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Iterative Maps for Bistable Excitation of Two-Level Systems
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Iterative maps on SO(3) with two stable fixed points are described. These generate bistable spec-
troscopic excitation sequences for isolated two-level systems. From such sequences, tailored popu-
lation inversion over specific ranges of parameters such as the resonance frequency or radiation
amplitude can be obtained. The ideas developed here suggest ways of designing tailored excitation
sequences useful in spatially selective NMR, spin decoupling, nk-quantum selective multiple-
quantum NMR, and isotope-selective zero-field NMR.

PACS numbers: 33.25.—j, 42.65.8p, 76.60.—k

Excitation sequences have recently been developed
for nuclear magnetic resonance (NMR) and optical
spectroscopy which are effective over very broad' 8 or
very narrow6 9 ranges of transition frequencies and ra-
diation amplitudes. Of the methods conceived for
deriving these sequences, an iterative approach based
on the use of sequence-refining algorithms has proven
particularly useful. By treatment of these algorithms
as iterative maps, t~t2 it has been shown that stable
fixed points lead to sequences with broad-band proper-
ties, while unstable fixed points produce sequences
which exhibit narrow-band properties. This Letter re-
ports the first example of iterative maps for pulse se-
quences with more than one stable fixed point. From
such maps, sequences for excitation over sharply de-
fined, preselected ranges of parameters, e.g. , frequen-
cies or amplitudes, can be obtained. This provides the
first experimental approach to the long-desired goal of
tailored excitation of nonlinear spectroscopic responses
in spin and optical systems. The implementation of
this pass-band response has applications in several
areas in spectroscopy, including spatially selective
NMR, '3 selective n-quantum pumping of multiple-
quantum transitions, ' heteronuclear zero-field
NMR, ts and optical information storage. '

The sequences demonstrated here selectively invert
the equilibrium populations of uncoupled two-level
systems depending on the amplitude (commonly
denoted tot) of the resonant radio-frequency (rf) radi-
ation at the nuclear-spin position. This general tech-
nique can, in fact, be used to select one or several
discrete ranges of rf amplitudes for specific excitation.

For the analysis of these sequences, we employ a
formalism drawn from the theory of iterative maps and
their fixed points. ' The effect of a pulse sequence on
some system is represented by its time development
operator, or propagator, U. Usually a specific propaga-

tor U is desired, for example, one which corresponds
to an inversion of the equilibrium populations. This
can be achieved with an iterative algorithm which
prescribes the transformation that must be performed
on a pulse sequence for its propagator U to converge
to the desired form U. This iterative procedure can be
summarized by the equation

U„+t
= F ( U„).

The dynamics of such iterative maps are influenced by
eir fixed points 10-1 2 which are defined by the rela-
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FIG. I. Cross section of SO(3) through the xy plane indi-
cating the movement of points in this plane as an algorithm
designed to produce a bistable band-pass sequence is iterat-
ed. The origin and equator are stable fixed sets of this map-
ping with an unstable fixed circle between them. The posi-
tion of the unstable set defines the effective bandwidth of
the excitation. Points initially in the xy plane remain in this
plane even after iteration of the algorithm as a result of the
symmetry of the sequence.
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tion

U=F(U).
The consequences of fixed points and their stability on the behavior of iterative pulse-sequence maps have already
been discussed in detail. Briefly, it was shown that pulse-sequence algorithms could be considered as maps on a
quantum-mechanical propagator space, with fixed points corresponding to the desired propagators U.

Basin images for the maps generated by the algorithms (0,270, 120,165,120,270,0j and [0,15,180,165,270,
165,180,15,0] showing a cross section of SO(3) containing the z axis. The number of iterations of the algorithm required to
map a point in SO(3) to one of the two stable fixed sets is given by the density key to the left of the image.
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In the absence of couplings, any propagator U, in-

cluding the effects of pulse sequences, is describable
as a simple rotation of the spin-density operator. '

It follows that only a subspace of the entire propagator
space need be considered in the analysis, namely the
space of pure rotations, commonly designated SO(3),'
which can be visualized as a solid sphere of radius m.

Every rotation is uniquely defined in this space by a
unit vector drawn from the origin (corresponding to
the axis of the rotation) and a radius (corresponding to
the angle of the rotation).

