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Iterative schemes have been used in NMR to generate pulse sequences which excite spin 
systems over narrow or broad ranges of transition frequencies and radio frequency amplitudes. 
Mathematical methods employing iterative maps and related concepts from nonlinear 
dynamics have been applied in the analysis of these schemes. The effect of transforming a pulse 
sequence by an iterative procedure can be represented as an iterative map on a quantum 
statistical propagator space, with fixed points in this space corresponding to certain desired 
responses of the spin system. The stability of these points with respect to variations of 
parameters, such as amplitudes or energies, determines the bandwidth characteristics of the 
corresponding sequence; broadband behavior results from stable fixed points, and narrowband 
behavior from unstable fixed points. This paper examines schemes which produce maps with 
more than one stable fixed point. Such schemes are shown to generate sequences which exhibit 
bistable or selective, bandpass behavior. Spatially selective NMR, spin decoupling, 
nk-quantum selective multiple-quantum NMR, isotope selective zero-field NMR, and optical 
information storage are some of the applications which can benefit from bandpass selective 
excitation sequences. 

I. INTRODUCTION 

The excitation of specific, wen-defined responses is a 
fundamental and widespread objective of pulsed nuclear 
magnetic resonance and other types of spectroscopy. Often, 
this objective must be achieved over a range of experimental­
ly variable parameters and in the presence of experimental 
constraints, such as limitations on irradiation power. For 
these cases, a single radio frequency (rf) pulse does not nor­
mally suffice to produce the desired response. In an NMR 
spectrum with several lines, for example, most transitions 
will not be resonant with the incident rf, precluding the uni­
form excitation of all lines simultaneously with a single 
pulse. To counter this fundamental problem, composite 
pulses, i.e., sequences of time- and phase-modulated pulses 
which are insensitive to the deficiencies of individual pulses 
were proposed 1 as replacements for single pulses. In some of 
the early applications of a composite pulse, it was shown that 
simple sequences consisting of three or more pulses could 
uniformly invert the equilibrium populations of isolated two 
level systems over ranges of resonance frequencies and rf 
amplitudes considerably broader than those of a single 1T 

pulse.2- 15 Composite pulse excitation methods have been 
fruitfully applied to other problems as wen, most notably 
narrowband excitation,II.14.16 heteronuclear decoupling in 
liquids,17-25 broadband double quantum excitation,26 uni­
form excitation of strongly coupled systems,27.28 coherence 
transfer between different nuclear spin species,29 and sup­
pression of homonuclear scalar interactions.30 An alterna­
tive approach employing continuous modulation of phase 
and frequency related to adiabatic rapid passage and self­
induced transparency has been demonstrated by Baum et 
01.13 

0) Present address: Oxford University, South Parks Road, Oxford, OX! 
3QR, England. 

In the great majority of the work on composite pulses, 
the common motivation has been to modify the effective 
bandwidth of the response of nuclear spins with respect to 
some parameter. Broadband inversion sequences, to take a 
prominent example, maximize the range of transition fre­
quencies or amplitudes over which the rf is effective in in­
verting populations, while narrowband sequences minimize 
the effective bandwidths of inversion. For many experiments 
in NMR, however, more useful sequences are those which 
can excite a specific, tailored response. The tailoring of a 
response refers to the selective and uniform excitation of 
nuclear spins depending on the value of certain specified pa­
rameters, e.g., the Larmor frequency Wo or the rf amplitude 
WI' In contrast to broadband or narrowband behavior, a tai­
lored response exhibits bandpass behavior. 

Bandpass behavior is obtained in NMR when nuclear 
spins are selectively excited, meaning that some spins in the 
sample evolve to one final state, and all other spins to a sec­
ond and distinct final state. Ideally, the final state to which a 
given spin evolves is determined solely by the value of some 
experimental parameter...t or set of parameters {...t}. Assum­
ing the two final states are experimentally distinguishable, 
variations in A may then be used to discriminate between 
nuclear spins. 

In this paper, we utilize a form of analysis based on itera­
tive maps and their fixed points recently introduced by 
Tycko et 01.11.14 to demonstrate how NMR pulse sequences 
with bandpass specificity can be generated. This work ex­
pands upon results presented in a recent Letter. 31 The se­
quences we derive here selectively and completely invert res­
onant isolated spins-I/2 for designated ranges of WI' and 
Jeave undisturbed from equilibrium all spins which lie out­
side the selected WI passbands. These kinds of sequences per­
mit the precise discrimination of nuclear spins which differ 
in some parameter of interest and thus act as spin filters. 
Experiments in topical NMR, for example, rely on spatially 
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inhomogeneous rf fields to distinguish between spins in dif­
ferent locations in the sample.32 In zero field NMR,33 where 
the Zeeman energy of nuclear spins is absent, amplitude se­
lective pulse sequences can also be utilized to discriminate 
between different types of nuclei based on their different 
gyromagnetic ratios. Other applications of bandwidth spe­
cific excitation methods include nk-quantum selective mul­
tiple quantum NMR,34-36 and optical information storage. 37 

U. GENERAL THEORY 

A. Background 

The problem of choosing optimum combinations of 
pulse phases, frequencies, durations, amplitudes, and spac­
ings for pulse sequences has been the subject of a variety of 
theoretical treatments in NMR, including average Hamilto­
nian theory,38--40 series expansions of rotation operators,3.4 
inverse transform analyses,41--47 Magnus expansions,1,12,48 
and Bloch vector methods.49 Although many important se­
quences have been obtained from these methods, computa­
tional complexity typically limits their applicability to se­
quences with few experimentally variable parameters and 
small numbers of pulses. This limitation is largely avoided by 
using an alternative approach which employs iterative 
schemes to analyze and construct long, highly refined pulse 
sequences.9,l1,I4-25,50 Iterative schemes are algorithms ap­
plied repetitively to generate a series of pulse sequence iter­
ates So, Sl' S2' etc, These algorithms are comprised of trans­
formations designed to improve arbitrary pulse sequences 
with respect to some stated criterion, such as the broadband 
inversion of spin populations. One possible transformation 
of a pulse sequence, for example, would be to add some con­
stant amount to the phases of all the pulses. Other transfor­
mations which have been proposed include the concatena­
tion of pul.ses, the cyclic permutation of pulses, and forming 
the inverse of a sequence. Such iterative schemes in NMR 
were introduced by Warren et ai.50 as a means for obtaining 
sequences which selectively pumped high order multiple­
quantum transitions. 

An important feature of this approach is that an itera­
tive procedure is employed to generate iterates which con­
verge to some specifically desired form. The close formal 
resemblance of this procedure to iterative functions of the 
type studied in nonlinear dynamics was recognized by Tycko 
et ai., 11 and a comprehensive reformulation of pulse iteration 
schemes has subsequently been given by them in terms of this 
formalism. 14 The utility of iterative maps and their fixed 
points for simulating nonlinear behavior has been well estab­
lished, and is widel.y appreciated in many fields outside of 
NMR. 51,52 In the next section, we provide a short synopsis of 
some general and useful topics in the theory of iterative 
maps. After this, we show how these ideas are applied to 
pulse iteration schemes in NMR, with particular emphasis 
on the derivation of algorithms which can generate bandpass 
type sequences. The effect of the initial sequence on the selec­
tion of the excitation bandwidth is examined, and a general 
procedure for tailoring the inversion bandwidths discussed. 
FinaHy, a method which takes advantage of the sharp cutoff 
of the bandpass frequencies is investigated as a way to obtain 

I1J I narrowband, phase coherent 900 pulses for Use in spatially 
selective NMR experiments. 

B. Review of iterative maps 

Generalized definitions for the terminology introduced 
here can be found in several texts and articles, 51-57 but for the 
ensuing discussion it will be helpful to briefly review some of 
the more important concepts. The approaches we take in this 
paper are based on mathematical. methods which employ 
iterative maps to model nonlinear dynamical processes. The 
term map will be used here to denote a function which trans­
forms points in some arbitrary space L to other points in the 
same space L. A special. feature of such functions is that they 
can be applied iteratively, a property which is summarized 
by the equation: 

Uj + I = F( Uj ). (1 ) 

This equation states simply that the (i + 1)st point is ob­
tained from the ith point by applying the map F. As an exam­
ple, the ith point may be a pulse sequence, and the map Fan 
iterative scheme. 

Fixed points of a map are defined by the equality: 

U=F(U). (2) 

These points are classified according to their stability. The 
stability of an iterative map refers to the effect the map has 
on points in the neighborhood of the fixed point. Operation­
ally, a fixed point is considered stable if points in the neigh­
borhood of the fixed point converge to the fixed point upon 
iteration of the map, For the special case of a map on the one 
dimensional space R I, the derivative of the map at stable 
fixed points obeys the ineqUality: 

I dF I < 1. (3) 
dU u=u 

"Superstability" results when this derivative equals zero. 
The set of points which converge to the fixed point is referred 
to as the map's basin. 

If points in the neighborhood of a fixed point do not 
converge to the fixed point as the map is iterated, then the 
fixed point is unstable. This occurs in the case of a one di­
mensional map when the derivative of the map evaluated at 
the unstable fixed point satisfies the inequality: 

I dFI' > 1-
dU u=u 

(4) 

These definitions can be generalized to a map F on a higher 
dimensional space by replacing the derivative of the one di­
mensional map with the eigenValues of the Jacobian matrix 
of F evaluated at the fixed points. Since the magnitude of 
some eigenValues may be less than one and others greater 
than one, it is possible for fixed points in a multidimensional 
space to be stable along some directions but unstable along 
others. Examples of this kind of behavior are observed in 
pulse iteration schemes, and will be pointed out later. 

