
Iterative maps for broadband excitation of transverse coherence in two level 
systems 

H. Cho and A. Pines 
Department of Chemistry, University of California and Materials and Chemical Sciences Division. 
Lawrence Berkeley Laboratory, Berkeley, California 94720 

(Received 23 February 1987; accepted 4 March 1987) 

An iterative scheme has been used to derive a pulse sequence, compensated for off-resonance 
and rf inhomogeneity pulse errors, which implements a 1T'!2 rotation of the spin density 
operator around a well-defined axis in the transverse plane. A fixed point analysis is applied to 
this and other iterative schemes revealing the source and nature of the compensation. 
Contrasting features of the different schemes are uniquely revealed by this analysis. General 
considerations for the construction of iterative schemes with other stable fixed sets are 
considered. 

J. INTRODUCTION 

The bandwidth response of nuclear spins to applied 
radio-frequency (rf) radiation can be substantially broad­
ened, 1-15 narrowed, 11.13.15-18 or shaped 17.18 in a nuclear mag-
netic resonance (NMR) or other coherent spectroscopic ex­
periment l9 by using composite pulses in place of single 
pulses. Composite pulses are c'losely, spaced trains of rf 
pulses with the amplitudes, phases, and frequencies selec­
tively modulated so as to produce some desired effect, nor­
mally one which cannot be practically achieved with a single 
pulse. Such techniques for exciting nuclear spins are fre­
quently necessitated both by the unusual bandwidth re­
sponse required in some types of NMR experiments, e.g., 
selective multiple-quantum NMR20 and spatially selective, 
in vivo NMR,21 and by the practical limitations on rf instru­
mentation which inhibit uniform excitation of nuclear spins 
with different resonance frequencies and strong couplings to 
one another. 

Much of the work on composite pulse sequences, with 
few exceptions, 9.12.14.22.23 has been concentrated on the prob­
lem of inverting thl! populations of nuclear spin energy lev­
els. Such a response ;.;;an, of course, be accomplished with a 
single pulse, but over relatively small bandwidths deter­
mined and limited by the size of the applied rf field. Several 
workers have demonstrated that the range of transition fre­
quencies, rf amplitudes, and spin coupling constants over 
which the rf radiation is effective at inverting nuclear spin 
populations can be made dramatically broader, narrower, or 
"tailored" with relatively simple composite pulse se­
quences.I-8.10-13.15-18 Comparatively less attention has been 
paid to the related problem of creating transverse magnetiza­
tion from longitudinal magnetization, an obviously impor­
tant component of pulsed coherence experiments. Pulse se­
quences which produce this effect are commonly known as 
composite 1T'/2 pulses. 

One main difficulty with such pulse sequences is that 
there are few readily evident rules for combining pulses to 
form a composite 1T/2 pulse. Not only are such rules difficult 
to determine, but they must also be compatible with the ob­
jective of finding sequences with the desired compensation of 
pulse errors. 

The work presented in this paper demonstrates how 
such problems can be resolved with the use of iterative 
schemes. First, some general rules are advanced which sim­
plify the construction of pulse sequences approximating a 
desired response, such as a 1T/2 rotation of the magnetiza­
tion. Next, it is shown how such rules can be manipulated to 
determine sequences which compensate for individual pulse 
errors. These principles are utilized to derive practical se­
quences which convert longitudinal magnetization to trans­
verse magnetization over wide ranges of both transition fre­
quencies (cuo) and rf intensities (CUI)' The effective rotation 
ofthe longitudinal magnetization is about an axis lying in the 
transverse plane. These properties distinguish these itera­
tively generated sequences from other, previously reported 
sequences,9.12-15 and make them suitable for refocusing,24 
pulsed spin locking,25 time reversal,26 polarization trans­
fer,27 and multiple-quantum experiments,20 for which a net 
rotation of the magnetization of angle 1T'!2 about an axis in 
the transverse plane is necessary. 

II. THEORY 

A. Background 

Irradiation of a quantum mechanical system with some 
pulse sequence Sj initiates evolution of the system from some 
starting state, usually a state of thermal equilibrium de­
scribed by a density matrix proportional to the spin angular 
momentum operator I z ' to some desired final state. The pro­
pagator determining this time evolution will be written 
U, (A.,t) to signify the dependence of the time evolution of the 
system on both the time and on parameters of the spin sys­
tem or incident radiation. Since A. may vary for different 
spins in the sample, it is possible for Ui (A.,!) to assume a 
distribution of values after some time t. One of the basic 
objectives of broadband composite sequence design is to de­
rive sequences for which Ui (A,I) assumes a specific form at 
some time l' and is insensitive to the value of A.. 

