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We extend the idea of iterative schemes from the single-spin to the two-spin case. As 
an application we derive a new series of broadband heteronuclear decoupling sequences, 
called the DIPS sequences. They give better quality decoupling of protons from carbon- 
13 than previous sequences like WALTZ-l 6 when there is scalar coupling among the 
protons. In the absence of such coupling, the DIPS1 sequences o&r the same high standard 
of performance as WALTZ-16, but over somewhat smaIler bandwidths. @ 1988 Academic 

Press, Inc. 

INTRODUCTION 

Current schemes for broadband heteronuclear decoupling in MMR spectro~~py of 
isotropic liquids employ periodic sequences of radiofrequency pulses derived according 
to an iterative recipe (Z-5). The idea behind these schemes rests on the observation 
(6) that, neglecting any homonuclear interactions among the irradiated (I) or observed 
(S) spins, decoupling can be analyzed by considering only the behavior of an isolated 
ensemble of I spins under the influence of a single period of the pulse sequence. To 
decouple I from S over a certain bandwidth, it is sufficient to design a propagator for 
the I spins which is nearly constant over the same bandwidth. In practice, and for a 
number of good reasons, iterative schemes all attempt to implement a propagator that 
is the identity operator over the desired bandwidth, corresponding to a Hamiltonian 
represented by the null operator. Almost all progress has centered on the simplest 
model of two (otherwise isolated) weakly coupled spins Z = S = 1; the resulting se- 
quences work equally well for arbitrary spin nuclei in the absence of any quadrupolar 
interactions, however. We shall refer to this situation as the “single-spin case,” as only 
a single I spin is involved. 

The simple single-spin model can be expanded to a two-spin model by introducing 
a second I spin. The spins I, and 1~ are scalar coupled and I, is coupled to the heteronu- 
cleus S, but I2 is not coupled to S. This last assumption ensures that any changes in 
the S-spin spectrum result only from the coupling between the I spins and not simply 
from an additional coupling between I2 and S. In the practical case, the S spin will be 
carbon- 13 and the I spins will be protons. The only role of S is, depending on its spin 
state, to augment or retard the local field experienced by I,, giving it a slightly different 
chemical shift. Accordingly, most of our development will concentrate on the behavior 
of the two I spins under modulated irradiation. 

In the presence of homonuclear scalar coupling among the I spins, it is not possible 
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to produce the identity operator unless the pulse sequence pairwise decouples each I 
spin from every other. Such homonuclear decoupling in the case of arbitrary tightly 
coupled proton spin systems including large resonance offset effects appears to be an 
unrealistic goal at this time, so it becomes necessary to consider designing some other 
offset-independent propagator for the I spins. The natural choice for such a propagator 
corresponds to a Hamiltonian containing only the scalar interactions Ik * 11 between 
each pair of I spins. 

Here we demonstrate that it is possible to design such a propagator for the case of 
two coupled spins Z = 1. Our sequences can be considered to be a generalization of 
the MLEV (1) and Waugh (2) schemes: in addition to averaging the terms involving 
linear spin operators to nearly zero, we also average all bilinear combinations to nearly 
zero except for the pure scalar Ii * 12. As a result, the new sequences perform better 
than WALTZ- 16 when there are inequivalent coupled I spins present. They may also 
have applications for the decoupling of spins Z = 1 in anisotropic phase (7) and broad- 
band homonuclear cross-polarization experiments (8). The theory needed to describe 
the removal of all linear and bilinear terms relates very closely to the theory of multiple- 
pulse experiments in zero field (9). 

We begin by describing the design of composite pulses capable of removing the 
influence of I-spin resonance offsets from the effective Hamiltonian while leaving the 
scalar interaction largely unperturbed. In contrast to some previous discussions of this 
subject (8, 10, 11) and in agreement with a recent communication concerning broad- 
band homonuclear cross polarization (Z2) and a paper describing the effect of ho- 
monuclear coupling on broadband heteronuclear decoupling (Z3), it is found that 
windowless sequences of RF pulses can produce an effective Hamiltonian containing 
a combination of bilinear operators ZlrrZzg (a, p = x, y, z). In particular, the coefficients 
of ZIXZh, Zi,,Z~,,, and Z12Zz22 can become unequal; that is, the scalar interaction becomes 
nonscalar under the influence of the modulated RF field. This behavior is markedly 
different than that discussed by Braunschweiler and Ernst (8) who assumed the 6- 
pulse limit in calculating the zeroth-order average Hamiltonian for their sequences: 
in that case no nonscalar behavior is predicted. 

Given a composite pulse that largely removes resonance offset effects, we next show 
how to combine such pulses into sequences that, to first order, cancel all linear terms 
and bilinear cross terms. The initial sequences can be based on either composite 90” 
or 180” pulses combined into short cycles, as in the case of single I-spin sequences 
like MLEV or WALTZ (2, 3). We show by calculation that, over their somewhat 
smaller operational bandwidths, these new decoupling sequences can outperform pre- 
vious sequences when there is scalar coupling among the I spins, while still maintaining 
the same high standard of performance in the absence of such coupling. The best 
candidates for proton decoupling, based on composite 180” pulses, are insensitive to 
spectrometer phase misadjustments or pulse miscalibration and perform well in prac- 
tice, as we demonstrate by experiment. Finally, we close by discussing several closely 
related experiments and the advantages of bilinear averaging. 