An important feature of a one dimensional map with 
two stable fixed points is depicted in Fig. 1. TIlls figure pro­
vides a simple proof that so-called bistable maps must have 
at least one unstable fixed point between two stable fixed 
points. 56 The fixed points of a map on R I appear as the points 
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FIG. 1. An example of a one dimensional map with two stable fixed points. 
appearing as the intersection points of the map with the line y = x with first 
derivative less than unity. The stability of these two fixed points necessitates 
the presence of an unstable fixed point intermediate between the two stable 
points. This point is the intersection point of the map with the y = x line 
where the first derivative is greater than one. 

where the iterative map F intersects the linear function 
y = x. As mentioned earlier, the derivative ofF evaluated at 
stable fixed points is less than unity. The figure shows that 
between two such points, there must be at least one point 
where F crosses the y = x line and has derivative greater 
than unity. From this, it follows that at least one unstable 
fixed point exists between the two stable fixed points. Note 
that this does not exclude the possibility of additional fixed 
points, both stable and unstable, between the two postulated 
stable fixed points. 

The consequences of these results for iterative schemes 
in bandpass sequences will be discussed in the next section. 

C. Applications of iterative maps to spectroscopy 

In quantum mechanics, the evolution in time of states 
and operators is governed by a unitary operator known as 
the time development operator, or propagator. In its most 
general form, this operator can be written: 

U(A,t) = Texp{ - ~ L./Jr (A,t')dt'}, (5) 

where Tis the Dyson time ordering operator and ./Jr(A,t) is 
the Hamiltonian. The effect of time-dependent perturba­
tions on the state of the system, such as a pulse sequence, is 
accounted for through the time dependence of the Hamilto­
nian ./Jr(A,t). 

Besides time, the propagator and Hamiltonian can de­
pend on other parameters as well, which we indicate by mak­
ing U and ./Jr functions of the generic variable A. In NMR, 
these parameters might include the rf amplitude W l' the reso­
nance frequency, spin coupling constants, or position in 
space. For a macroscopic NMR sample, these parameters 
normally assume a range of possible values; there may, for 
example, be several lines in the spectrum, and therefore sev­
eral different resonance frequencies. Accordingly, U(A,t) 

may also assume a range of different values for some time t. 
NMR experiments, however, usually require a specific pro­
pagator V in order to bring about some desired final condi­
tion. The desired final condition might, e.g., be a population 
inverted state, in which case the desired V would be a 1T 

rotation. 
A propagator which produces some desired final state is 

most frequently obtained in NMR with a radio frequency 
pulse sequence. If the propagator U(A,t) for a pulse se­
quence is V for a wide range of the parameter A, then the 
sequence is termed broadband in A. If the propagator repre­
senting the pulse sequence is V for only a narrow range of A 
values, then the sequence is narrowband with respect to A. 
These two cases have already been extensively treated, and 
many such sequences for different applications have already 
been proposed. If, however, the propagator for the sequence 
is VI for some values of A, and U2 for most other values of A, 
then we define the sequence as being bistable in A. This bista­
bility can be exploited to produce bandpass behavior, and it 
is on this last class of sequences that we shall concentrate in 
this paper. 

The fixed point analysis can be used to address band­
width excitation problems in the following way. Pulse iter­
ation schemes are rules which transform one pulse sequence 
Sj into another pulse sequence SI + 1 with improved, more 
desirable properties. They may therefore be regarded as 
maps on propagator space (a subspace of Liouville space) 
insofar as they transform the propagator UI (A,t), corre­
sponding to the pulse sequence Sj, to the propagator 
UI + 1 (A,t), corresponding to the pulse sequence SI + 1 , in the 
mannerofEq. (1). The initial propagator Uo(A,t) may have 
a range of possible values due to the fact that the parameter 
A, on which Uo{A,t) depends, may itsetfrange over a spec­
trum of values. The object, then, is to obtain V from an itera­
tive map given the dependence of propagators on the param­
eter A. 

In order to create a broadband sequence by using an 
iterative scheme, the associated iterative map must generate 
a series of iterates Uj + 1 (A,t) which converge to the desired 
propagator for a wide range of A values. To achieve this, the 
limit of convergence of the map must be insensitive to the 
choice of the initial condition Uo(A,t). In the language of 
nonlinear dynamics, V is a stable fixed point of the map on 
propagator space; nearby points converge to Vas the map is 
iterated, and V is itself invariant upon iteration of the map. 

Narrowband sequences on the other hand are generated 
by maps which are unstable at their fixed points. Because of 
this instability, the only point which gets mapped to the fixed 
point V is the fixed point itself. The implication then, is that 
only a very narrow range of parameters result in pulse se­
quence propagators which get mapped to the unstable fixed 
point. 

D. Mathematical preliminaries 

To iHustrate these concepts more concretely, we will 
consider specifically propagators for nuclear spin systems 
consisting of isolated spins-1/2. The high field rotating 
frame Hamiltonian for such systems is, in general, a linear 
fun.ction of the spin angular momentum operators Ix, Iy ' 
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and I z • As a consequence, aU possible propagators for this 
system assume the form: 

U(t) = exp{ - ia(r'I)}, (6) 

where r is a unit vector. Propagators of this form are quan­
tum mechanical. rotation operators. 

The state of such a system, as described by the density 
operator formalism, can also be written as a linear function 
of the spin angular momentum operators, and is therefore 
specified by a three dimensional vector which we label M. 
The time behavior of the density operator under the propa­
gator in Eq. (6) can be represented as a rotation of M about 
the axis r through an angle a. This expresses the well-known 
result that the time evolution of isolated two-level systems, 
neglecting relaxation, can be rigorously interpreted as the 
rotation of a three dimensional Cartesian vector, namely, the 
polarization vector. 49,58 

This result allows us to restrict our attention to the sub­
set of spin propagators which can be described as rotations in 
three dimensional space. All. rotations in this space can be 
represented by 3 X 3 real orthogonal matrices with determi­
nant equal to unity. 59~1 This set of rotations forms the group 
SO( 3), pictured in Fig. 2 as a solid sphere of radius 1T. A 
rotation is uniquely defined in this representation by a unit 
vector drawn from the origin, denoting the axis of the rota­
tion, and a distance from the origin, denoting the angle of the 
rotation. The axis and angle may be identified in Eq. (6) as r 
and a, respectively. 

Adopting the notation of Ref. 14, an element in SO( 3 ) 
describing a rotation about an angle a around one of the 
three orthogonal axes x, y, or z will. be written as Rx (a), 
Ry(a), or Rz(a), respectively. A rotation about an axis in 

---

x 

z 

----- -------
Origin 

~-------+----y 

j Equ.~' 

SO (3) 

FIG. 2. Graphic representation of the real three dimensional space of rota­
tions SOt 3) as a sphere of radius fT. Rotations are represented as vectors in 
this space, with the direction of the vector defining the axis of the rotation 
and the norm of the vector defining the angle of the rotation. 

the xy plane of SO( 3) making an angle ¢ with the x axis will 
appear as R~ (a). A generalized rotation around an axis r 
about an angle a will be represented asR (a). For the sake of 
expedience, we will work exclusively with SO( 3) and per­
fonn aU calculations in this representation, and regard time 
evolution operators of the spin system as rotation operators. 

E. Flow diagrams 

The set of rotations commonly referred to as 1T or inver­
sion pulses appears in Fig. 2 as the circumference of the 
sphere in the xy plane, known as the equator. This set con­
tains all rotations which take + z to - z. The identity oper­
ator is represented on this picture by the origin. 

Broadband inversion sequences for uncoupled spins are 
generated from iterative maps in SO( 3) which have the 
equator as a stable fixed set. For an initial point R (ao) in the 
neighborhood of the equator, such maps generate a series of 
iterates R (a i ) which converge to the equator, that is, to a 1T 

rotation. The convergence to the equator of points in the 
neighborhood of the equator is depicted in Fig. 3 (a). This 
figure shows an xy cross section of SO( 3). A second fixed 
point of this hypothetical map is the origin, shown here as an 
unstable fixed point. The arrows indicate the direction in 
which points in this plane move, away from the origin and 
towards the equator, when the map is iterated. This motion 
is called the flow of the map. 54-57 It should be noted here that 
this map is atypical in the sense that it shows points in the xy 
plane being mapped only to other points in the same plane. 
In general, a map on SO( 3) will not behave in this way. 
Special. cases of maps which do have this property play an 
important role in the future discussion, however, and will be 
examined presently. 

Figure 3 (b) illustrates the flow of points in the xy plane 
of SO(3) for maps which produce narrowband 'IT pulse se­
quences. Here, the equator and origin are fixed points as for 
the broadband case. The direction of the flow, though, has 
been reversed; it is now the equator which is unstable and the 
origin which is stable. The equator is fixed so that if R (u) is a 
point on the equator, i.e., is a 1T rotation, then F[R (a)] will 
remain a 'IT rotation. All other points on this pl.ane, however, 
converge to the origin, becoming identity operations. The 
result is a sequence which inverts spins over a narrow range 
of some parameter ,1, and does not affect spins which lie 
outside this narrow range. 