A variety of methods have been developed for the treat­
ment of this problem. The approach we adopt in this paper is 
to use an iterative scheme2

!! to generate the broadband pulse 
sequence. This approach has several appealing conceptual 
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FIG. I. Surface in SO( 3) representing the set of rotations which rotate the z 
component of an arbitrary vector into the transverse plane. The three-di­
mensional rotation operators corresponding to such points are those which 
have the Ru element identically equal to zero. 

advantages, discussed elsewhere,l3 over other methods, par­
ticularly in the analysis of long sequences. An iterative 
scheme is a set of operations which can be applied to an 
arbitrary pulse sequence Sj to generate a new sequence Sj + I : 

f(S;) = S; + 1 • (l ) 

The propagator Uj (A,!) for Sj is accordingly transformed: 

F[Uj(A,t)J = Ui+I(A,t). (2) 

Propagator algorithms of this type have been analyzed by 
Tycko et al. using the formalism of iterative maps and their 
fixed points.1I·13·17.IS From this perspective, two conditions 
must be satisfied by f if it is to generate a broadband com­
posite pulse sequence: 

(a) If Vis the propagator corresponding to the desired 
response, then F( V) = V. Such an operator is then said to be 
fixed or invariant. 

(b) If, in addition, broadband behavior over A is de­
sired, V must be a stable fixed point of F with respect to 
variation of A.. Narrowband behavior results when V is un­
stable and fixed. 

A more complete description of this terminology has 
been presented elsewhere. 13.18 

The theoretical analysis discussed below assumes an en­
semble of isolated spin-1!2 nuclei. The space of operators 
applicable to the analysis of such an ensemble is the space of 
real rotations SO (3 ).29 This space can be graphically por­
trayed as a solid sphere of radius 11", as shown in Fig. 1. Ele­
ments of this space will be written R (a) to emphasize the 
fact that they represent rotations about an axis a, through an 
angle 1 a I· The locus of points of particular concern to us here 
are the rotations which take /z into the xy plane, appearing 
within the sphere of Fig. 1 as a cylinder-like surface. This set 
represents the apparent 11"/2 rotations of /z. True 11"/2 rota­
tions of /z into the transverse plane comprise the subset of 

this surface which intersects the xy plane of SO(3). These 
rotations are represented in SO (3) by vectors of the form 

a = 11"/2 [cos ¢,sin ¢,O) . (3) 

Using previously defined notation,13.18 this set of rotations 
will be written R", ( 11"/2), where ¢ is an arbitrary phase shift 
measured from the x axis. While the rest of the surface win 
rotate a longitudinal vector into a transverse vector, the ac­
tual angle of the rotation will be greater than 11"/2 and wiU be 
about an axis not in thexy plane ofSO(3). 

In the next two subsections we examine first how to 
construct pulse sequence iteration schemes which result in 
maps on SO(3) with true 1/'/2 rotations as a fixed set. After 
these operations have been identified, we consider next how 
to determine those operations which are stable at the desired 
fixed set. 

B. Specification of invariance 

The iterative schemes developed in this paper consist of 
two operations, namely, adding a constant phase shift to all 
the pulses of a sequence, foll.owed by concatenation of phase 
shifted versions of the sequence. Adhering to past conven­
tion, a sequence S, with all. of its pulses phase shifted by some 
constant amount ¢; will be denoted Si (¢; ). 

Concatenation of N phase shifted versions of Si consti­
tutes the iterative scheme: 

Sj+ I =Si(¢;I)Sj(¢;2),"S'(¢;N_l)Si(¢;N) (4) 

with the corresponding transformation of rotation opera­
tors: 

R(ai + I) = R(a,.N )R(ai•N_ I)'" R (ai,2 )R(a,.1 ) , (5) 

where R (ajJ ) = R z (¢;j)R (aj)R z- I(rpj). The operator 
R z (¢;j) denotes a positive rotation around the z axis by the 
angle ¢;j' For high field. NMR Hamiltonians, Eq. (5) gener­
any holds true. This combination of operations will be sum­
marized by the notation [¢;I'¢;2"",¢;N-1 '¢;N]' 

The problem we address in this section is the determina­
tion of possible iterative transformations of pulse sequences 
which result in maps on SO(3) with R", (11"/2) as a fixed set. 
These are iterative operations which, when performed on a 
composite 11"/2 pulse S" guarantee that Sj + I will. also be a 
composite 11"/2 pulse. 