PHASE-ALTERNATING COMPOSITE PULSES IN THE PRESENCE OF SCALAR COUPLING 

We consider a Hamiltonian for two coupled spins Ii and Iz in which 1, is assumed 
to be on resonance and 12 is off resonance by an amount ho. We apply an RF decou- 
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pling field w2 to perturb the I spins, In the usual rotating frame, the Hamiltonian 
during the kth pulse, of duration Tk, can be written 

e%?k=pkrf+ v ill 
where 

xkrf = (-- 1 )kd,x + hx) PI 

V = AwZ,, + 27rJ1, - Iz . 131 

We have assumed that each pulse is applied along the x or -x axis of the rotating 
frame, and that its amplitude ~02 and frequency are fixed. An earlier treatment of 
phase-alternating composite pulses has shown (14) that, providing J = 0, this class of 
composite pulses can produce a propagator at time 7 = CkTk that approximates an 
ideal RF pulse; that is, 

u(T) = n exp(--iTk&Qk) X exp(ia[llx t zb]). 
k 

i41 

The flip angle a! can be selected at will; Eq. [4] is understood to be true for some range 
of Aw values about exact resonance (Ao = 0) when the appropriate pulse widths 7k 
are selected. We take the same approach here, but include the scalar coupling interaction 
in the calculation. 

Using coherent averaging theory (15) we transform into an interaction picture 
dictated by SYti and treat V as a perturbation. The propagator separates into a product 

U(T) = Urf(T)U”(T), 151 

where t!,&(T) represents the ideal transformation and U,(T) the imperfection, 

U,(T) = .exp(--i s Y(t)dt} lb1 

V(t) = u&t)-’ VU&), 171 

where T denotes time ordering. This decomposition is not an approximation. U,(T) 

is then approximated using the Magnus expansion (16, 17) 

u,(T) = exp(-iT[ v(O) + v(I) + vc2) f ’ ’ a 1) 3 PI 

in which the Hermitian operators V(“) rapidly become insignificant provided w2 B 1 Aho/, 
IJI as would be the case for proton decoupling in liquids. 

The terms in the expansion are well-known. The first three terms in the series are 
given by 

7 0 

. 
y(l) = zf 

7 ti 
27 s s dt, &[ 6, v21 0 0 
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where we use the shorthand vn = v(t,,). Higher-order terms in the Magnus expansion 
are available if necessary (18-20). Our goal is to arrange that all terms in Aw vanish, 
so that U,(r) becomes the evolution due to pure scalar coupling, 

U,(T) = exp(-i2?rTJI,. I*), 1121 

and the Magnus expansion is useful because it quickly allows us to predict the operators 
that the composite pulse may produce and their dependence on Au and J. 

Consider an arbitrary phase-alternating sequence of m pulses (Y 1 & (Ye . . . , the over- 
bars representing a phase shift of ?r and the flip angles (Y~ denoting those at exact 
resonance. Let A,, be defined by 

n 

A,, = 2 (-l)& 
k=O 

[131 

with (~0 = 0. Carrying out the integration for Y(O) we find 

TV(O) = 2~JrIi ‘12 + k 5 (-1)(+“{Z2,(sin Aj - sin Aj-1) 
w2 j-1 

+ Z2y(COS Aj-i - COS Aj)}. [ 141 

To zeroth order in the Magnus expansion the coupling is unaffected by the composite 
pulse, while the terms under the summation correspond to those for the case of a 
single spin. A single 27r pulse causes these terms to vanish, so for Aw/w2 sufficiently 
small a pure scalar operator is produced. This limit, corresponding to coherent irra- 
diation with an extremely intense RF field, is not sufficiently discriminating to be of 
interest. Accordingly, the next term in the expansion must be examined. 

After a perfectly straightforward but somewhat lengthy calculation, we find the 
following result for 7 V’), 

with coefficients defined by 
Uj = (-l)j{&j - sin Cl!j) [161 

&j = (7 l)k+‘{ Sin(Ak - A,) - Sh(Ak-1 - Aj) - Sin(Ak - Aj-1) + SiII(Ak-1 - A+-*)} 

[I71 

bj = 2 COS Aj-i - 2 COS Aj + (-l)‘aj(sin Aj + sin Aj-1) t181 

bkj = (-~)‘+‘~~k(Sin Aj - Sill A,-1) -6 (-l)kaj(sin Ak - sin Ak-1) 

Cj = 2 sin A,-r - 2 sin Aj + (-l)‘+‘~j(COs A, - cos Aj-1) 

ckj = (-l)icYk(COS Al - COS Aj-1) + (-l)k+‘~j(COS Ak - COS Ak-1). 

r191 

WI 

Vll 
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To first order in the Magnus expansion the action of the composite pulse creates 
additional bilinear operators not present in the unperturbetl Hamiltonian. These terms, 
especially the combination (ZlvZ~ - ZiXZ2,,), which is invariant to ?r phase shifts, can 
introduce an offset dependence into U(r) that interferes with proper decoupling of 1 
from S. The above equations provide a means to eliminate or at least minimize the 
contribution of these unwanted operators. 

To explore the deviation of Ii * 12 from its scalar form it is necessary to cakuktte 
the contribution of the operator Ycz) to the propagator. V’*) has a very complicated 
form, so we restrict ourselves to the assessment of the operator combinations it can 
produce. These are as follows: the operators Zzr and ZzY with coefficients depending on 
AU’&, the operators Zi,Zb, ZQZ~~, Zi,Z2z, ZlYZ2z, and Z,,Z2, with coefficients depending 
on Aw*J/w:, and the operators Ii=, Z2=, Ii, and Z2,, with coefficients depending on 
AoJ*/w:. The ‘.iteresting point here is that the coefficients of ZlolZ~20r, a! = x, y, z, 
become unpdual and that linear spin operators are produced for the first spin even 
though it is assumed to be exactly on resonance. These rather surprising linear terms 
arise due to the interaction of the RF field and the spin coupling producing an additional 
small field on the first spin. 