The flow of points for a map that produces a square, or 
bistable, inversion sequence is shown in Fig. 3 (c). This map 
has the origin and the equator as fixed sets, but in contrast to 
the two previous cases, both, instead of one, of the fixed sets 
are stable. A significant consequence of this bistability is the 
presence of an unstable fixed circle in the xy plane between 
the origin and the equator. In Sec. n B, the necessity of an 
unstable fixed point between two stable fixed points for a one 
dimensional map was demonstrated. This result does not 
generally apply to maps on SO( 3), since SO( 3) is not a one 
dimensional space. The particular map shown here is excep­
tional, however, because it maps points on the xy plane only 
to points also on the xy plane. It will be shown in the next 
section that if we ignore the rotation around the z axis pro­
duced by the map, then a map on SO( 3) with this property 
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(a) Broadband 1r (b) Narrowband 1r 

(c) Square 1r 

FIG. 3. Cross section of the xy plane of SO( 3) illustrating the flow of maps 
for (a) broadband, (b) narrowband, and (c) bandpass iterative schemes. 
The arrows indicate symbolically the direction in which points on this plane 
move when operated on by the various maps, towards stable fixed points 
and away from unstable fixed points. 

can be considered fundamentally one dimensional. Given 
this, the bistability theorem introduced in the previous sec­
tion becomes applicable to the present case. 

The bistability of the map in Fig. 3 (c) is evidenced by 
the opposing arrows showing convergence to two fixed sets, 
viz., the equator and the origin. The existence of the third 
unstable fixed set is required by the continuity of the map, 
and will be examined more thoroughly later on. This figure 
suggests that on this plane, three distinct classes of points 
exist. First are the points within the unstable fixed circle; 
these points move towards the origin as the map is iterated. 
Second is the unstable fixed circle itself, which, by definition, 
remains invariant, and to which no other points converge. 
The third class is the set of points which lie outside the unsta­
ble fixed circle and converge to the equator as the map is 
applied. 

The effect of applying the map is to move points closer to 
the origin or the equator depending on whether the initial 
point R(ao) is inside or outside the unstable fixed circle. 
This movement to one of two stable fixed sets of propagators 
essentially is the origin of the bistable bandpass response. 

The preceding sections have established the following 
ideas. Pulse iteration schemes transform a pulse sequence Si 
to SI + I Associated with this transformation of pulse se­
quences is a transformation of the propagator Ui to the pro­
pagator Uj + 1 • This transformation is a map on the propaga­
tor space. To obtain a desired propagator V from a pulse 
sequence with an iterative scheme, the iterative scheme must 
have a corresponding map on the space which has Vasa 
fixed point. The stability of the map in various directions 
determines the bandwidth properties of the sequence. Se-

quences which excite a bandpass response may be obtained 
from iterative maps with two stable fixed points. A bistable 
map causes most points to converge to either one of the two 
desired propagators VI or V2 depending on the value of some 
parameter A, and thereby produces the bandpass response. 
This idea is demonstrated here for maps which have the 
equator and the origin of SOC 3) as the two stable fixed sets. 
Iteration of the map results in the convergence of propaga­
tors to the two stable fixed points associated with the two 
possible responses of the spin system to the rfradiation. Ex­
perimentally, these propagators represent sequences which 
selectively invert nuclear spins depending on the rf ampli­
tude at the spin's position. 

III. DERIVATION OF ITERATIVE SCHEMES 

A. Iterative schemes and maps on 50(3) 

The pulse iteration schemes we shall develop in this sec­
tion are comprised of two basic operations. These will be 
demonstrated schematically on an arbitrary pulse sequence 
which we designate Sj' The schemes we seek are those defin­
ing maps on SO( 3) with the equator and the origin as stable 
fixed sets and the xy plane as an invariant set of the map. 

The first operation consists offorming phase shifted ver­
sions of Sj' We perform this transformation by adding some 
constant amount tPk to the phase of each pulse in Sj' The 
pulse sequence thus transformed will be denoted Sj(tP,,). 
The phase index k ranges from 1 to N, where N is the number 
of different phase shifts to be performed. 

The second operation is to concatenate the N phase 
shifted versions of Sj' The result will be a sequence N times 
longer than St. The new sequence, Sj + 1 , will be 

SI+ I = SI (tPl )Sj (tP2)" 'Sj (tPN- I )Sj (tPN)' (7) 

Clearly, both operations can be applied repetitively on any 
starting sequence. The notation which has been adopted to 
summarize the combination of these two operations is [tPI' 
tP2' tP3,· .. ,tPN ]. The uniquely defined rotation operator corre­
sponding to SI can be expressed similarly in the form: 

R(aj + 1) = R(a~N)R{aj,N_I)" 'R(al,:z )R(al.I ), (8) 

where a l• j equals the vector a; [sin OJ COS(tPl + tPj), sin 01 

sin(tPl +tPj)' cosO;] and R(al,j) 
= R z (tPj)R (aj)R z- I (tPj)' Here, OJ and ¢>j are the usual p0-

lar and azimuthal angles of a spherical polar coordinate sys­
tem. Because of the group property of rotations, the product 
of rotation operators on the right always equals a rotation 
operator. 

By limiting ourselves to these two operations, we have 
reduced the problem of designing a pulse iteration scheme to 
a matter of selecting the N phases ¢>I' ¢>2' ¢>3'"'' ¢>N' In choos­
ing these phases, we will observe two constraints. The first is 
that we will require N to be an odd number. This constraint 
insures that the equator of SO( 3) will be a fixed set of the 
map associated with this pulse iteration scheme. This asser­
tion follows from the fact that concatenating an odd number 
of inversion sequences results in an inversion sequence. The 
necessity of making the equator a fixed set was discussed 
previously. No such restriction is required in this case to 
make the origin a fixed point since the origin is always a fixed 
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point for any mapping derived from a simple phase shift 
scheme. 

The second constraint we impose will be to demand that 
the phase shift scheme be symmetric. A symmetric phase 
shift scheme is one for which ¢I = ¢N-j+ I' e.g., ¢I = ¢N' 
¢2 = ¢ N _ I ' etc. This last constraint deserves special com­
ment. In the preceding section, it was noted that maps on 
SOC 3) usually do not transform points on the xy plane only 
to other points on the xy plane. Symmetric phase shift 
schemes provide a convenient way to obtain maps with this 
property. Schemes for which the rf amplitude (UI (t) and 
phase ¢(t) are symmetric functions of time have corre­
sponding maps which transform points on the xy plane only 
to other points in this same plane, hence making this plane 
an invariant set. A formal proof of this assertion and asso­
ciated symmetry related properties has been discussed in 
Ref. 14. 

B. One dimensional maps on S0(3) 

A single pulse produces a rotation around an axis in the 
xy plane provided the radio frequency irradiation is exactly 
resonant with the transition frequency. This is evident from 
considering the rotating frame Hamiltonian during irradia­
tion (in angular frequency units): 

K = (Ul(/X cos ¢ + /y sin ¢) + Am/% (9) 

which results in the propagator 

U(t) = exp{ - ifz- I [WI (Ix cos ¢ + /y sin ¢) + 1::.m/z ] t}, 

(10) 

where ¢ is the phase of the pulse, Am is the resonance offset, 
and t is the duration of the pulse. The unnonnalized axis of 
rotation is given by the vector (WI cos ¢, WI sin ¢, 1::.w), and 
l.ies in the xy plane if and only if Am is zero. 

Let us consider now a general pulse sequence Sj which 
produces as its net effect on the density operator a rotation 
around an axis in the xy plane. The rotation operator corre­
sponding to Sj can be written as R (aj ), where a j is the vec­
tor 

a; = a j (cos ¢/O sin ¢j' 0). (11) 

Again, a j is the angle and (cos ¢I> sin ¢/O 0) the normalized 
axis of the rotation. The phase symmetry theorem states that 
if Sj is transformed according to a phase shift algorithm 
which is symmetric, the new rotation operator correspond­
ing to the transformed sequence Sj + I must be of the form 
R(aj + I ), where 

(12) 

The map F [ R (aj )} = R (aj + I ) corresponding to a phase 
shift-concatenation operation is a well defined function on 
SOC 3). This point is made clear by Eq. (8). For a function 
which maps points on the xy plane only to other points on 
thexyplane, this implies thata l + I and¢j+ I are determined 
uniquely by a j and ¢j' In fact, for such maps, a j+ I is speci­
fied solely by at> as can be seen from the following consider­
ations. 

Assume S; is a pulse sequence related to the pulse se­
quence Sj by a constant phase shift of all the pulses 1::.¢. The 
rotation operator for S ; ,. R ( an, is related to the operator 

R (aj ) by the simil.arity transformation: 

R(al ) = R z (1::.¢)R(ai)R z-I(1::.¢). (13) 

Now ifwe apply a phase shift scheme f¢l'¢2'¢3'''''¢N] toS; 
and S ; to form S; + I and S ; + I , it foUows after some algebra 
[cf. Eq. (8)] that R ( o.t + I ) and R ( a.; + I ) are related by 

R(a;+t> =Rz (1::.¢)R(a/+ 1 )R z-
I (1::.¢). (14) 

Since 1::.¢ is arbitrary, we conclude from this equality that for 
any map on SOC 3) derived from a phase shift scheme, at + I 
is independent of ¢;. 

If the initial iterate, R (ao)' is a point in the xy plane of 
SO(3) and the map a function derived from a symmetric 
phase shift scheme, this result, combined with Eq. (11), im­
ply that the only variable determining a j+ I will be aj' i.e., 

a;+1 =!.(a j ). (15) 

Comparison of this expression with Eq. (1) reveals that Eq. 
( 15) defines a one dimensional map in a. This map can have 
fixed points a, although what we call fixed points of!. corre­
spond to, in actuality, fixed circles of radius a in the xy plane 
of SO (3). The two fixed circles of particular concern to us 
here are the equator and the origin, defined by the set Oi} 
such that 

R =R,p(a), (16) 

where 0<.¢<.21T, and 7i = 0 for the origin and a = 1T for the 
equator. 

