spectrum in Fig. 6~d!, the delaysD1 and D2
were interchanged~D154.3 ms, D250.3 ms! resulting in an
inversion of the sign of the dipolar shift. The same inversion
of the sign can be achieved by shifting all the phases of the
nutation sequence by 180°.

Figure 7 shows a set of 1Dv1 projections in order to
demonstrate the dependence of the dipolar shift on the delays
D1 and D2. All 2D spectra were recorded with the same
parameters as the 2D spectra shown in Fig. 6~vrf/~2p!575
kHz, vr /~2p!55 kHz, tCP50.5 ms, 128 complext1 points
with 16 scans each!, using the pulse sequence of Fig. 4~a!.
After 2D processing, a sum-projection alongv1 was calcu-
lated over the width of the peak. This resulted in the 1D
spectra shown in Fig. 7. The delayD2 was varied from 0.3ms
in steps of 0.8ms to a maximum value of 7.5ms while the
delayD1 was kept constant at 0.3ms, leading to a positive
dipolar shift. At the same time, the broadening of the line
also increases with increasing shift as expected due to the
P4~cosb!-term which is not averaged out by MAS. In a sec-
ond set of experiments, the delayD1 was varied from 0.3ms
in increments of 0.8ms to a maximum value of 4.3ms while
the delayD2 was kept constant at 0.3ms resulting in a nega-
tive dipolar shift. The two sets of spectra with positive and
negative shifts are mirror images, as expected.

The experiment can be implemented not only in the 2D
fashion discussed so far@Fig. 4~a!#, but also as a 1D experi-
ment with single-point detection.40 The sequence used to
implement the 1D version of the experiment is shown in Fig.
4~b!. During the detection period the magnetization which
precesses in they–z-plane during the nutation sequence is
flipped into thex–y-plane by the first~p/2!2y-pulse and
after the detection rotated back into they–z-plane by a

FIG. 6. 2D spectra recorded with the pulse sequence of Fig. 4~a! with a
rf-field strength ofvrf/~2p!'75 kHz. The CP contact time was 0.5 ms and
128 complext1 time points with 16 scans each were summed. All spectra
show the normal 1D MAS spectrum as the projection onto thev2-axis, while
the projection onto thev1-axis represents the nutation spectrum.~a! was
recorded with the delaysD1 andD2 set to 0.3ms and shows a relatively
sharp line at zero frequency inv1. In ~b! the delaysD1 andD2 were set to
4.3ms in both the forward and the back rotation pulses. The spectrum shows
a slightly broader line due to the lower effective field with the center of
gravity still at zero frequency.~c! was recorded with the delayD150.3 ms
andD254.3ms resulting in a positive dipolar shift as well as in a broadening
of the line. In ~d! the delaysD1 andD2 were interchanged, resulting in an
inversion of the sign of the shift inv1.

FIG. 7. Series of 1Dv1-projections demonstrating the dependence of the
dipolar isotropic shift on the delaysD1 andD2. All spectra were recorded
with the pulse sequence of Fig. 4~a!. After 2D data processing, a projection
onto thev1-axis was performed to obtain the 1D spectra. The delayD2 was
varied from 0.3ms in 0.8ms increments to a maximum value of 7.5ms
resulting in a positive dipolar shift, whileD1 was kept constant at 0.3ms. In
a second set of experiments, the delayD1 was varied from 0.3ms in 0.8ms
increments to a maximum value of 4.3ms, leading to a negative dipolar
shift, while the delayD2 was kept constant at 0.3ms in this series. The two
sets of spectra with positive and negative shifts are mirror images as ex-
pected.
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~p/2!y-pulse. The sequence requires that the line in question
is on-resonance because of the chemical shift evolution dur-
ing the detection time. The sequence can be modified by
inserting an additionalp-pulse in the middle of the detection
period to refocus the chemical shift. The 1D sequence did
not work as well experimentally as the 2D sequence of Fig.
4~a!. The signal to noise ratio of the spectra was considerably
lower than that for the 1Dv1 projections recorded in the
same amount of time.

Figure 8 shows a comparison of the isotropic dipolar
shift as a function of the difference of the two delaysD22D1
for the measurements, numerical simulations and first-order
average Hamiltonian theory. The measured values were ob-
tained by calculating the center of gravity of the spectra
shown in Fig. 7. As expected, the isotropic shift increases
with increasing values ofD22D1. The numerical simulations
were performed using small-step integration of the Liouville-
von-Neumann equation because of the time-dependence of
the Hamiltonian due to the MAS sample rotation. Five thou-
sand time steps were calculated for a full rotor cycle leading
to a time resolution of 40 ns. The experimental pulse se-
quence of Fig. 3~c! was used for the simulations and 538
different powder orientations were calculated. The C–H dis-
tance was taken from a neutron diffraction measurement of
alanine.41 This value was corrected for the different vibra-
tional averaging of neutron diffraction and NMR~Ref. 42!
resulting inrCH51.104 Å. The isotropic dipolar shifts of the
simulated spectra were calculated in the same way as for the
experimental data. The shifts from the numerical simulations
are consistently too high. There are two uncertain parameters
in the simulation, the C–H distance and the rf-field strength.
One possible reason for this systematic error could be the
numerical value for the C–H distance which was used in the
simulations. However, an increase of 3% in the bond length
is necessary to account for the difference between the simu-
lated and measured shifts. In the numerical simulations the