ELIMINATING LINEAR AND BILINEAR SPIN OPERATORS 

Assume we have found a composite pulse. We now explore methods to combine 
these into cycles that remove all linear and bilinear spin operators except for the scalar 
operator Ii . I*. We write the propagator for the pulse in the form 

U(T) = cf(N”(~) rJ21 
and we assume nothing about U”(7) except that it can be expressed as a complex 
exponential of the most general two-spin Hamiltonian, a sum of the 15 pos&ble linear 
and bilinear operators. The only information we require is how U, transforms under 
RF pulses and phase shifts. As the original perturbation V commutes with rotations 
about the z axis, it follows that U, is tied to the phase of the RF irradiation. If UO 
denotes the propagator that results when the first pulse of the composite is applied 
with RF phase Q!J = 0 then the propagator U, that results when all phases are shified 
by I$ is simply 

u, = &MJoRzGP)-’ = Ui+uvm, [X3] 

We wish to calculate the effect of a sequence of n such composite pulses, the k-th 
pulse being applied with relative phase &, with no detailed knowledge of the nature 
of U,. In addition, we hone to find sequences that tend to cancel out the effect of the 
U,, operators. To do this we reorganize the product so that the RF terms are collected 
on the left, 
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where the operators 0” are defined by 

G@k = {Ui& * l -  G;Juvg,{ u , , , - ,  * -  * efd. [251 

Since all the fiv are assumed to be small perturbations, they may be grouped into a 
single unitary operator by applying the Baker-Campbell-Hausdorfl’ (BCH) formula: 

IJ exp(-iAk) = exp 

Equation 1261 is true for arbitrary linear operators Ak, the expansion consisting of an 
infinite series of nested commutators. Provided all A& are of order t, the commutator 
is of order f2 and can be neglected, along with all higher-order terms. We assume Al 
is arbitrary and that all other Ak are related by Eqs. [23] and [25]. Finding the appro- 
priate pulse cycle then reduces to determining the sequence of phases $Jk such that 

for the single-spin case and 

;k+=O [271 

for the two-spin case. Equations [27] and [28] form one possible criterion for primitive 
sequences in each of these cases. 

The way this cancellation works can be illustrated by the single-spin case, where 
the imperfections Ak can be written in the form Ck l I. Consider a sequence of four 
composite 180” pulses, U U 0 0, the barred states denoting a 180” phase shift of all 
the constituent pulses, and assume U is equivalent to an x pulse on resonance. A table 
can be prepared listing each operator Ak underlying the &+.I( for each value of k, as 
shown in Table 1. An even number of states is required to null the E, terms; the 
additional requirement that both the ~~ and c,, terms vanish makes the minimum of 
four states, the origin of the MLEV4 sequence proposed by Levitt and Freeman (21). 
Of course there are many sequences of composite 180“ pulses that satisfy Eq. [27], 
but the MLEV-4 sequence is the shortest. 

In the bilinear case the vectors tk have 15 components, reflecting all possible linear 
and bilinear terms. The MLEV-4 sequence cancels the linear terms t, and bilinear 

TABLE 1 

Cancellation of Linear Spin Operators 
bv the Seauence U U l? u 

State Operator 
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cross terms E,@ (CX # @), but fails to average the E,,, as the operator I& is invariant 
to 180” rotations. We considered two strategies: (1) find a composite 1 80° pulse that 
keeps the t,, nearly equal as a function of resonance offset and then use an MI&V-4 
sequence to cancel all other terms; (2) devise another sequence that averages the coo 
as well as cancels the other terms. The first approach has been more successful in the 
work described here, but we briefly describe the second to establish a clear connection 
between the single-spin and two-spin cases. 

The averaging of the e,, requires that the number of states in the sequence be a 
multiple of three. With the independent requirement of four states to cancel the linear 
terms, a 1Zstate sequence seems to be required. Using only 90” (composite) pulses 
and 90” phase shifts three distinct sequences were found. With the shorthand X. Y, 
x, and Y denoting (composite) 90” pulses equivalent to 90” pulses along these four 
axes, these’ can be written (X Y d Y)3, (X Y X Y x Y)*, and (X Y X Y X Y)*. The 
behavior of the error terms can be examined in the same way as for the single-spin 
case. For example, Table 2 shows the systematic cancellation of the errors under the 
action of the 12-pulse sequence (X Y d Y)3. Since the operators I,, and 1~~ transform 
identically, only the former are listed. One advantage of this treatment is that we are 
free to substitute any composite 90” rotation into any of these sequences. This would 
not be the case if we had used the Magnus expansion alone and considered the operator 
Vas the perturbation. In such a case a separate calculation over the entire sequence 
would be required each time a different composite pulse is considered. The price paid 
for this convenience is that the exact form of U, must remain unspecified. 