Several operations are conceivable. One possibility is to 
form a cycle, or several cycles, with Sit concatenate the cy­
cles, and then insert Si at the end, beginning, or between 
cycles. We use the strict definition of cycle here to denote 
sequences which have the unit operator as a net propagator. 
If applied to a sequence producing a R If ( 11"/2) rotation, the 
fonowing phase shiJt-concatenation operations constitute 
cyclic sequences: 

(i) [¢;,¢; + 11"J , 

(ii) [¢;,¢;,¢;,¢;] , 

(iii) [¢;,¢; + 11"/2,¢; + 311"/2,¢; + 11")' • 

The last sequence is a cycle of the W AHUHA type.30 Inser­
tion of a cycle anywhere within a composite 11"/2 pulse will 
leave the sequence a composite 11"/2 pulse. 
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A second operation is to phase shift Sj and concatenate 
it with itself, forming Sj «(h lSi (,pj)' If Si is a true 1T12 pulse 
sequence, with a corresponding rotation operator which can 
be written R", (1T/2), Si (,pj lSi (,pj) will be an inverting, or 1T 
sequence, with net rotation operator R", + ¢>j ( 1T). Concatena­
tion of N phase shifted versions of S, (,pi) Sj ( ¢Jj ) , N odd, pro­
duces a nominal inverting sequence with a net 1T rotation 
operator Ry (1T), where r can be computed from the rela­
tion 13 

r = tP + ,p I - ,p2 + ... - ¢J N _ I +,p N . (6) 

Inserting S; ( r - tP) or S; (r - tP + 1T) at the beginning or 
end of this sequence will then result in a true 1T 12 pulse se­
quence. 

The final operation we shall consider are rotations of the 
operator R", (1T/2) around the z axis. This operation can be 
understood as follows. If S; is a sequence with net rotation 
operator R", (1T12), then the sequence formed by the phase 
shift concatenation scheme [,p,,p + 1T12,,p + 1T] has as its net 
rotation operator R z (1T12). A variation of this scheme is 
given by [,p,,p + 1T 12,,p + 1T 12,,p + 1T J which results in the 
net rotation R. (1T). Sandwiching S, between two such z ro­
tation sequences, e.g., the schemes [,p,,p + 1T12,,p + 1T] and 
[e,e + 31T 12,e + 1T], results in the overall scheme 

[,p,,p + 1T12,,p + 1T,O,f},e + 31T12,f} + 1T] , 

with a net rotation operator which can be written 
R"'+1T12(1T/2). 

The abovementioned schemes clearly do not exhaust the 
potential operations which lead to the desired in variance of 
R", (1T12). Nor are such schemes confined solely to the case 
of composite 1T 12 pulses; by straightforward extensions, they 
can be applied to conceive operations with other rotations or 
propagators as invariants as well. In addition, the various 
schemes can be combined with one another to produce more 
exotic sequences with the desired invariant propagators. The 
criteria governing the choice, ordering, phase, and number 
of these schemes is the topic of the next section. 

C. SpeCification of stability 

Stability is a general concept which refers to the behav­
ior of points transformed by a map in the vicinity of the fixed 
points of the map. Denoting a fixed point of some mapping F 
in SO(3) as R(a), points in the neighborhood of R(a) can 
be written 

(7) 

where la; I is small. This separation of an operator into a 
product of two operators, one an "ideal" operator, and the 
other arising from some perturbation, is formally identical to 
the separation of operators performed when transforming 
into an interaction representation in time-dependent quan­
tum mechanical problems. 

Applying the mapping Fwith fixed point R (a) to some 
point R Wi) results in a new point R (jl, + I ) which can be 
expressed as 

(8) 

For a generalized phase shift-concatenation scheme 
[,pI,,p2,·.·,,pN- I ,,pN]' a, + .. in the linear approximation, is 
transformed to 

TABLE I. Phase iteration schemes which generate broadband rotations of 
the form R", (11"12), as determined by the numerical procedure described in 

Sec. II. The phases are given in degrees. Symmetric schemes have been 
marked with an asterisk. 