Because points in SO( 3) are specified by three coordi­
nates, maps on this space are generally three dimensional 
functions. Consequently, such maps must normall.y be ana­
lyzed for stability at their fixed points along three orthogonal 
directions. Equation (15) suggests, however, that under a 
special set of conditions, discussed earlier, this three dimen­
sional problem can be reduced to one dimension. 

The simplification of this problem to one dimension 
now permits the application of the one dimensional bista­
biIity theorem stated in Sec. II B. The values of a we seek to 
make fixed and stable points of the map in Eq. (15) are 
7i I = 0 and 7i2 = 1T. Stability at these fixed points, by the 
bistability theorem, necessitates the existence of a third fixed 
point aunstable lying in the range a l <aunstable <a2, which is 
unstable. As for 7i I and a 2' aunstable defines a circle in the xy 
plane of SOC 3). Points within the range a l <a < aunltable 

move away from aunstable and towards al as the mapping is 
repeated, becoming identity operators. Points in the range 
aunstable <a<a2 also move away from aunstable but towards 
a2 as the mapping is iterated becoming, instead, 1T rotations. 
This flow of points was described in Sec. II E, and is depicted 
in Fig. 3. In such a way, all points in the xy plane not on the 
unstable circle eventually get mapped, in some well-defined 
fashion, to one of two possible sets of points, the identity 
operator or a 1T rotation. 

C. SpeCification of stability 

The invariance of the equator and the origin of SO( 3) is 
guaranteed for a map corresponding to a phase iteration 
scheme, provided the scheme obeys the constraints set forth 
in the previous sections. The present discussion will be de­
voted to maps which, in addition to this invariance, are sta­
ble at these two points. 
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To begin, we examine methods for specifying the stabil­
ity of a map at each of these points individually. These meth­
ods have already been considered in detail elsewhere, 14 and 
so will be presented only in outline form here. 

Points in the neighborhood of the origin are those opera­
tors R (a i ) for which / a j / is small. If an iterative map de­
rived from a phase shift scheme acts on a rotation operator 
satisfying this condition, the next iterate, given analytically 
by Eq. (8), is well approximated by the linearized expres­
sion: 

(17) 

where a j • j is defined as in Eq. (8). The argument of the term 
on the right is related to a j by a simple linear transformation, 
which we denote T (origin). This linear transformation has 
eigenvalues N and A. o± , where 

N 

A. o± = I exp( ± i<pj)' 
j=1 

(18) 

Convergence to the fixed ongm is indicated when 
laj I> /ai + II. For displacements in thexy plane, this occurs 
when two of the eigenvalues of T(orig,nJ, A. rf, are less than 
one. The possibility of course exists that only one of these 
eigenvalues is less than one. In such a case, convergence 
would occur only in certain directions, specifically, those 
directions parallel to the eigenvector of the stable eigenvalue. 
The flow of points in the xy plane produced by a map with a 
stable origin has been shown in Fig. 3(b). 

The analysis of convergence to the equator requires a 
more involved approach. We proceed by first performing the 
completely general decomposition of a rotation R (aj ) into 
the product rotation: 

(19) 

whereE = (€", €Y' 0). Points c10se to the equator have smaU 
I Ell· Applying an iterative function to this product rotation 
in the manner of Eq. (8), the next iterate R (a l + I ) can be 
shown in the linear approximation to equal 

(20) 

To compare the rotation R (aj + I ) with R (aj ) for con­
vergence to the equator, it is necessary to rotate R (a i + I ) so 
that the main part of R (aj + I ), R;, + y ( 1T), is coincident 
with the main part of R (aj ), R;, (1T). This reflects the fact 
that the overall z rotation produced by the mapping, corre­
sponding to a phase shift by y of the rotation axis, is irrele­
vant when determining convergence to a fixed circle in the xy 
plane, e.g., the equator. 

Performing this transformation on R (aj + I ) yields the 
rotation R;, (11')R (E; + I ). The argument E; + I can be ex­
pressed as a linear transformation of E/ with eigenValues: 

A..± = (cos r; + cos r; + '" + cos r N) 

± [(cos r; + cos r~ + '" + cos r N_1 )2 

+ (sin r; + sin r~ + ... + sin r N_1 )2 

- (sin r 1 + sin I'J + ... + sin rN )2J112, 

(21a) 

where 

r~=rn+(-l)n<Pr' (21b) 

<Pr = <PI - <P2 + ... - <PN- I + <PN' (21c) 

r = 
{

<pn + :t: (_1)m+ I 2¢>m' n odd 

n <Pn _ 2y + :t: ( -1)m 2¢>m, n even 

(2Id) 

As in the case of the origin, these eigenvalues indicate stabil­
ity for the map along directions coincident with the corre­
sponding eigenvectors when their magnitudes are less than 
one. The flow in the xy plane expected from a map stable at 
the equator appears in Fig. 3 ( a). 

D. Bistability in phase symmetric schemes 

The four eigenvalue equations in Eqs. (18) and (21) 
suggest that obtaining stability at the equator and the origin 
requires that four inequalities be simultaneously satisfied, 
namely, 

/A. o± / < 1, 

/A. ~± I < 1. 

(22a) 

(22b) 

The analysis of Sec. III A has proven, however, that the 
iterative function underlying the map on SO{ 3) is single di­
mensional. For the one dimensional case, specifying stability 
at two fixed points entails satisfying only two inequalities. 
From this, we conclude that requiring aU four inequalities 
above overdetermines the stability we seek, and that it suf­
fices to meet only two of these inequalities, one at the origin 
and one at the equator. 

Although satisfying these two inequalities assures the 
stability of a map, the maps we present in this section actual­
ly fulfill a more rigorous condition at the two fixed points, 
that of superstability. Superstability in this space is obtained 
when the eigenvalues equal zero, and hence involves solving 
the two nonlinear equations 

IA. ~± 1= 0, 

IA. 0+ 1= 0. 

(23a) 

(23b) 

The independent variables in these equations are the 
phase shifts <PI of the scheme. The cboice of phase shifts is 
constrained by the criteria enumerated in Sec. III A. With 
these constraints, the number of free parameters available to 
solve these equations is (N - 1 )/2, where N, the number of 
phases in the sequence, is odd for reasons explained pre­
viously. 

Solutions to these two equations were determined nu­
merically on a computer using a steepest descent root-find­
ing procedure.62 One such solution to a good approximation 
leads to the phase shift scheme: 

(0,270,120,165,120,270,0]. (A) 

A second phase shift scheme was ca1culated similarly, 
but which additionally satisfies the superstability condition 
for both eigenvalue equations at the equator [see Eq. (21)]. 
Solving this extra equation required one additional param­
eter, with the result that a nine shift scheme was produced: 

[0,15,180,165,270,165,180,15,0]. (B) 

J. Chem. Phys., Vol. 86, No.6, 15 March 1987 



3096 Cho, Baum, and Pines: Excitation of two level systems 

IV. PROPERTIES OF BiSTABLE ITERATIVE SCHEMES 

A. Convergence properties of the seven and nine shift 
sequences: Basin images 

Both phase shift algorithms proposed above fulfill the 
criteria stated earlier for invariance and stability at the equa­
tor and the origin of SO ( 3 ), and hence both prod uce the flow 
of points in the xy plane described in Fig. 3. This fact is 
confirmed by the xy basin images 14 of the two maps dis­
played in Figs. 4(a) and4(b). The basin ofafixed point for 
some map is defined to be the set of points which converge to 
the fixed point upon transformation by the map. The images 
in Figs. 4(a) and 4(b) show the basins in the xy plane of 
SO( 3 ) for the two bistable maps. The shade at a point on this 
plane is a measure of the number of iterations of the scheme 
necessary for the point to converge to one of the two stable 
fixed points-the lighter the shade, the fewer the number of 
iterations required. The gray scale to the left gives the actual 
correspondence between the shade and the number of itera-

FIG. 4. Basins in the xy plane of SO(3) for (a) the map of the scheme [0, 
270, 120,165, 120,270, OJ and (ll) the map ofthe scheme [0, IS, 180, 165, 
270,165, 180, 15,0]. The basin appears as the light colored regions and 
identifies points which converge to a fixed point after iteration of the map. 
The gray scale to the left reveals the correspondence of the shade to the 
number of iterations required for convergence. The presence of two stable 
fixed points is manifested in both by the presence oflarge basins around the 
equator and the origin. 

tions. Convergence for the ith iterate was decided when 
1180 - a i I <5° at the equator, and la; I <5° at the origin. 

Several features are immediately apparent in these im­
ages. In their gross features, both images are extremely simi­
lar. Both basins possess an axial symmetry about the z axis, 
corroborating a conclusion drawn in Sec. III A, i.e., that 
maps derived from phase shift schemes are independent of 
the azimuthal. angle coordinate t/> of a point in SO( 3). In the 
xy plane, the only relevant quantity in determining the con­
vergence of a point to one of the fixed sets is a, the distance of 
the point from the origin. 

The lightest areas in these images appear near the equa­
tor and in the circular region centered at the origin. These 
correspond to the loci of points which are mapped after only 
a few iterations to the nearby stable fixed point, i.e., the equa­
tor or the origin. For both images, the basin of the equator is 
separated from the basin of the origin by a thin, distinct dark 
circle. This intermediate circle is the unstable fixed set whose 
existence, as we saw earlier, is necessitated by the bistability 
of the one dimensional map. Within this circle, all points 
converge to the origin, most after a relatively small number 
of iterations. Outside this unstable fixed circle, no points 
converge to the origin. 