Table 2 shows both the strong and the weak points of the 12-pulse sequences. The 
strong point is that, to first order, a true scalar operator I, * 12 will be produced by such 
a sequence. The weak point is that the radius of convergence is poorer than MLEV- 
4, especially for the linear terms ea. These terms are canceled only at the end of the 
entire 12-pulse sequence, and all three components are mixed together along the way. 
The MLEV4 sequence has a subcycle structure that cancels the ea much more ef& 

TABLE 2 

Cancellation of Nonscalar Spin Operators by the 12-Pulse Sequence X Y ,? Y X Y x Y X Y f Y 

State Operator _-I- .- 

I,, 11, Ilx12y IlJ2Z IlJ2Z I,,L I,zr,x I,J2, IlJ2, I,,h, I,.&, 
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ciently. We note that the opposite situation can prevail for a single spin I = 1 in a 
liquid crystal environment, due to the bilinear terms generated by the large quadrupolar 
interaction (7). In such a case, rapid cancellation of the bilinear terms could be more 
important. For proton decoupling in liquids, however, the resonance offset and RF 
inhomogeneity terms are so much larger than the proton scalar coupling that increased 
compensation for the latter at the expense of the former is unacceptable. As a result, 
we have found that sequences based on composite 180” pulses are still the method of 
choice. 

THE S-SPIN SPECTRUM UNDER A PURE SCALAR OPERATOR 

The expected form of the S-spin spectrum under periodic irradiation to the I spins 
has already been described in detail for the case of two coupled I spins (13) and also 
treated generally for any multilevel spin system (22), so we restrict ourselves to a brief 
summary of the conclusions relevant to our discussion. We assume stroboscopic ob- 
servation of the S-spin free induction decay synchronized with the decoupler cycl- 
ing rate. 

The evolution operator for the joint spin system at the time t, the first point of the 
S-spin free induction decay is sampled separates into a sum of commuting operators 
depending on the spin state of S, 

WJ = p+ U+&) + P- U-(&h [291 
where 

P* = a(1 -I- S,). [301 
In a rotating frame on resonance for S and assuming quadrature detection after an 
initial 90” pulse applied to the S spins, the S-spin signal can be calculated at any 
multiple oft, using the formula 

(S-(nt , ) )  = Tr{(& - iS,JU”(t,)& U+(Q) 

= Tr{ U~(t,)UI”(t,)}. t311 

The unitary operators U, can be considered to arise from fictitious time-independent 
Hamiltonians Xk that would have caused the same change in the quantum states 
over the time ts, 

U&) = exp(-W,t,). [321 

The only difference in Z’, arises from the different resonance frequency of I,, by an 
amount Jrs. In the regime of interest, and for the sequences we consider, it is safe to 
assume that the eigenvectors of Z++ and X- are nearly coincident, and Eq. [3 1] can 
thus be evaluated in a basis in which both operators are diagonal. The result is 

(S-(?Z&)) = i exp(it&+ - Qj-)), [331 
j=l 

where Qti are the jth eigenvalues of Z*. In this limit, Fourier transformation of the 
time-domain signal of Eq. [3 l] gives an S-spin spectrum containing four lines of unit 
intensity with frequencies given by the appropriate energy difkence. The eigenvalues 
are functions of the &en&I shift of 11, 61: C4j = Qj(Fir). The only role of the coupling 
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is to give Ii a slightly different chemical shift in each subspectrum. Since the perturbation 
is small, it is valid to approximate the difference by the derivative. Putting I$* = 2&+ 
and expressing all offsets and energies in hertz, we have 

Ej+ - Ej- = Ej(61 + J&2) - Ej(6, - J&2) e JIs 2. 
I 

Accordingly, we can define a set of j scaling factors by 

The frequency of the jth S-spin transition is then given by Jls Ai. Note that this definition 
of the scaling factor differs from that given by Waugh (6) in terms of the net rotation 
angle induced by the pulse sequence. In the current nomenclature there would be two 
scaling factors for the case of a single IS pair. The difference arises because the present 
scaling factors give the actual line positions in the S-spin spectrum, whereas the single 
scaling factor as defined by Waugh gives the frequency di&xvzce between the two 
parent transitions that occur in the case of a single I spin coupled to S. In muItileve1 
systems there is no convenient generalization of the Waugh scaling factor, and it 
becomes necessary to plot derivatives of the energy levels of the fictitious Hamiltonian 
instead (22). In the single-spin case we plot the Waugh scaling factor to facilitate 
comparison with previous work. 

A complete description of the decoupling performance would seem to require the 
construction of the complete two-dimensional energy level surface Qj(Si , &) as a func- 
tion of the resonance offsets of I, and I2 for each value ofj, followed by partial dif- 
ferentiation with respect to 6,. This time-consuming calculation is circumvented by 
taking a single cross section at & = 0. Sequences performing well over this shce also 
perform well for any values of 6, and d2 within their effective bandwidth. 

Suppose the decoupling sequence manages to produce a pure scalar operatur between 
the I spins. The S-spin spectrum is particularly easy to predict in this case. The correct 
eigenstates are the familiar triplet and singlet states with energies (1/4)J(&) and 
(-3/4)J(&), respectively. In the case of a perfect sequence J(b) is independent of the 
offset 6, and is equal to the unperturbed coupling J. All four S-spin transitions become 
degenerate and a sharp singlet is observed at the chemical shift of S, corresponding to 
perfect decoupling. 

Although it may seem somewhat surprising to the uninitiated, it is quite possible 
for a sequence to produce a propagator whose underlying Hamiltonian is a pure scalar 
operator with a coupling constant that depends on & (or more generally, on the dif- 
ference between the chemical shifts of Ii and 12). In fact, this is invariably what happens. 
In such a case the S-spin spectrum consists of two lines with the intensity ratio 3: I 
and with positions 

aJ(h) $ JIS -g- ; 
aJ(h) 

1 
2 JISF LjbI I 

corresponding to the S spin evolving in the local field of the triplet or singlet state, 
respectively. Figure 1 shows this behavior schematically. 