[0, 0,180,135,135,150,330,0] 
[0, 0,180,135,135,160,340,0] 
[0,280,100,135,135,100,280,0]* 
[0,280,100,135,135,110,290,0 ] 
[0,280,100,135,135,120,300,0 ] 
[0,280,100,135,135,130,310,0] 
[0,280,100,135,135,140,320,0] 
[0,290,110,135,135, 90,270,0] 
[0,290,110,135,135,100,280,0] 
[0,290,110,135,135,110,290,0]* 
[0,290,110,135,135,120,300,0] 
[0,290,110,135,135,150,330,0] 
[0,300,120,135,135, 9O,270,OJ 
[0,300,120, 135,135,100,280,0 J 
[0,300,120,135,135,110,290,0] 
[0,300,120,135,135,160,340,0] 
[0,310,130,135,13 5, 100,280,0] 
[O,310,130,135,135,170,350,OJ 
[0,320,140,135,135,100,280,0 J 
[0,320,140,135, I35, 170,350,OJ 
[O,330,150,135,135,11O,290,OJ 
[0,330,150,135,135,160,340,0 J 
[0,330,150,135,135,170,350,0 I 
[0,340, 160,135,135,120,300,OJ 
[0,340,160, 135,135, 150,330,OJ 
[0,340,160,135,135,160,340,0]* 
[0,340, 160,135,135,170,350,OJ 
[0,350,170,135,135, 130,3 IO,OJ 
[0,350,170,135,135,140,320,0] 
[0.350,170,135,135,150,330,0] 
[0,350,170,135,135,160,340,0] 
[0,350,170,135,135,170,350,0]* 

;:::;a/(,pl) +R -1(ul )a,(,p2) 

+ R -) (al)R -I (a2)a, (,p3) 

+R -1(a)R -1(a2)R -I(a3)aj (¢J4) + ... 
= Taa,. (9) 

The notation a, (,pj) = R z (,pi )6, and R (a)) 

= R. (,pi )R(a)R .-I(,pi) has been used here. The last 
equality in Eq. (9) reveals the fact that the expression above 
it is a well-defined linear transformation in three dimensions 
ofa/. 

The fixed point R (a) will be stable in all directions if the 
three complex eigenvalues AI' ,,1.2' and ,,1.3 of Ta satisfy the 
inequality 

/Ajl < 1, (10) 

and will be superstable in an directions if /Ai I = 0 for all j. 
These conditions ensure that 18, + I 1 < 18, I for 18; I small, and 
hence imply that ROl,) converges to R(a). 

The set for which invariance and stability are sought 
consists of all rotations which can be written R", ( 1T 12). Em­
ploying the principles outlined in the previous section, the 
iterative scheme [0,135,135,0], which has a map on SO(3) 
with R", (1T12) as an invariant set, was modified by inserting 
two cycles within the phase shift scheme to form the new 
eight shift scheme 
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FIG. 2. Transverse magnetization created from the initial state I, as a func­
tion of normalized rf field strength. Theoretical values appear as Jines, ex­
penmen tal points as dots. Shown are the results for a single nominai11'/2 
pulse, a nominal 11'/2 pulse iterated once according to the scheme 
[0,0,180,135,135,150,330,0) (8 pulses), and the single pulse iterated twice 
( 64 pulses) . 

[O,cP.,cP. + 180,135, 1 35,cP2'cPZ + 180,OJ . 

The phases are indicated in degrees. The scheme 
[0,135,135,0] was chosen as a starting point since the SOC 3) 
map of this scheme is already stable at R ob ( tr /2) for displace­
ments in the xy plane of SOC 3). Insertion of the two addi­
tional cycles was necessary to obtain stability in all direc­
tions at Rob ( tr /2). A general analytical expression for the 
eigenvalues of the linear operator To. can be derived for 
schemes of this form using Eq. (9), with cP I and cP2 as inde­
pendent variables. The variables cPl and cP2 were then 
searched on a computer for values which satisfied the eigen­
value inequalities (10). Iterative schemes identified in this 
way appear in Table I. Based on the magnitude of the eigen­
values, and the number of phases in the scheme coincident 
with the four quadrature phases, the sequence 
[0,0,180,135,135,150,330,0) was selected from this table for 
closer examination. 

~ 
x 

6 
<1> 
~ 
<1> 
> en 
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~ 

[0, 0, 180, 135, 135, 150. 330, OJ , 
1.0 "T • • . .. . 
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05 

(b) 
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~ 0.5 

~ 

(c) 

0.0 0 
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FIG. 3. Transverse magnetization created from the initial state I as a func­
tion of normalized resonance offset. The progression of pulse se~uences for 
the three boxes foHows that of Fig. 2. Experimental points appear as d.ots, 
and theoretical predictions as Jines. 