Similar behavior is observed within the basin of the 
equator. The equator's basin consists of a hollow ring, 
bounded on the interior by the unstable fixed cirde. Outside 
this circle, all points converge to the equator, becoming 1T 

rotations. The bidirectional flow we observe in these figures 
verifies the flow hypothesized in Fig. 3 (c). 

A different perspective on the flow of points is offered by 
Figs. 5 and 6. These figures show the actual movement in the 

0, 270, 120, 165, 120,270,0, 

(aj InitIal Conditoon 

..... ..... 

\ 

(cj Two ~eratlons 

(bj One ~""'tion 

"-
(dj TIvee ~eralion. 

FIG. 5. Displacement of points in the xy plane as a result of being trans­
formed by the map of the scheme CO, 270,120,165,120,270,0]. In (a) is the 
initial set of points R (0'0)' Applying the map once to these points results in a 
displacement to the set of points in (b), twice, in the set of points in (c), and 
three times in the points in (d). This figure reveals the expected movement 
of points both towards the equator and towards the origin. 
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[0. 15. 180. 165. 270. 165. 180. 15.01 

(8) initial Condition (b) One ~eration 

x 

(c) Two ~erabons (d) Three Her.lions 

FIG. 6. A version of Fig. 5 for the scheme (0. 15.180.165.270.165.180.15. 
OJ. 

xy plane of an initial set of points from one iteration to the 
next. The bidirectional flow of points to the equator and 
origin depending on their distance from the origin is evident 
in these pictures, with points in between becoming sparser 
for increasing iterations. 

The analysis of these two schemes thus far has not re­
vealed any substantive differences between them. Qualita­
tively, both have similar flow properties in the xy plane lead­
ing to the desired bistable response. Indeed, the distinction 
between them is not apparent unless we examine the behav­
ior of the map for points off the xy plane. This distinction is 
illustrated by Figs. 7 and 8. The arrows in Fig. 7 indicate the 
stability of the origin and the equator for the seven shift 
scheme along directions lying in the xy plane and the insta­
bility of points along directions not in this plane. This insta­
bility is symbolized by the arrows pointing outward, away 
from the origin and the equator in the z direction. 

Figure 8 is a schematic flow diagram for the map corre­
sponding to the nine shift scheme. In the xy plane, the bidi­
rectional flow properties are similar to the seven shift 
scheme. as we have seen earlier. In contrast to Fig. 7, how­
ever, all arrows at the equator point in towards the equator, 
including those out of the xy plane. The implication here is 
that the mapping for the nine pulse scheme is stable in all 
directions at the equator. 

These observations are substantiated by the basin im­
ages in Fig. 9 showing cross sections of SO( 3) containing the 
z axis. Again, because of axial symmetry, all such z cross 
sections are identical. As in the xy basin images displayed 
earlier, these images depict the superposition of the basins of 
both the equator and the origin. The basin image for the 
seven shift scheme, while showing some regions out of the xy 
plane which are convergent to one of the fixed points, never-

z 

t - . ...---
t 

FIG. 7. Flow in a plane of SO(3) containing the z axis for a map which is 
stable at the origin and the equator only for displacements in the xy plane. 
Points lying out of this plane move away from these two fixed sets when 
transformed by the map. The stable directions are given by the eigenvectors 
of the Jacobian of the map with eigenvalues less than one. The flow expected 
for such a map is depicted here. 

the1ess is mostly black, indicating that most poitlts in SOC 3) 
do not converge to either fixed point. The nine shift scheme 
on the other hand generates an image which shows a large 
portion of the space converging to the equator because of the 
additional direction of stability of this point. Like basin im­
ages reported earlier of broadband sequences, this image has 
a self-similar fractal structure. 63 

z 

t 
~.-

l 

FIG. 8. Same as Fig. 7, but for a map which is stable in all directions at the 
equator. All arrows are now shown pointing in towards the equator denot­
ing this flow. 
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FIG. 9. Basin images for the schemes (a) [0.270,120,165,120,270,0] and 
(b) [0, 15, 180, 165,270,165,180,15,0] showing across section ofSO(3) 
containing the z axis. The size and shape of the basin in (b), particularly 
near the equator, manifests the stability in all directions of the fixed equator. 
The basin image in (a), on the other hand, shows a smaller basin, indicating 
the instability of the equator in directions with a z component. Notable also 
are the thin bright horizontal lines in both, centered at the origin, denoting 
the basin of the origin which lies in the xy plane. 

The reason for the differences between the basin images 
can be understood by recalling the derivation of these algo­
rithms in Sec. III B. Four inequalities were derived in this 
section as necessary criteria for determining the stability of 
the equator and origin, two at both points. For specifying 
stability at the equator and origin with respect to displace­
ments in the xy plane, it was found sufficient to satisfy only 
two of these inequalities. The seven shift scheme does, in 
fact, satisfy these two inequalities, and therefore is stable 
only for displacements in the xy plane. The nine shift 
scheme, however, satisfies the inequalities for both, rather 
than one, eigenvalUes at the equator. Consequently, the nine 
shift scheme has an additional direction of stability at the. 
equator that the seven shift scheme does not possess. This 
added direction is given by the eigenvector of the second 
stable eigenvalue, and is the origin of the extra stability in the 
z direction of the mapping for the nine shift scheme. This 
means the nine shift map is stable with respect to frequency 
offset at the equator, i.e., for 1T rotations. 

B. Bandwidth properties of bistable schemes 

Producing specific pulse sequences with schemes (A) 
and (B) requires that an initial sequence be specified. The 
simplest initial sequence to consider is the case of a single 
resonant pulse. Applying the seven shift scheme (A) to this 
initial condition generates sequences consisting of 7" pulses, 
where n is the number of times the scheme is iterated. Ac­
cording to the analysis given earlier, the propagators for 
these higher iterate sequences will converge either to the 
identity operator or an inversion operator. The parameter 
determining this limit of convergence for some initial iterate 
R (ao) is aD> the initial angle of rotation. 

For a single, resonant pulse of fixed duration tp ' ao is 
equal to wJtp. From this relationship, we draw the conclu­
sion that the limit to which the higher iterate propagators 
converges depends solely on the value of WI' If WI is small 
enough so thatwltp < Clunstable, then the higher iterate propa­
gators converge to the identity operator. If Wltp >Clunstable, 

then the iterates converge to an inverting rotation as the 
scheme is iterated. More generally, the propagator Uo for a 
single pulse converges to an inversion operation for rf ampli­
tudes lying in the range: 

(24) 

Outside these ranges, the limit of convergence is the identity 
operator. Similar results hold for the nine shift scheme. 

Exact theoretical simulations of the inversion perfor­
mance of these sequences as a function of WI are presented in 
Figs. 10 and 11. Formally, the inversion is defined as the 
projection of the spin density operator after the pulse se­
quence onto the operator I z ' which can be found from the 
equation: 

(25) 

In both figures are three curves, showing the inversion 
for a single pulse, one iteration of the scheme on a single 

[0, 270, 120, 165, 120, 270, 0] 

RF fIeld strength (w,/wfj 

FIG. 10. Theoretical plots of population inversion as a function of normal­
ized radiation amplitude for the (I) zeroth, (2) first, and (3) seconditera­
tions of the scheme [0,270,120,165, 120,270,0]. The initial sequence So is 
a single pulse with variable WI' The equilibrium polarization (magnetiza­
tion aligned with the field) is denoted by - 1, a complete inversion of the 
po1arization by + I (magnetization antiparallel to the field). 
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[0, 15, 180, 165,270, 165, 180, 15,0] 

o 

, 2 

RF field strength (w,lwP> 

FIG. 11. Same as Fig. 10 butfor the scheme [0, 15, 180, 165,270,165,180, 
15, OJ. 

[0, 270, 120, 165, 120, 270, 0] 
1.0 r-------::;;_...:--------, 

-1.0 ....... -----~-----~ 

1.0 ,.------:2""" ..... --;;-------, 

-1.0 --"'-------'-----~-

1.0 r------........-::'-.-...... __ -----. 
(c) 

a 

-1.0 .... __ =--__ -'-___ ....3...:...&-.1 

a 2 

FIG. 12. Plot of population inversion as a function of radiation amplitude 
for the zeroth, first, and second iterations of the scheme [0, 270, 120, 165, 
120, 270, 0]. The theoretical dependence appears as the black line, the ex­
perimental points as the dots. 

pulse, and two iterations of the scheme. Two significant fea­
tures of these plots stand out. First, it is clear that as the 
schemes are iterated, the bandwidth of the inversion re­
sponse becomes increasingly more square. Within a sharply 
defined /l)1 range, the inversion achieved by the second iter­
ate sequences is essentially complete. Outside this range, the 
rf has virtually no observable effect on the spins, leaving the 
bulk magnetization in its equilibrium state aligned with the 
static magnetic field. 