We can guess the minimum achievable splitting between these two lines by estimating 
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Offset-Independent Scalar 

Offset-Dependent Scalar !I 
FIG. 1. The expected farm of the S-spin spectrum under a decoupling sequence that produces an underlying 

Hamiltonian that is a pure scalar operator 274, * 12. If the effective coupling constant is offset-independent 
then a sharp singlet is observed. When the coupling constant is offset-dependent a 3: 1 pattern emerges, in 
which the S spin experiences the local field of the triplet or singlet states, respectively. 

the minimum rate of change of J with 6 i for a certain decoupling field amplitude ~02. 
During each single pulse of the complicated sequence, the spins Ii and 12 precess about 
their effective fields in the rotating frame. The angle 13 between the effective fields 
remains constant throughout and, assuming 82 = 0, is given by 

19 = tan-‘(2?r&/w2). [371 

Since w2 is fixed for the sequences we are considering, the angle 6 is constant throughout 
the sequence: changing the phase of the RF field changes both effective fields in exactly 
the same way. If the decoupling sequence functions perfectly, all linear and bilinear 
cross terms are removed, leaving only the projection of I, on I2 intact. As a result the 
effective Hamiltonian becomes 

A? = 2nJ cos t91, * I2 (381 

leading directly to a splitting AS between the singlet and triplet lines of 

AS = Jls(2~Jf~,)cos 0 sin 8, 

where ue is the effective field felt by I, : 

1391 

0, = (0: + (27&)2)“? [401 

When 6 i is small compared with the RF field amplitude 02, Eq. [ 391 reduces to 

AS = JIs(2xJ/02)(2d,/w2). [411 

For the representative values JIs = 200 Hz, J = 10 Hz, w2/27r = 2 kHz, and 6, = 200 
Hz we find a residual splitting AS = 0.1 Hz. The maximum splitting (AS = 0.385 Hz) 
occurs at the offset a1 = 14 14 Hz, and at (2’j2/2)w2/2a for arbitrary w2. These rough 
estimates should be regarded as very optimistic. Most actual decoupling sequences 
tend to decouple the two Z spins at a somewhat faster rate as a function of 6,. That 
is, the effective coupling constant between the two I spins is smaller than J cos 8. For 
some very simple sequences, a detailed evaluation of Eq. [ 1 l] predicts a reduction of 
about (8/3)‘12 larger, quite close to the value observed for many of our actual pulse 
sequences. This larger reduction leads to a larger gradient and larger splitting AS for 
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small & , resulting in poorer performance. As 6, approaches the edge of the decoupling 
bandwidth, the sequence is unable to average away the other operators properly, and 
the S-spin spectrum breaks up into four lines. 

The signature of the aforementioned hypothetical sequence producing a pure scalar 
operator is shown in Fig. 2 as a function of 6, for the case 13~ = 0. Both the energy 
eigenvalues and the corresponding h scaling factors are shown. The triplet state gives 
rise to a line three times more intense than that from the singlet state. When a1 = & 
= 0 there is no residual splitting, but there is a finite residual splitting at all other 
values of 61. This irremovable residual splitting is the direct result of the inability of 
the sequence to produce a completely offset-independent propagator. We have found 
no broadband sequence capable of producing a smaller residual splitting near 6, .= 0, 
regardless of the degree of iteration, and so regard this estimate as a theoretical lower 
limit. In contrast to the case of a single I spin, where iterative schemes can produce 
arbitrarily small residual splittings in the neighborhood 6, = 0, two coupIed I spins 
with different chemical shifts result in a small but irremovable residual splitting in the 
S-spin spectrum. 

From Eq. [4 I] we see that the residual splitting depends on w2, and this property 
carries over to all the sequences we have investigated, whether or not a pure scalar is 
produced. By contrast, changing wz does not change the residual splitting appreciably 
in the single-spin case as long as the I spin remains within the bandwidth of the 
decoupling sequence and the flip angles’of the pulses are correctly set for each value 
of w2 (5). A simple way to check for the effect of homonuclear coupling is to increase 
02, adjusting the pulse widths appropriately, while observing the S-spin resonance. If 
homonuclear coupling is playing a role, the linewidth should decrease. By the same 
token, RF inhomogeneity gives rise to a superposition of closely spaced multiplets, 
making the structure difficult to discern. 

Cross sections along a2 at the point 6, = 0 are somewhat more difficult to characterize 
for practical sequences. Provided a2 is within the decoupling bandwidth and a scalar 

FIG. 2. The energy eigenvalues, Ej, of the Hamiltonian of l& [62], assuming an unperturbed homomxkar 
coupling of 10 Hz and a 2 kHz RF field. The derivatives of the energies, Xj, shown below, are the scaIing 
factors giving the line positions in the S-spin spectrum. 
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operator is produced, there will be a residual splitting bounded from below by Eq. 
[39], in which the angle 0 now refers to & rather than to 6,. As 62 nears the edge of 
the effective decoupling bandwidth the compensatory properties of the sequence fail 
and four lines are generally produced in the S-spin spectrum. When 13~ is much larger 
than the bandwidth of the sequence, I, and Iz become decoupled and the S-spin spec- 
trum reverts to a sharp singlet. It follows that any additional heteronucleur coupling 
to I, has no important role in the proper decoupling of Ii from S, since I, will simul- 
taneously be decoupled from all heteronuclei. 