III. RESULTS AND DISCUSSION 

A. Bandwidth properties 

The simpJ.est composite pulse sequence which can be 
generated from the scheme [0,0,180,135,135,150,330,0 J is 
an eight pulse sequence, each a nominaltr/2 pulse ordered 
consecutively with the eight prescribed phases. The efficacy 
of this eight pulse sequence at creating transverse magnetiza­
tion from the initial state I z as a function of rffield strength is 
presented in Fig. 2 for zero, one, and two iterations of the 
scheme. The y axis in this plot represents the projection of 
the density operator onto the transverse plane, and is defined 
by the relation 

(M"y) = [(Tr{IxU(t)I.Ut(t)}f 

+ (Tr{IyU(t)IzUt(t)})2J'/2ITr{I;}. (11) 

The increase in the effective bandwidth of the sequence is 
plain. 
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10, 0, 180,135, 135,150,330, 01 

FIG. 4. Simulations of the normalized population inversion ( - M z ) as 
a function of resonance offset for a single nominal 71' pulse (0), the 16 
pulse sequence generated by concatenating 
[900.900 ,90, KO,90I.",90 ,,5,90 ,50,903.'°,90,,) with itself (1), and the 128 pulse 
sequence formed by concatenating the second iterate of the 8 shift scheme 
with itself (2). The greater bandwidth range of the concatenated composite 
71'/2 pulse sequences is a sensitive demonstration of the quality of the rota­
tions which they produce. 

A similar plot is shown in Fig. 3 for the excitation of 
transverse coherence, this time as a function of resonance 
offset. A single pulse is more effective at creating transverse 
magnetization from the initial condition I z than a composite 
pulse. This phenomenon is wen understood as arising from 
the fact that the net rotation produced by a single, off-reso­
nance pulse 1T/2 pulse, while neither about an axis in the xy 
plane nor about an angle 1T/2, nevertheless does rotate Ix into 
the transverse plane quite effectively. 12.31 

This point can be made clearer by comparing the off­
resonance population inversion produced by a pulse se­
quence consisting of two concatenated 1T/2 pulses vs that of 
two concatenated composite 1T/2 pulse sequences. Theoreti­
cal simulations of the population inversion produced by 
these concatenated sequences as a function of resonance off­
set are shown in Fig. 4. It is apparent from these simulations 
that the concatenated composite pulses produce a better 1T 
rotation than do the concatenated single pulses, even though 
the composite pulse sequence appears less effective at con­
verting longitudinal polarization to transverse polarization 
than the single pulse. Moreover, the phase of the signal from 
a single 1T /2 pulse varies linearly as a function of the rf offset; 
this phase distortion is diminished in the composite pulse 
sequence over a small range of offsets. Following Levitt's 
classification scheme, 15 the eight pulse sequence can be con­
sidered an A type of sequence within this range. Outside this 
range, the sequence becomes of the B 1 type. 

An experiments reported in this section were performed 
on an H 20( 1) sample sealed in a 1.5 mm capillary tube at a 
proton Larmor frequency of 360 MHz. The rf strength for 
these experiments varied from 7 to 11 kHz. The radio fre­
quencies for the probe and the receiver mixing were genera­
ted in separate, but locked, sources, permitting off-reso­
nance excitation with on-resonance detection. 

B. Previous work 

Levitt and Ernst have proposed designing composite 
pulse sequences for converting longitudinal magnetization 
to transverse magnetization by use of an iterative proce­
dure.22 One version of their procedure, which they called a 
recursive expansion, consists of concatenating a starting se­
quence Sj with its inverse sequence S j- 1 phase shifted by 
1T/2 rad. These two operations are summarized by the nota­
tion Sj + 1 = Sj (S j- I )90' If we denote the propagator de­
scribing the time evolution of the spin system during the 
sequence Sj as Uj (A,f), the inverse sequence S j- 1 can be 
defined as the sequence which has as its propagator the uni­
tary operator U: (A) ,t). 

Two features distinguish the recursive expansion ap­
proach from the phase shift-concatenation schemes devel­
oped in this paper. The first is that the fixed set of the map on 
SO(3) of the recursive expansion does not include rotations 
of the form R", ( 1T /2). The procedure instead generates 
rotations which take place about unit vectors of the form 
[(2/3) 112 cos ¢,,(2/3) 1/2 sin ¢" - r 1/2] through an angle 
of 21T/3, leading to the effective propagator 

V=exp{ - 2;i [(2/3)1/2cos¢'Ix + (2/3) 1/2 sin#y 

_(3)1/2/z ]}. (12) 

One consequence of this fact is that concatenating two iden­
tical such sequences will not result in an inverting (1T) pulse 
sequence. 

The second difference of the recursive expansion is that 
it requires, as one step of the procedure, the formation of the 
inverse sequence S j- 1. If such an inverse sequence could be 
constructed, the recursive expansion would produce se­
quences effective at virtually all resonance offsets and (j) I 

values. However, when the resonance offset is not zero, there 
is no known method for creating the inverse sequence S j- I. 