The second notable characteristic of these plots are the 
two points in both where all three inversion curves intersect. 
The presence of these intersection points signifies an invar­
iance in the inversion performance of these sequences for 
certain critical values of /l) I' These critical values are given by 

aUJ18table = /l)ltp mod 211', 

211' - aunstabJe = /l)Jtp mod 211' 

providing indirect evidence of the unstable fixed 
between the two stable points predicted earlier. 

c. Role of the initial condition and some specific 
sequences 

1. Single pulse Initial condition 

(26a) 

(26b) 

point 

Experimental verification of the theoretical simulations 
for the first two iterates of both schemes appears in Figs. 12 
and 13. The pulse sequence So used to initiate the iterative 

[0, 15, 180. 165. 270. 165, 180. 15. OJ 
1.0 

(a) Single pulse 

° 
-1.0 1ooII!:::...... ____ _'__ _____ -'-I 

1.0 r----~PT ....... _~------, 

(b) 

o 

-1.0 ~.,...tC.:.-----'------'-....... 

1.0 ,...-----:;,....,r--~__.. ...... ---.., 
(c) 

o 

-1.0 ~ ...... .IL. ___ _'__ ___ _"'_ • .,:... "':.:...00 

o 2 

RF field strength (<01/<01°) 

FIG. 13. Same as Fig. 12, but for the scbeme (0, 15, 180, 165,270,165,180, 
15,0]. 
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procedure was a single pulse with variable ((),. These results 
confirm the extreme specificity of these sequences for discri­
minating between spins based on the local rf field amplitude 
at the spin's coordinates in space. 

The performance of these sequences off resonance is 
shown in Figs. 14 and 15. For single pulses, moving offreso­
nance introduces a z component into the axis of rotation of 
the operator R. Due to the instability of the map at the origin 
along the z direction, the introduction of this z component in 
the initial iterate causes the bistability of the map to break 
down. As a result, the square response is irrevocably lost, 
even for the higher iterate sequences. 

Although the useful bandpass specificity of these se­
quences is not retained off resonance, these plots neverthe­
less reveal an interesting fact. The nine shift sequence it may 
be recalled was derived to be stable in all directions at the 
equator. This additional stability, to some degree, compen­
sates for off resonance effects near the equator. This compen­
sation is indeed observed in these figures. Within the effec­
tive inversion range of the nine shift scheme, moving off 
resonance impairs inversion performance very little. For the 
seven shift sequence, however, the inversion performance is 
affected much more dramatically by going off resonance. 
This scheme, unlike the former scheme, does not produce 
stabil.ity at the equator, and hence is not compensated for 

Offset behavior for [0, 270, 120, 165, 120,270, 0] 
10 r------;;p-w .............. ;:-------, 

iN 
(a) 

.!.. 

.§ 0 
~ 

'" > 
.& 

1.0 ~-:.:...-----'-----.-..........! 

1.0 

';2N 

.!.. 
c:: 
.9 0 

~ 
.& 

-1.0 

1.0 

~ 
.!.. 
.§ 0 

~ 
> 
.& 

FIG, 14, InverNion performance of the scheme [0.270, 120,165, 120,270, 
0) at various resonance offsets. The sequence shown was generated by iter­
ating once with this scheme on a single pulse of variable (J) ,. Experimental 
points appear as the black dots. 

Offset behavior for [0, 15, 180, 165,270, 165, 180, 15,0] 
1.0 r----~-....,..-:-~------., 

(a) 

o 

-1.01....,.c.-----'-____ ....::.a-... 

1.0 

iN 
.!.. 

j 0 

-1.0 

1.0 

'"" ';2 
.!.. 

.~ 0 

~ .s;; 

RF field strength (Q)/Q)?) 

FIG. 15. Same as Fig, 14 but for the scheme [0, IS, 180, 165,270, 165, 180, 
15,Oj, 

resonance offset related imperfections. 

2. Tailored Inversion 

The discussion of the previous sections has emphasized 
the fact that by varying experimental parameters, such as (()" 
of a starting sequence So, the coordinates in SO(3) of the 
corresponding propagator R(ao) can be varied in a wen de­
fined fashion as well. This can lead to interesting bandwidth 
behavior if, for example, for some values of (()" R (au) lies in 
the basin of one fixed set, and for other values of ((),. R (ao) 

lies in the basin of a second fixed set. Figure 16 illustrates this 
principle. Continuous variation of an experimental param­
eter A. causes Uo(A.) to trace out a trajectory in Liouville 
space, taking it from the basin of one fixed set to the basin of 
another fixed point. This point was examined specifically for 
the case of an initial sequence So consisting of a single reso­
nant pul.se and is manifested in the inversion vs (() I plots 
shown in Figs. 10 and 11, particularly for the higher iterate 
sequences. For values of (()\ for which R Cao) lies within the 
basin of the origin, the density operator remains unchanged 
from its initial. state - /z. Where ()), assumes values placing 
R (ao) in the basin of the equator, however, nearly complete 
inversion of the density operator takes place. 

The choice of a single pulse as the initial sequence result­
ed in a specific distribution of first iterates R (ao) as a func­
tion of ()) ,. If the phase of this pulse is 00, this distribution of 
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(a) 

(b) 

§ 
N 
·0 
)( 
w 

2 

FIG. 16. Schematic illustration in (a) of a propagator U resulting from 
some excitation sequence plotted in propagator space as a function of some 
experimental parameter A.. The parametric dependence causes U to lie in the 
basin of one fixed point for some values of A. and in the basin of another fixed 
point for other values of A, leading to the type of bandwidth behavior ap­
pearing in (b). 

R (ao) appears in SOC 3) as a continuous line from the origin 
to the equator along the x axis, as shown in Fig. 5 (a). This 
distribution, along with the values of WI for which R(ao) 
crosses the unstable fixed circle, fully determines the band­
width properties of the higher order iterates. 

The variation of WI can result in other, different distri­
butions of R (ao) simply if we choose a different So as our 
starting sequence, for it is the specific form of So which deter­
mines how R (ao) varies as a function of WI' For values of WI 

for which R (ao) lies outside the unstable fixed circle, R (a j ) 

will converge to an inverting rotation as the map is iterated. 
Accordingly, over these ranges of WI' the density operator 
will be effectively inverted, particularly for the higher iterate 
sequences. For the remaining values of W}J R (ao) will lie 
within the unstable fixed circle. Over these ranges of WI' 

R (ao) converges to the identity operator as the map is iterat­
ed, resulting in sequences which do not alter the initial state 
of the spin system. 

Generalizing this technique offers the possibility of a 
true tailoring of spin excitation. To achieve such tailoring, an 
initial sequence So is chosen with the property that in the 
ranges of WI for which popUlation inversion is desired, 
R(ao) lies within the basin of the equator. Iterating upon 
such an initial condition win then result in a pulse sequence 
which selectively and precisely inverts popUlations only over 
those regions of WI for which R (ao) lies within the proper 
basin. Although it is possible to obtain such starting se-

quences by analytical means, a more practical and equally 
effective approach would be to simply program a computer 
to search for sequences which fulfill the desired basin crite­
ria. 

3. Broadband and narrowband Initial sequence 

The rotation operators corresponding to inverting se­
quences broadband in W I lie close to the equator of SOC 3 ) for 
a wide range of WI values. Such sequences result in a distribu­
tion of initial rotations R", (ao) which lie predominantly 
within the basin of the equator for a bistable iterative 
scheme. Employing a broadband sequence as the initial iter­
ate So in a bistable iterative scheme therefore results in an 
inversion profile which becomes both square and broadband 
as the scheme is repeatedly applied. 

The simulated inversion profiles appearing in Fig. 17 
confirm this prediction. The sequence used in these plots to 
initiate the iterative procedure was the three pulse sequence 
[0, 120,0], which has previously been shown to be effective 
in inverting spin populations over broad ranges of ampli­
tudes. 1I Utilized as the initial iterate of the bistable iterative 
scheme, in this case the scheme [0,270, 120, 165, 120, 270, 
0], it produces the square, broadband inversion profile dis­
played in the higher iterates of Fig. 17. 

A similar analysis is applicable to narrowband initial 
sequences as well. Within the theoretical picture presented 
here, narrowband sequences lead to distributions of rotation 
operators which, for most values of WI' lie close to the origin 
of SO(3). For a very narrow range of WI values, the rotation 
operators corresponding to the pulse sequence lie on the 
equator. Iterating on points distributed in such a way on 
SO( 3) results in a square, narrowband response. 

Again, this can be confirmed by simulations of inversion 
performance, as shown in Fig. 18 for the initial narrowband 
sequence [0, 151,255.5,151,0]. The inversion passband for 

::l' 
..:... 

10 

§ 
<J) 0.0 
~ 
.f; 

Broadband 71" Pulse Iterated with 
;0, 270, 120, 165, 120, 270, 0) 

RF field strength (w11 wi» 
2 

FIG. 17. Consequence of USing a broadband sequence as the initial iterate 
for the bistable scheme [0,270,120,165,120,270, OJ for the (1) zeroth, (2) 
first, and (3) second iteration of the scheme. The broadband sequence cho­
sen here is the symmetric three pulse sequence (0, 120, 0]. 
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1,0 

0,0 

Narrowband 1r Pulse Iterated with 
[0,270, 120, 165, 120, 270, 0] 

RF field strength (Wl/ wjl) 

FIG. 18, Consequence of using a narrowband sequence as the initial iterate 
for the bistable scheme [0, 270,120,165,120,270,0] for the (1) zeroth, (2) 
first, and (3) second iteration of the scheme. The narrowband sequence 
shown is the symmetric five pulse sequence [0, 151,255.5, 151,0). 

higher iterates of this five pulse sequence is extremely nar­
row, reflecting the narrowband properties of the initial se­
quence. 

We conclude by noting that both the narrowband and 
the broadband initial sequences display evidence of the un­
stable fixed point in the two crossing points delineating the 
effective passband of the two sequences, just as in the case of 
the single pulse initial condition. 