pulse sequence was implemented by ideal square-wave
pulses with a finite length. In the experiment, however, all
pulses have a finite rise and decay time leading to a higher
peak rf-field strength in the experiment than it is calculated
from the p/2-pulse length. The rise and decay times can
explain the discrepancies between experiment and simulation
because the second-order shift depends on the inverse of the
field strength. The higher peak rf-field strength in the experi-
ment will lead to a smaller isotropic shift compared to the
simulations. The points shown for the average Hamiltonian
theory include only the first-order term. They were also cal-
culated for the experimental pulse sequence of Fig. 3~c! and
here the isotropic shift can be obtained analytically. For the
dipolar coupling constant the same value~d/~2p!544.4 kHz!
as in the numerical simulations was used.

To show the potential of this new method as a tool to
separate CH, CH2, and CH3 groups, spectra of two different
samples under identical conditions were recorded. The first
sample is a 14 amino acid peptide from the Prion protein
~PrP! corresponding to residues 109 to 122 of Syrian Ham-
ster PrP with the sequence MKHMAGAAAAGAVV.43,44 A
mixture of two different13C labels on the methyl and alpha
carbon of alanine-115 was used. The second sample was a
Gly–Gly dipeptide with a13C label at glycine-213Ca . The
spinning speed was set tovr /~2p!56080 Hz, the field
strength wasvrf/~2p!575.6 kHz, and the CP contact time
was set to 2.5 ms. Two hundred and fifty-six~14 residue
peptide! or 64 ~Gly–Gly! scans were added up for each of
the 64 complext1 times using the pulse sequence of Fig.
4~a!. Figure 9~a! shows the resulting spectra forD15D250.3
ms showing, as expected, no dipolar shift for all peaks. The
spectra in Fig. 9~b! were recorded withD150.3 ms and
D252.7 ms and show the expected shifts. The peak of the
CH2 group has the largest shift and its resonance is consid-
erably broader than the line of the CH group. The CH3 group
shows the smallest shift as a result of the partial averaging of
the dipolar coupling due to the fast rotation of the CH3 group
about its symmetry axis. The motion leads to a scaling of the
dipolar coupling byP2~cos 70.5°!'0.33 and therefore to a
reduction of the shift due to a single proton to roughly 1/9
compared to the shift of a rigid CH group. Because there are
three equivalent protons, the total shift for a CH3 group is
roughly 1/3 of the shift of a rigid CH group. The influence of
the chemical-shift offset over the observed range is very
small. Based on the first-order average Hamiltonian@Eq.
~26!# the second-order shift induced by an isotropic
chemical-shift offset of 2000 Hz is less than 20 Hz and can
therefore be neglected. The characteristic shifts of the differ-
ent groups inv1 together with the high resolution inv2 allow
the separation of the CH, CH2, and CH3 groups in a 2D
spectrum.

IV. CONCLUSIONS

We have shown that second-order dipolar shifts in the
rotating frame can be substantially larger than the second-
order effects due to truncation of the dipolar coupling by the
Zeeman field. The shifts can be on the order of 1000 Hz,
compared to a shift of several Hertz in the case of the

FIG. 8. Isotropic shifts for the spectra shown in Fig. 7 as a function of the
difference of the delaysD2 andD1. The isotropic shifts were calculated for
the experimental spectra~h! by calculating the center of gravity for the 1D
spectra. The numerical simulations~s! were performed using small step
integration of the equation of motion to describe the time dependence of the
Hamiltonian due to the MAS sample rotation under the pulse sequence of
Fig. 3~c!. The average Hamiltonian calculations~n! include only the first-
order average Hamiltonian for the sequence shown in Fig. 3~c!.
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laboratory-frame experiment. The second-order effect shows
up as a combination of an isotropic shift, a second-rank ten-
sor, and a fourth-rank tensor powder pattern. By using a
modified pulse sequence, the effects of rf-field inhomogene-
ity can be reduced considerably. The simulated and experi-
mental spectra show the expected isotropic shift, a second-
rank tensor component, and a fourth-rank tensor component
leading to inhomogeneously broadened spectra. The powder
broadenings can be averaged out by using MAS or DOR
techniques.

We have demonstrated one possible application of this
new technique, namely the separation of CH, CH2, and CH3
groups in a 2D MAS spectrum due to their different second-
order dipolar shifts in thev1 domain of a 2D spectrum. Com-
bined with the high resolution of a MAS spectrum in thev2
domain, such a spectrum can provide information for the
assignment of13C resonances in larger molecules. However,
care has to be taken to compensate for isotropic chemical-
shift offsets or second-order shifts due to the chemical-
shielding tensor. For aliphatic carbon atoms the chemical-
shielding tensor is usually small enough that it can be
neglected, and the compensation for the chemical shift offset
can be calculated analytically in a straightforward manner.
Implemented under DOR, the new technique could be used
to filter the carbon atoms according to the number of

directly-attached protons using the isotropic part of the shift.
Future work to explore the implementation of this experi-
ment under DOR is under way in our laboratory.
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