In general, the convergence of a map to its fixed
points depends on the initial condition Uo and the sta-
bility of the fixed points in various directions. The ini-
tial condition Uo can itself be a function of several
parameters, designated here as [)l.;}, such as the reso-
nance frequency or the rf amplitude co~. In the devis-
ing of a sequence effective over broad ranges of X;,
the objective is to make a single fixed point stable for
as wide a range of the parameter A. , as possible. For
narrow-band sequences, the aim is to specify a single
fixed point which is unstable over the parameter P, .
For the present case of bistable pass-band sequences,
however, two stable fixed points are required, so that
for some values of X„Uconverges to one fixed point
Ut, while for other values of );, U converges to the
other fixed point U2.

Pulse sequences which excite a pass-band population
inversion in rut can be obtained from maps which have
the origin and the equator of SO(3) in the xy plane as
stable fixed sets of points. These points correspond to
the identity operator and the set of m rotations which
take +z to —z, respectively. The significance of this
bistability can be appreciated by referring to Fig. 1.
This figure shows schematically that maps with the ori-
gin and the equator of SO(3) as fixed sets stable in the
xy plane necessarily possess an unstable circle of points
also in the xy plane. Points in SO(3) inside this circle
move towards the origin upon iteration of the algo-
rithm, while points outside the circle move towards
the equator.

Two algorithms derived to satisfy these stability con-
ditions are

[0, 270, 120, 165, 120, 270, 0],

[0, 15, 180, 165, 270, 165, 180, 15, 0].

(a)

(b)

Following the notation of Ref. 8, these algorithms are
comprised of two basic operations, a series of phase
shifts, sho~n in the brackets, followed by concatena-
tion of the phase-shifted parts. Figure 2 depicts the
basin images of the two algorithms. The regions of
SO(3) that are convergent to the stable fixed sets are
known collectively as the basin of the map, and appear
as the light areas of the image. The images in this in-
stance are cross sections of SO(3) containing the z
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axis. Since algorithms comprised of simple phase
shifts exhibit axial symmetry around the z axis, no in-
formation is lost in displaying a single cross section.

One conspicuous difference between the two images
displayed is the size of their respective basins. The
reason for this is that the nine-shift algorithm (b) was
designed so that the equator would be stable in all
directions. The seven-shift algorithm (a), however, is
not stable at the equator for points off the xy plane.
The basin for the nine-shift algorithms is therefore
larger and exhibits a more intricate structure than does
the seven-shift sequence. A consequence of this addi-
tional stability is that the nine-shift algorithm is broad

FIG. 3. Extent of nuclear-spin population inversion as a
function of normalized on-resonance rf field amplitude for
(a) a single n pulse, (b) one iteration of the indicated algo-
rithm, and (c) two iterations of the algorithm. —1 on the y
axis denotes the normalized equilibrium spin population
(bulk magnetization aligned with the magnetic field), +1
denotes the normalized population-inverted state (magneti-
zation antiparallel to the magnetic field). The effect of itera-
tion is seen to sharpen the pass band of the response func-
tion. Such a bistable response can be tailored to different re-
gions of ~~. Experimental data were obtained from the pro-
ton resonance of a distilled-water sample at a Larmor fre-
quency of 180 Mhz.



VOLUME 56, NUMaER. 18 PHYSICAL REVIEW LETTERS 5 MAY 1986

band over resonance frequencies.
The implications of applying an algorithm described

by a bistable map to a single nominal m pulse appear in
Fig. 3. This figure sho~s that such algorithms, in this
case the seven-shift algorithm, produce sequences
which display distinctive pass-band characteristics in
the ~& domain. This implies that only spins that lie
within specified bandwidths in cv& will be inverted by
these sequences. Spins outside these bands remain in
their initial equilibrium state. The result is a pulse se-
quence which is highly amplitude selective in inverting
nuclear spins. Moreover, as the algorithm is iterated,
the pass band becomes sharper and more pronounced,
indicating the refinement of the sequence by iteration.
The experimental points on this curve demonstrate the
practical feasibility of these algorithms for obtaining
tot-selective inversion of the magnetization. General-
ized tailoring of the population inversion can be
achieved across a range of o&t values with the appropri-
ate choice of an initial sequence. Sequences which
favor certain basins in SO(3), or cross from one basin
to another, create this kind of tailored response. Ex-
tensions of this approach are currently being undertak-
en for iterative mappings with multiple fixed points to
allow general nonlinear excitation.
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