4. Amplitude selectlve1T/2 pulse sequences 

The inversion vs (1)1 plots for the higher iterate pulse 
sequences obtained by the bistable maps reveals that the (1)1 

ranges for which inversion of the density operator is com­
plete and the ranges for which there is little inversion are 
separated by an extremely narrow range of (1)1 values where 
only partial inversion of the density operator takes place. As 
noted earlier, these narrow ranges indicate that at, or near 
these values of (1)1 the function R (ao) crosses the unstable 
fixed circle. 

Within this narrow range of (1)1 values lies an even nar­
rower range where the projection of the density operator 
onto I z is approximately zero after irradiation by the pulse 
sequence. This situation arises when the density operator has 
been rotated into the xy plane, and occurs when the overall 
propagator can be written: 

U(t) =exp( -i(11'/2)(Ix cosr/J+1y sinr/J)]. (27) 

The pulse sequences leading to such a propagator are known 
as 11'/2 sequences. In NMR terminology, the effect of the 
pulse sequence is to convert longitudinal polarization into 
transverse polarization. 

The narrowness of the range of CU 1 values which result in 
such a propagator suggests a method for obtaining a highly 

amplitude selective 11/2 pulse sequence. The tVl selectivity of 
such a sequence is limited only by the sharpness of the inver­
sion bandpass cutoff, which, as has been demonstrated, can 
be made arbitrarily sharp by performing more operations of 
the iterative scheme. The creation of transverse magnetiza­
tion only over narrow, specific ranges of CUI is an essential 
te<;:hnique in applications such as slice-selective, in vivo 
NMR experiments,32 which rely on rf amplitude gradients in 
order to preferentially excite selected regions of a macro­
scopic sample. The success of such an experiment depends 
on the ability to excite detectable NMR signal only in the 
regions of interest, and to suppress, or avoid excitation, of 
signal from other regions. In addition, it is desirable that the 
excitation sequence be short and consist only of pulses with 
the four quadrature phases. 

The sequence [(37.5)90 (37.5)0 (37.5)90] was selected 
with these considerations in mind. The pulse sequence de­
fined by this notation consists of three equal length pulses, 
each producing a flip angle of 37.5", with phases 90°, 0·, 90°. 
In order to avoid exciting transverse signal at other values of 
CUI besides the intended range, the sequence picked is a 
broadband near-inverting sequence over CUI frequencies. 
Choosing such a sequence ensures that R(ao) crosses the 
unstable fixed circle in the xy plane of SOC 3) only once over 
a large range of CUI values, in this case, the normalized range 
0< (CU1/CU~) <8. In this way, the creation of transverse mag­
netization in the higher iterate sequences at values of CUI oth­
er than the desired ones is suppressed. A more thorough 
examination of the problems associated with the inadvertent 
excitation of transverse coherence has been presented else­
where. 64 

The CUI specificity obtainable from this method can be 
observed in Figs. 19 and 20 for this choice of an initial se­
quence. The top figures show the inversion plotted as a func­
tion of CUI' while the lower figures show the projection of the 
density operator onto the xy plane after application of the 
pulse sequence. This last quantity is formally defined by the 
relation 

(Ixy) = ({Tr[IxU(t)IzUt(t)]F 

+ {Tr[ I,. U(t)Iz ut(t) J F) 1/2 iTr{J;}. (28) 

Using this three pulse sequence as the starting point of the 
iterative procedure generates, after the nth iteration, se­
quences of length 3 X 7" pulses for the seven shift scheme, 
and of length 3 X 9" pulses for the nine shift scheme. These 
data verify the extreme specificity that can be obtained from 
using the cutoff frequency of a sharply defined cu I passband. 

D. Exper'mental 

The experiments described here were performed on a 
homebuii.t spectrometer in a 4.2 T superconducting magnet. 
All experimental data were collected from the proton reso­
nance of a distilled water sampJe sealed in a 1.5 mm diameter 
capillary tube. 

Excitation sequences with nonquadrature phase shifts 
were generated at the intermediate frequency (30 MHz) by 
a Daico Industries 10000898-30 8-bit digital phase shifter 
with 4 p,s settling time and 360/256 deg phase resolution. An 
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FIG. 19. Longitudinal [(a), (b), and (c) 1 and transverse I (d), (e), and (f)] magnetization plotted as functions of normalized radiation amplitude for the 
scheme [0, 270, 120, 165, 120,270,0] using the sequence (37.5)90 (37.5)0 (37.5)90 as the zeroth iterate. The zeroth through second iterates are shown. 
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1 Iteration 
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o 1 0 2.0 30 40 5.0 6.0 70 8.0 
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o '0 2.0 3.0 4.0 50 60 70 8.0 
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(I) 243 pUlses 
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FIG. 20. Same as Fig. 21, but for the iterative scheme [0, IS, ISO, 165,270,165,180, 15,0]. Where shown, experimental data appear as dots. 
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8 X 1024 programmable RAM was used to store the phase 
shift sequence for each experiment. The amplitudes and rela­
tive phases of the pulses were checked with a vector volt­
meter to ensure their accuracy and uniformity. 

The inversion performance of a pulse sequence was mea­
sured by following the inversion sequence with an appropri­
ate dephasing delay, a 1T /2 on-resonance read pulse, and then 
acquisition of the free induction decay (FID). The dephas­
ing delay was chosen to be long with respect to the inverse 
linewidth but short compared to the spin-lattice relaxation 
time. The linewidth of the proton resonance was inhomogen­
eously broadened with the magnet shims to permit this. The 
degree of inversion was obtained as a function of the peak 
height of the Fourier-transformed absorption buffer signal 
normalized to the peak height of the absorption signal fol­
lowing a single 1T/2 read pulse. When measurement of the 
transverse magnetization, rather than the longitudinal mag­
netization, was desired, the dephasing delay and 1T/2 read 
pulse were omitted before acquisition of the FID. 

Measurements of inversion for different values of CUI 

were accomplished by fixing the pulse time and varying the 
power input to the linear rf transmitter with a variable atten­
uator. Amplitudes were calculated directly from the mea­
sured 1T/2 and 1T pulse times for each level of attenuation. 
Pulse times were found using standard calibration tech­
niques.65-67 

In order to determine the inversion performance of a 
pulse sequence off resonance, the radio frequencies for the 
pulse sequence and the read pulse were generated in separate 
rf channels and combined at the input to the rf transmitter, 
enabling the independent variation of the two irradiation 
frequencies. In this way, the excitation could be performed 
off resonance and the detection performed always on reso­
nance. 

v. OTHER ROUTES TO BISTABLE MAPS 

In Sec. III, it was demonstrated that maps which were, 
stable at the equator and the origin could be obtained by' 
satisfying the stability conditions represented by Eqs. (22a) 
and (22b). Bistable maps can also be devised by forming 
composite maps out of two singularly stable maps, a topic 
which will be examined in the present section. 

Consider two one dimensional maps FI and F2 on the 
space L satisfying the relationships below: 

FleX I ) =XI , (29a) 

F I (X2) =X2' (29b) 

IdFl1 1 - <, 
dx x=x, 

(29c) 

IdFII > 1, 
dx x=x, 

(29d) 

F2(x l ) =XI, (2ge) 

F 2 (X2) =X2, (29f) 

IdF2/ > 1, 
dx x=x, 

(29g) 

I
dF2

1 < 1. dx x*x, 
(29h) 

Equations (29a), (29b), (29c), and (29f) indicate that 
F} and F2 have the same two fixed points x 1 and x2• By Eqs. 
(29c) and (29d) FI is stable at XI' but unstable at xz, while 
byEqs. (29g) and (29h),F2 is unstable atx I butstableatxz. 

We define the composition of these two maps by the 
following relation: 

FI*F2 = F I [F2 (x)]. (30) 

It is clear that FI *F2 will also be a map on L, with X I and Xz 
both as fixed points. 

The stability of FI *F2 at X I and Xz can be determined by 
evaluating the first derivative of Fl * F2 at the fixed points. By 
the chain rule, this derivative can be written: 

(31) 

Using the general one dimensional stability criterion ap­
pearing in Eq. (3), the conditions for the stability of FI and 
F2 at X I and x2 can be stated as 

Combined Broad-Narrow 
10,120,0] . 10,151,255.5,151, 0\ 

RF field strength (w,lw~) 

Combined Narrow-Broad 
10,151,255.5,151, OJ· [0,120, a 

RF field strength (w,lw~) 

(32a) 

(32b) 

FIG. 21. Population inversion as a function of W, for composite (broad­
band) * (narrowband) and (narrowband) * (broadband) schemes. The dis­
tinctive features of a bistable response are clearly evident in these profiles. 
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These inequalities are trivially satisfied if XI is a super­
stable fixed point of FI and x2 a superstable fixed point of F2 
[provided the expression on the left-hand side ofEq. C 32a) is 
finite]. Under these conditions, XI and Xl will be stable fixed 
points of F I *F2• 

This result was used to devise a composite iteration 
scheme formed by alternating the broadband iterative 
scheme [0, 120, 0] with the narrowband iterative scheme [0, 
151, 255.5, 151, 0]. These sequences were discussed in Sec. 
IV C. One iteration of the composite scheme on some se­
quence results in a sequence 15 times longer than the pre­
vious iterate. The symmetry of these schemes indicates that 
their corresponding maps will be single dimensional for ini­
tial iterates lying in the xy plane of SOC 3). 