Any real decoupling sequence will produce a mix of other operators in addition to 
I, * 12. It is important to assess the influence of these unwanted operators on the 
S-spin spectrum. As the scalar operator I, - 12 is approached more closely, the Cartesian 
product operators become less convenient, and we employ instead the symmetric and 
antisymmetric linear combinations 

I,+ = 11, + 121 t421 

I,- = II, - z,, [431 

I xy+ = ZlJ2y + b.Jl, t441 

Ly- = IlJ2y - h.Jl,, 1451 

etc. All the symmetric operators I,+, &+ commute with I, . I2 and so can be eliminated 
by cyclic permutations and phase shifts, in the same way as in the single-spin case. 
The antisymmetric operators I,-, I+ evolve under Ii * I2 and can therefore pose prob- 
lems as the cycle time increases. Fortunately, none of the antisymmetric operators 
have any nonzero diagonal elements in the eigenbasis of I, l 12. They also have no 
nonzero matrix elements connecting the degenerate states within the triplet manifold. 
If the decoupling sequence produces coelhcients for these operators that are small 
compared to the proton-proton coupling constant the small terms are quenched by 
J and have very little effect on the decoupling performance. This stabilization of offset- 
dependent small terms by a larger residual term in the effective I-spin Hamiltonian 
has been discussed previously for the quadrupolar case (22). 

PRACTICAL SEQUENCES 

It is useless to start with an inferior composite pulse and then attempt to refine 
away all the errors with the iterative scheme alone. Such an approach misses the point 
that the numerical value of the scalar must be held constant: eliminating all the other 
operators does not guarantee perfect performance. Ironically, a certain gradient of the 
scalar part is “built in” during the initial stages, when there are still other terms present 
in the effective I-spin Hamiltonian. After most of the error terms have been removed 
it is not possible to alter the numerical value of the scalar much anymore: the effective 
Hamiltonian, precisely because it is very nearly scalar, becomes invariant to cyclic 
permutations and phase shifts, and commutes with itself over the various segments 
of the combined sequence. For this reason, special care must be taken in the design 
of the composite pulse. 

We were able to find suitable composite 180” pulses by using a hybrid approach. 
Using Eqs. [ 14]-[21], composite 180” pulses could be discovered which offered com- 
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pensation for resonance offset and which minimized the production of bilinear cross 
terms. The composite pulse could then be improved by an exact calculation of its 
performance over a limited variation of the constituent pulse flip angles, foBowed by 
extraction of the underlying Hamiltonian. An improvement was registered whenever 
the deviation of the scalar part, as a function of offset, was decreased. Usi 
known methods to iteratively improve composite 180” pulses for decoupling sequences 
by cyclic permutation of 90” pulses (2-5) then allowed the bandwidth to be extended 
without losing the desirable property that the scalar remain as unperturbed as possible. 
The final stage is then to assemble the decoupling sequence in the form R I? a R, 
which again attenuates the linear and bilinear cross terms without a&cting the scalar 
part much. A selection of the composite 180” pulses we found is set out in Table 3. 
We distinguish the corresponding decoupling sequences with the label DIPSI-n, the 
index n referring to the composite pulse R, in Table 3. DIPS1 stands for “decoupling 
in the presence of scalar interactions.” 

The scaling factors for DIPSI- 1, DIPSI-2, and DIPS13 are shown in Fig. 3, assuming 
a 10 Hz proton-proton coupling and a 2 kI-Iz RF field. The scaling factors for WALTZ- 
16 are included for comparison. Larger bandwidths are offered by the more complex 
180”‘s. Except for WALTZ- 16, the scaling factors show that the underlying Hamil- 
tonian is nearly a pure scalar operator as a function of o&et, for the three “triplet” 
states are nearly degenerate. WALTZ- 16 shows the largest deviation from pure scalar 
behavior, giving a spectrum of four lines over much of the calculated range. 

Figure 4 shows the single-spin Waugh scaling factor for WALTZ-16 and each of 
the DIPS1 sequences. The predicted quality of decoupling is extremely good for all 
these sequences, the scaling factor remaining well below h = 0.001 over their respective 
bandwidths. DIPSI- has a cycling rate of 130.4 Hz using a 2 kHz field, and so is 
comparable to WALTZ-8 in length and complexity. DIPSI- and -3 have cycling rates 
and complexities comparable to WALTZ-16 and WALTZ-32, respectively. 

EXPERIMENTAL 

Spectra were obtained both on a Bruker AM-400 spectrometer using a standard 10 
mm broadband probe and on an AM-500 spectrometer using a 5 mm broadband 
probe. The 10 mm probe, with its larger sample volume and substantially worse RF 
homogeneity, provided a searching test of the single-spin bandwidths of the DIPS1 

Label 

TABLE 3 

Phase-Alternating Composite 180” Pulses For Two Coupled Spins I = f 

Sequence Bandwidth” Length h 
- 

R, 365 295 65 305 350 rtro.4 I380 - - 
R2 320 410 290 285 30 245 375 ?i?i 370 -1-0.6 2590 - - 
& 245 395 250 275 % 230 360 245 370 340 350 

260 ?% 30 zz-j 365 255 395 50.8 4890 
- 

’ Approximate, in terms of the dimensionless offset parameter b/w2. 
b Total rotation of the composite pulse in degrees. 
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FIG. 3. Scaling factors for DIPSI-1, -2, -3, and WALTZ-16. The scaling factors are shown as a function 
of 6,) the offset of the directly coupled I spin, for the case & = 0, and assuming a homonuclear coupling of 
10 Hz and a 2 kHz RF field. Even though the DIPS1 sequences use only 180” phase shifts, a pure scalar 
propagator is approached quite closely. By contrast, WALTZ- 16 gives a different signature, showing nonscalar 
behavior and resulting in four different transitions. 

sequences under routine operating conditions. The combination of the 5 mm probe 
and higher B0 field available on the AM-500 allowed us to explore the expected fine 
structure of the carbon- 13 resonances due to homonuclear scalar coupling among the 
protons. An undoped mixture of methyl iodide and ethyl iodide in acetone-& provided 
one convenient test sample. The width of the carbon- 13 resonance of methyl iodide 
provided an internal standard, and that of the methyl resonance of ethyl iodide revealed 
the effect of proton-proton coupling. WALTZ 16 and DIPS-2, since they are of similar 
length and complexity, should be directly comparable without worrying too much 
about any differential effects of sample spinning or relaxation (5) between the two 
sequences. 