To minimize this problem, methods for constructing ap­
proximate inverses have been suggested, and starting with an 
initial sequence which is itself compensated for resonance 
offset errors has been proposed. Even with these measures, it 
is difficult to accurately implement the recursive expansion 
procedure off resonance. A large phase distortion in the 
spectrum as a function of offset results. 12 

A second iterative procedure for generating 1T/2 rota­
tions is the phase shift-concatenation scheme 
[0,135,135,0] Y Iteration of this scheme transforms rota­
tion operators of the form R", (1T/2) to operators of the form 
R", + 11'12 ( 1T /2). Sequences generated by this scheme have 
been shown to be compensated for rf inhomogeneity effects, 
and hence are broadband over (j) I' However, such sequences 
are not compensated for resonance offset errors, and the per­
formance of these sequences is accordingly degraded when 
the rf is moved away from the spin resonance frequency. 

The last class of composite sequences we shall consider 
are those developed using coherent averaging theory.6.12 
Several sequences of phase and time-modulated pulses were 
designed which produce a constant 1T/2 net rotation of the 
spin density operator about a fixed axis in the xy plane of 
SO (3). As a result, these sequences show little phase distor-
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FIG. 5. The movement of points in SO(3) resulting from the iteration ofa 
map with the set R", (11'/2) as a stable fixed set and the origin as an unstable 
fixed set. R", (11'/2) is shown here as being stable in all directions. The map of 
the scheme (0,0,180,135,135,150.330,0] possesses this type of stability. 

tion of the NMR signal even for large pulse errors. These 
sequences were formulated to compensate for errors of a 
specific type, e.g., resonance offsets or rf missets. By way of 
contrast, the sequences presented here are designed to com­
pensate for more than one type of error, and can be succes­
sively refined by iteration. Similar refinement is much more 
difficult to achieve within the context of coherent averaging 
theory. 

C. FIxed pOint analysis of iterative schemes 

The displacement of points in SO ( 3) by some map is 
termed the flow. 13.18 The direction of the flow for the map of 

z 

x 

FIG. 6. Two-dimensional projection of Fig. 5. For simple phase shift-con­
catenation schemes, cylindrical symmetry permits such two-dimensional 
representations. The distance between points I and 2 is 11'/2. 

z 

x 

FIG. 7. Flow for a map which has R",(11'12) as a fixed set unstable in the z 
direction but stable otherwise. The map of the scheme [0,135,135,0 I exhib­
its flow of this type. The instability off the transverse plane means that se­
quences generated by this scheme will not be compensated for imperfections 
caused by off-resonance effects. The origin is an incidental, unstable fixed 
point of this map. 

the scheme [0,0,180,135,135,150,330,0) is schematically 
shown in Fig. 5 by the arrows pointing in towards the 
R\!, (11'12) circle, indicative of the stability of the map at this 
fixed point. The origin is an incidental, unstable fixed point 
of the map. which is reflected in the outward directed arrows 
emanating from this point. A two-dimensional version of 
this image appears in Fig. 6. This two-dimensional image 
can be contrasted with the two-dimensional flow for the map 
of the scheme [0,135, 135,OJ shown in Fig. 7. Points dis­
placed from the fixed. set R", (1T/2) in the xy plane converge 
towards the fixed set for this map, but move away from this 
fixed s.et if there is a displacement in the z direction. The 
fixed set is therefore stable only in certain preferred direc­
tions. 

TIle recursive expansi.on procedure has a map on SO (3) 
producing flow of the type diagrammed in Figs. 8 and 9. This 
flow assumes formation ()f a perfect inverse rotation in the 
scheme S; (S, !) ,>/ The ",holt: of SOC 3) excludi.ng the z axis 
an.d the equator convergei'. 1Ir.tl.<mthly t{} fotations of the type 
described by Eq. (12). It hw,been !ihowl1previously that this 
fixed set is supers table. D The su.pershtbility of this map was 
demonstrated for small disphwements fi:'om the fixed set; 
however, the assumption of f,nm.U d.isplacements is not nec­
essary, and it can be shown that tor the idealized recursive 
expansion, the whole of SO (3) excluding the z axis and the 
equator must converge to the stable fixed set indicated. The 
remainder of the space converges to the origin, which is su­
perstable only in the z direction. 