The composite scheme leads to a composite, one dimen­
sional map on the xy plane of SOC 3) ~hich is bistable, with 
an the attendant properties observed earlier for the two 
schemes (A) and (9). The inversion profiles bear this out, 
as can be seen in Fig. 21. Although the width of the passband 
is dependent upon the order of the composition, both still 
display the distinctive bandpass features seen before indica­
tive of the underlying bistable map. 

ACKNOWLEDGMENTS 

We are grateful to R. Tycko and J. Guckenheimer for 
many helpful discussions. D. Shykind provided expert tech­
nical assistance. J. B. held a University of California Presi­
dent's Fellowship. This work was supported by the Director, 
Office of Energy Research, Office of Basic Energy Sciences, 
Materials Sciences Division of the U.S. Department of Ener­
gy under Contract No. DE-AC03-76SFOOO98. 

IA. G. Redfield, S. D. Kunz, and E. K. Ralph, J. Magn. Reson. 19, 114 
( 1975). 

2M. H. Levitt and R. Freeman, J. Magn. Reson. 33,473 (1979). 
JR. Freeman, S. P. Kempsell, and M. H. Levitt, J. Magn. Reson. 38, 453 
(1980). 

4M. H. Levitt and R. Freeman, J. Magn. Reson. 43, 65 ( 1981). 
SM. H. Levitt, J. Magn. Reson. 48, 234 (1982). 
6M. H. Levitt, J. Magn. Reson. SO, 95 (1982). 
7R. Tycko, Phys. Rev. Lett. 51, 775 (1983). 
8J. Baum, R. Tycko, and A. Pines, 1. Chem. Phys. 79, 4643 (1983). 
9M. H. Levitt and R. R. Ernst, J. Magn. Reson. 55, 247 (1983). 
lOA. J. Shaka and R. Freeman, J. Magn. Reson. 55,487 (1983). 
ItR. Tycko and A. Pines, Chern. Phys. Lett. 111,462 (1984). 
12R. Tycko, H. M. Cho, E. Schneider, and A. Pines, J. Magn. Reson. 61, 90 

(1985). 
13J. Bawn, R. Tycko, aJld A. Pines, Phys. Rev. A 32,3435 (1985). 
14R. Tycko, A. Pines, and J. Guckenheimer, J. Chem. Phys. 83, 2775 

( 1985). 
ISM. H. Levitt, Prog. Nuc). Magn. Reson. Spectrosc. 18, 61 (1986). 
16A. J. Shaka and R. Freeman, J. Magn. Reson. 59,169 (1984). 
17M. H. Levitt and R. Freeman, J. Magn. Reson. 43, 502 (1981). 
18M. H. Levitt, R. Freeman, and T. Frenkiel, J. Magn. Reson. 47, 328 

(1982). 
19J. S. Waugh, J. Magn. Reson. 49, 517 (1982). 
20M. H. Levitt, R. Freeman, and T. Frenkiel, J. Magn. Reson. SO, 157 

( 1982). 

21J. S. Waugh, 1. Magn. Reson. 50,30 (1982). 
22A. J. Shaka, 1. Keeler, T. Frenkiel, and R. Freeman, 1. Magn. Reson. 52, 

335 (1983). 
23 A. J. Shaka, J. Keeler, and R. Freeman, J. Magn. Reson. 53, 313 (1983). 
24M. H. Levitt, R. Freeman, and T. Frenkiel, in Advances in Magnetic Reso­

nance, edited by J. S. Waugh (Academic, New York, 1983), Vol. II. 
2SA. J. Shaka and J. Keeler, Prog. Nucl. Magn. Reson. Spectrosc. 19,47 

(1986). 
2"T. M. Barbara, R. Tycko, and D. P. Weitekamp, 1. Magn. Reson. 62, 54 

(1985). 
27M. H. Levitt, D. Suter, and R. R. Ernst, J. Chern. Phys. 80, 3064 (1984). 
28R. Tycko, E. Schneider, and A. Pines, J. Chern. Phys. 81, 680 (1984). 
~. H. Levitt and R. R. Ernst, Mol. Phys. SO, 1109 (1983). 
30J. R. Garbow, D. P. Weitekamp, and A. Pines, Chern. Phys. Lett. 93, 504 

( 1982). 
31H. M. Cho, R. Tycko, A. Pines, and J. Guckenheimer, Phys. Rev. Lett. 

56,1905 (1986). 
.12J. J. H. Ackerman, T. H. Grove, G. G. Wong, D. G. Gadian, and G. K. 

Radda, Nature 283, 167 ( 1980) . 
"(a) D. P. Weitekamp, A. Bielecki, D. Zax, K. Zilm, and A. Pines, Phys. 

Rev. Lett. SO, 1807 (1983); (b) D. B. Zax, A. Bielecki, K. W. Zilm, A. 
Pines, and D. P. Weitekamp, J. Chern. Phys. 83,4877 (1985). 

l4W. S. Warren, S. Sinton, D. P. Weitekamp, and A. Pines, Phys. Rev. Lett. 
43,1791 (1979). 

3~D. P. Weitekamp, in Advances in Magnetic Resonance, edited by J. S. 
Waugh (Academic, New York, 1983), Vol. II. 

36M. Munowitz and A. Pines, in Advances in Chemical Physics, edited by S. 
Rice and I. Prigogine (Wiley-Interscience, New York, 1986), Vol. 11. 

J7(a) G. Castro, D. Haarer, R. M. Macfarlane, and H. P. Trommsdorff, 
Frequency Selective Optical Data Storage System, U.S. Patent No. 
4101976 (1978); (b) G. C. Bjorklund, W. Lenth, and C. Ortiz, Proc. Soc. 
Photo-Qpt. Instrum. Eng. 298, 107 (1981). 

JSU. Haeberlen and J. S. Waugh, Phys. Rev. 175,453 (1968). 
3<>t;. Haeberlen, High Resolution NMR in Solids: Selective Averaging (Aca­

demic, New York, 1976). 
'OM. Mehring, Principles of High Resolution NMR in Solids, 2nd ed. 

(Springer, New York, 1983). 
41G. A. Morris and R. Freeman, J. Magn. Reson. 29, 433 (1978). 
42D. L. Turner, J. Magn. Reson. 54,146 (1983). 
"'P. J. Hore, J. Magn. Reson. 54, 539 (1983). 
"P. J. Hore, J. Magn. Reson. 55,283 (1983). 
4sM. S. Silver, R. I. Joseph, and D. I. Hoult, J. Magn. Reson. 59, 347 

(1984). 
46A. Hasenfeld, Magn. Reson. Med. 2, 505 (1985). 
47F. A. Grunbaum, Inverse Problems I, L25 ( 1985). 
48W. Magnus, Common Pure Appl. Math. 7, 649 (1954). 
4"F. Bloch, Phys. Rev. 70, 460 (1946). 
'OW. S. Warren, D. P. Weitekamp, and A. Pines, J. Chem. Phys. 73, 2084 

(1980). 
SIR. M. May. Nature 261, 459 (1976). 
s2Noniinear Dynamics, edited by R. H. G. Heileman (New York Academy 

of Sciences, 1980), p. 357. 
"M. J. Feigenbaum, Physica (Amsterdam) D 7,16 (1983). 
"M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems 

and Linear Algebra (Academic, New York, 1974). 
'-'I. Percival and D. Richards, Introduction to Dynamics (Cambridge Uni­

versity, Cambridge, 1982). 
s·P. Collet and J. P. Eckmann, Iterated Maps on the Interoal as Dynamical 

Systems (Birkhauser, Boston, )980). 
57J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Sys­

tems, and Bifurcations of Vector Fields (Springer, New York, 1983). 
'"R. P. Feynman, F. L. Vernon, and R. w. Hellwarth, 1. Appl. Phys. 28, 49 

( 1957). 
'''For a two level system, the operator U(t) in Eq. (6) can be written in 

matrix form as a 2 X 2 unitary matrix with determinant equal to one. The 
set of all such matrices forms the groupSU(2). In what follows, however, 
we shall regard U( t) as an element of the real three dimensional rotation 
group SOC 3), which is related to SU(2) by a twofold homomorphism. 
Except for immaterial phase factors, the differences between these two 
groups can, for all practical purposes, be ignored. Accordingly, we shall 
consider all propagators of the form given by Eq. (6) as being essentially 
equivalent to three dimensional rotations. 

wH. Goldstein. Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, 
Mass., 1980). 

61M. I. Petrashen and E. D. Trifonov, Applications of Group Theory in 

J. Chern. Phys., Vol. 86, No.6, 15 March 1987 



3106 Cho, Baum, and Pines: Excitation of two level systems 

Quantum Mechanics (M.I.T., Cambridge, Mass., 1969). 
62L. W. Johnson and R. D. Riess, Numerical Analysis (Addison-Wesley, 

Reading, Mass., 1977). 
63B. Mandelbrot, Fractals: Form, Chance, and Dimension (Freeman, San 

Francisco, 1977). 
64J. Baum, R. Tycko, and A. Pines, Chern. Phys. 105,7 (1986). 

6Sp. Mansfield, M. J. Orchard, D. C. Stalker, and K. H. B. Richards, Phys. 
Rev. B 7,90 (1973). 

MR. W. Vaughn, D. D. ElJeman, L. M. Stacey, W. K. Rhim, and J. W. Lee, 
Rev. Sci. Instrum. 43, 1356 (1972). 

67W. K. Rhim, D. D. Ellernan, L. B. Schreiber, and R. W. Vaughn, J. Chern. 
Phys. 60, 4595 (1974). 

J. Chem. Phys., Vol. 86, No.6, 15 March 1987 