Figure 5 shows the observed 100 MHz carbon- 13 resonance (10 mm probe) of 
methyl iodide (Jcn = 15 1 Hz) as a function of the proton decoupler offset for WALTZ 
16, DIPSI-2, and DIPS-3. As the methyl protons have identical chemical shifts, there 
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FIG. 4. Single-spin scaling factors for DIR%I, -2, -3, and WALTZ-16 A11 the sequences offer excellent 
single-spin performance over their bandwidths, but WALTZ-16 gives the largest bandwidth. 

is no influence of proton-proton coupling on the heteronuclear decoupling perfor- 
mance. With the sample spinning at 6 Hz, the & field was shimmed until a Ml width 
at half-height of 0.20 Hz was obtained using coherent on-resonance decoupling. A 
sensitivity enhancement function added 0.05 Hz of line broadening, to bring the line- 
width to 0.25 Hz. The same settings were retained to investigate the br d se- 
quences. The carbon-l 3 signal was not sampled synchronously with the decoupier 
cycling. 

The decoupler field was calibrated and set to the value wz/27r = 1480 Hz. This 
relatively low value provides a stringent test of each sequence. The decoupset o&et 
was incremented in 200 Hz steps over a range t- 1400 Hz about exact resonance; a 
single transient was acquired at each offset. Under these conditions all three sequences 
give narrow linewidths over their respective bandwidths, and in particnlar for on- 
resonance irradiation of the protons. However, WALTZ-l 6, designed ex y for 
this single+in case, gives the largest bandwidth. The observed bandwidths for WALTZ- 
16 and DIPS-2 agree well with the theoretical predictions. DIPS-3 gives an enhanced 
tolerance to RF inhomogeneity, evident as a slight increase in peak height, but does 
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DIPSI- 

DIPSI- 

WALTZ-16 

FIG. 5. Carbon- 13 resonance of methyl iodide showing the of&t dependence of DIPSI-2, DIPSI-3, and 
WALTZ-16. The decoupler offset has been stepped in 200 Hz increments over a + 1400 Hz range about 
exact resonance. AU three sequences give narrow resonances over theii bandwidths, but WALTZ- 16 decouples 
over the largest range. The variations in peak height are attributable to poor o2 homogeneity over the sample 

not improve much on DIPSI- in terms of bandwidth. The cycling rate for DIPSI- 
is only 27.2 Hz under these conditions and is one factor causing the discrepancy 
between theory and experiment (5). 

The situation is completely different when there are coupled protons, as there are 
in most molecules of interest. Figure 6 shows the 125 MHz carbon- 13 methyl resonance 
(5 mm probe) of ethyl iodide in a mixture of methyl and ethyl iodide under conditions 
of broadband proton decoupling, using decoupling fields of 1100, 1460, and 1930 Hz 
and a spinning rate of 15 Hz. The decoupler offset was adjusted to the resonance 
frequency of the methyl protons of ethyl iodide; the methylene protons are then off 
resonance by 690 Hz. The value of J uu is 7 Hz. Each spectrum is the result of 64 
transients; no line broadening has been applied. Coherent on-resonance decoupling 
gave a linewidth of 0.20 Hz for methyl iodide. 

Using WALTZ-16, a very broad multiplet is obtained at w2/27r = 1100 Hz. Some 
line narrowing is achieved with a 1460 Hz field, and a 1930 Hz field narrows the 
resonance further, but a lineshape approaching a singlet is never obtained. The bizarre 
“wings” in the lineshape, most apparent at the intermediate field strength, are not 
artifacts due to poor homogeneity of the static magnetic field Bo. They result from 
the outer lines of the methyl quartet, which experience an effective heteronuclear 
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WALTZ-16 DIPSI- 

c ,/( 1460Hz jL 

-- L.OHz j< 

+-----20H~z------+ - 2OHz-------, 

l?lG. 6. Carbon-13 methyl resonance of ethyl iodide using three different va.lues of ~2. Due to the effect 
of scalar coupling between the protons, distorted line&apes are obtained with WALTZ- 16 (let&h&ad spectra). 
DIPS13 gives better results, as shown on the right. 

coupling constant three times as large as the inner lines (23:) and which are three times 
more sensitive to RF field inhomogeneity (24). 

By using the sequence DIPS-2 instead, a substantial improvement is obtaked, as 
shown by the right-hand series of spectra. At the lowest field strength of 1100 Hz there 
is a resolved residual splitting, and some evidence of the pedestal from the outer lines, 
but the performance is already as good as that obtained with WALTZ- 16 at the highest 
field strength tested. The multiplet pattern shows that a propagator close to a pure 
scalar operator is being produced by DIPSI-2. At the intermediate value of 1460 Hz 
the splitting becomes unresolved, showing only as a slight shoulder on the 
With the highest level of 1930 Hz the line narrows still more to give a slightly distorted 
singlet. Aside from the more pleasing lineshape, DIPSI- gives an increase in peak 
height, and hence carbon- 13 sensitivity, of about 25% in this example. 