The flow of these maps can be further studied by follow­
ing the individual trajectories of an initial distribution of 
points in SO (3 ). One possible configuration appears in 
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z 

~----~~----.. y 

x 

FIG. 8, The fixed sets and flow for a map on SO(3) of the recursive expan­
sion schemeSi (Si- 1)90' The stable fixed set is a circle on the set of "appar­
ent 'TT/2 rotations" shown in Fig, L This flow assumes the formation of a 
perfect inverse rotation in the recursive expansion, and hence represents an 
idealization of its stability properties. 

Fig. 10. The movement of points from this initial state for 
the three iterative schemes [0,135,135,0], 
[0,0,180,135,135,150,330,0], and S;(S;-I)90 to their re­
spective fixed points is clearly evidenced in Figs. 11, 12, and 
13 by the congregation of points around the fixed points. 
Again, the difference in the fixed sets of the recursive expan­
sion scheme and the phase shift-concatenation schemes is 
obvious. 

z 

x 

2 1 
--e-

1 

FIG. 9. Two-dimensional version of Fig. 8 for the recursive expansion pro­
cedure. The idealized recursive expansion procedure produces a mapping 
on SO( 3 ) with cylindrical symmetry. The distance in SO (3) between points 
I and 2 is 2'TT/3, and the angle 8 is cos-I(3-I/2). 
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Initial Condition 

FIG. 10. An initial distribution of points in SO{ 3). The general movement 
of points in SO ( 3) when transformed by some map can be inferred by fol­
lowing how points progress away from this initial condition as the map is 
iterated. Stable fixed points can be identified by the clustering of points 
around certain areas. The trajectory of points for various maps with this 
configuration of points as the initial condition are displayed in the next three 
figures. 

....' ....... . ..... 

(a) One iteration (b) Two iterations 

. ',' 

.' •••••• .e. 
\ 

·,·· .. ;·/~·:'-

:~#.~1;~:, 
:.:.;.~.::~ 

:' .,', ,~ . 
. " 

(e) Four iterations (d) Eight iterations 

FIG. II. The distribution of points in SO(3) following iteration of the 
scheme [0,135,135,0], assuming the initial configuration in Fig. 10. The 
results of one, two, four, and eight iterations are shown. 
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0, 0, 180, 135, 135, 150, 330, o! Recursive Expansion 

(a) One iteration (b) Two iterations 

.' . . ' . 

(.:~ ........ . 
':. .. : ": . 

. : 

(c) Four iterations (d) Eight iterations 

FIG. 12. Configuration of points following iteration of the scheme 
[0,0,180,135,135,150,330,0), assuming the initial condition in Fig. 10. 
Again, one, two, four, and eight iterations are shown. 

A second notable feature to observe in these figures is 
the orderly flow resulting from the recursive expansion, as 
contrasted with the two phase iteration schemes. This order­
ly flow is a consequence of the use of an exact inverse oper-

) 
(a) One iteration (b) Two iterations 

(c) Four iterations (d) Eight iterations 

FIG. 13. Distribution of points following iteration of the idealized recursive 
expansion schemeS, (S ,- I)"", assuming the initial condition in Fig. 10. The 
results of one, two, four, and eight iterations are shown. 

ation as part of the iterative scheme. Any practically realiza­
ble operation for forming an inverse sequence, however, 
results in chaotic flow similar to that exhibited by the two 
other schemes. 

FIG. 14. Two-dimensioinal basin image of 
SO( 3) containing the z axis for the map of 
the scheme [0,135,135,0]. The cylindrical 
symmetry of the map ensures that all such 
slices will be identical. Light colored re­
gions represent rotations which converge 
to the form R.(11'12). the stable hed 
point of Fig. 5, as the map is iterated. The 
density scale to the left indicates the num­
ber of iterations required for convergence. 
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A final point to note about these diagrams is the reflec­
tion symmetry present in the diagram for the scheme 
[0,135,135,0]. This symmetry is a natural result of the 
symmetry of the scheme itself. 13 Since 
[0,0,180,135,135,150,330,0] is not a symmetric scheme, the 
reflection symmetry is absent in the diagram of the map for 
this scheme. 

Computer generated basin images showing the regions 
ofSO(3) which converge to the fixed set R¢ (17'/2), and the 
number of iterations required for convergence, for maps of 
the schemes [0,135,135,0) and [0,0,180,135,135,150,330,0] 

FIG. 15. Two-dimensional basin image of 
SOC 3) containing the z axis for the map of 
the scheme [0,0,180,135,135,150,330,OJ. 
Light colored regions show rotations 
which converge to the stable fixed set, 
namely, rotations of the form R .. (1I'/2). 

are shown in Figs. 14 and 15. The program written to gener­
ate these images employed two criteria for determining con­
vergence to the fixed set: the first is that the net angle a i of 
the rotation operator must meet the inequality 190" - ail 
,5°; the second is that the square of the R zz element of the 
three-dimensional rotation matrix R (a i ) must be less than 
0.0076. These two criteria in combination test for conver­
gence to only those rotations of the general form R ¢ ( 17'/2). 
As expected, the basin image for [0,135,135,0] is mostly 
dark, indicating the instability of the fixed set for displace­
ments in the z direction. This is to be contrasted with 

FIG. 16. Two-dimensional basin image 
in SO(3) containing the z axis for 
the map of the scheme 
[0,280,100,135,135,100,280,0]. The main 
feature distinguishing this image from 
that in Fig. 15 is the additional horizontal 
plane of symmetry resulting from the 
phase symmetry of the scheme. 
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the lighter basin image for the scheme 
[0,0,180,135,135,150,330,0), which is stable in all directions 
around the fixed set. Again, the xy reflection symmetry in 
the image for [0,135,135,0] is absent in the basin image for 
[0,0,180,135,135,150,330,0]. The additional symmetry of 
basin images for symmetry schemes is more readily appre­
hended for broadband schemes, which have bigger basins. 
An example of this appears in Fig. 16, which displays the 
basin image for the broadband symmetric scheme 
[0,280,100,135,135,100,280,0] taken from Table I. 

A z slice basin image for the recursive expansion proce­
dure has been presented in Ref. 13. The basin image appear­
ing there was generated by testing only for the second of the 
two criteria enumerated above. The contours of this basin 
are smooth and well defined, and suggest in shape the object 
shown in Fig. I containing the set of apparent 11/2 rotations. 
Adding the first circulation from above results in an image 
which is completely dark, while adding the criterion 
1120· - a j I <5· results in a basin image indistinguishable 
from the one in Ref. 13. 

IV. CONCLUSION 

We have demonstrated an eight pulse iterative scheme, 
consisting only of conveniently calibrated 1T/2 pulses, which 
provides substantial compensation of off-resonance and tim­
ing misset pulse errors. This sequence produces a net rota­
tion of the spin density operator about an axis in the xy plane 
of angle 1T/2. Although the sequence requires pulses with 
phases other than the four standard quadrature phases, the 
eight pulse sequence should still be relatively easy to gener­
ate by placing a programmable, variable phase shifter in se-. 
ries with the quadrature circuit. This phase shifter need only 
be able to produce three distinct phase shifts ofO·, 135°, and· 
150° for the sequence we have examined here. This capability 
is becoming increasingly standard in most modern commer­
cial NMR spectrometers. Furthermore, simulations indi­
cate that systematic phase errors of at least ± 5° can be toler­
ated without significant degradation in performance. 

Improvement and analytical development of these se­
quences might proceed along several. lines. The first is to 
develop simil.ar phase shift-concatenation schemes which 
are either symmetric or antisymmetric. Several of the se­
quences appearing in Table I are, indeed, symmetric, though 
none are antisymmetric. Antisymmetri,: schemes are, in 
principle, more desirabl.e, since they offer the possibility of 
generating sequences which excite phase coherent NMR sig­
nals. The role and utility of the symmetry of a composite 
pulse sequence has been thoroughly considered elsewhere.'3 

A second improvement would be to determine schemes 
with maps on SOC 3) which are supers table at the fixed set. It 
is a remarkable feature of the schemes in this paper that none 
of them results in a vanishing first order error term, i.e., none 
of them are supers table, and yet the sequences they generate 
are stiI1. wen compensated. for pulse errors. Nevertheless, im­
proved sequences might be discovered. with the use of super­
stable maps. 

Another route to an improved sequence would be to 
investigate other initial sequences on which to begin iterat­
ing. Initial sequences represented by rotations in SO (3 ) 

preferentially concentrated within the basin of the map 
might provide a better starting point than a single 1T /2 pulse. 

Deriving schemes with other fixed sets in addition to 
R I/; (1T /2) is a fourth possible area of development. Maps 
with more than one stable fixed set provide the means for a 
shaped or tailored bandwidth response, as has been demon­
strated elsewhere. '7•

ls The methods proposed in this paper 
can serve as the guidelines for specifying one or more other 
arbitrary fixed sets. 

The formalism presented here has distinct advantages in 
the design and analysis of highly compensated NMR pulse 
sequences. Though the focus of this paper has been on the 
special case of 1T /2 pulse sequences, the general principles 
used here can be applied to find iterative schemes for other 
types of responses as welL 
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