Figure 7 shows the low-field carbon- 13 ethylenic resonance of tralzs-cinnamic acid, 
a molecule previously used to illustrate the effect of homonuclear coupling on broad- 
band decoupling (13). The ethylenic protons form an almost isolated two-spin system 
with Jnu = 16 Hz, providing an ideal test for the effects of proton-proton co@ing. 
The decoupler offset was once again adjusted to the resonance frequency of the dkeotly 
attached proton. The other proton is then off resonance by --584 Hz. At 02/27r = 1 IQ0 
Hz, WALTZ- 16 gives a broad multiplet with the predicted pattern of four lines. DIPSI- 
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WALTZ-16 DIPSI -2 
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FIG. 7. Low-field ethylene resonance of trans-cinnamic acid under conditions of broadband decoupling. 
WALTZ16 gives broad multiple& and at the lowest decoupler level all four lines are resolved. DIPSI- 
narrows the resonance considerably, resulting in better sensitivity and resolution. 

2 gives a 3: l-type pattern, almost twice as narrow and twice as intense, under the same 
conditions. Once again, increasing the field strength to 1930 Hz narrows the resonance 
line in each instance, but there is still a 50% increase in peak height using DIPSI-2. 
We have obtained similar results with DIPSI-3. In Fig. 8 we show that the main 
features of the multiplet patterns, using both WALTZ- 16 and DIPSI-2, can be repro- 
duced by simulation even though the latter assumes a perfectly homogeneous RF field. 

CONCLUSIONS 

Past improvements in broadband decoupling aimed to improve the bandwidth for 
a given value of w2, and much progress has been made. For the single-spin case, 
sequences like WALTZ- 16 deliver very high quality decoupling over bandwidths *AU/ 
02, and larger bandwidths can be attained if the quality is allowed to deteriorate to 
some extent (5). While very wide bandwidths may look impressive on paper, they 
usually offer no particular advantage for proton decoupling and so are not much used. 
The lowest value of the decoupling field that can be used is dictated by the requirement 
that the modulation sidebands in the carbon- 13 spectrum be acceptably small, so that 
values much less than 2 kHz are rarely employed. Well-designed probes can achieve 
fields w2/27r = 3 kHz with acceptable sample heating. Consequently, for all except the 
very highest & fields, the entire proton chemical-shift range is decoupled with sequences 
like WALTZ- 16. Furthermore, many molecules do not have proton resonances that 
span the entire 10 ppm range. In these cases, further improvement in bandwidth is 
beside the point. 

We have shown here that scalar coupling among the protons can also set a lower 
limit to the decoupling field that can be used and, using WALTZ- 16, values substan- 
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WALTZ-16 DIPSI- 

FIG. 8. Comparison between simulation and experiment for trawcinnamic acid using WALTZ- 16 (lefi) 
and DIPS-2 (right). The parameters used in the simulation are w2/2~ = 1100 Hz, bl = 0 Hz, S, = -584 
Hz, I&,, = 150 Hz, ‘J a = 0 Hz, and JHH = 16 Hz. The simulations assume a completely homogeaeuus w2 
field and have been artificially line broadened to match the linewidths of the experimental spectra. No 
attempt has been made to fit the experimental spectra using an w2 distribution. 

tially larger than 2 kHz may have to be employed if the true instrumental linewidth 
is the desired resolution. In some cases the multiplet patterns could prove co&sing, 
especially if they happen to overlap or if the carbon- 13 nucleus is coupled to other 
heteronuclei. Isotopic substitution of deuterium for protons changes the proton cou- 
pling network; some change in the carbon-13 lineshape may be observed in addition 
to any splittings and isotope shifts. It goes without saying that experimenti like IN- 
ADEQUATE (25, 26) can demand the narrowest carbon-l 3 resonances to achieve 
the best sensitivity. The advent of less costly computer memory and array processors 
increasingly allows very fine digitization of even routine survey spectra, while im- 
provements in temperature stability and & homogeneity (27-29) have produced im- 
pressively narrow carbon- 13 linewidths in favorable cases. 

In the aforementioned cases it may be possible to improve resolution and set&iv&y 
by using the DIPS1 sequences instead of existing single-spin sequences. Using a 2 kHz 
field, a bandwidth of 2.4 kHz is obtained with DIP!%2, large enough for all normal 
applications at B0 fields up to 200 MHz for protons and for many applications ztp to 
300 MHz. When scalar coupling among the protons is limiting the carbon-13 reso- 
lution, DIpSI- can offer a factor of two in line narrowing over WALTZ- 16 or, equiv- 
alently, a fourfold reduction in RF power. 

This work has implications for homonuclear Hartmann-Hahn experiments (8, I I). 
In such experiments a broadband decoupling sequence is often used during the mixing 
period, causing a coherent exchange of magnetization among the protons. Elegant 
calculations (30) suppose that a pure scalar operator determines the evolution dwring 
the mixing sequence. While sequences like MLEV- 16, WALTZ- 16, or MLEV- 17 (31) 
suppress the effects of resonance offset to a large extent and undoubtedly res&t in 
magnetization transfer, none of them produces a pure scalar operator. In addition, 
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calculations show that both the MLEV sequences are sensitive to small errors in the 
RF phase shifts, in disagreement with claims in the literature (31). We expect the 
DIPS1 sequences to be of potential use in these experiments. 
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