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Variable angle correlation spectroscopy (VACSY) has
been successful as a two-dimensional NMR experiment for
correlating isotropic and anisotropic interactions. The tech-
nique has been applied to studies of complex organic solids
(1)," glasses (2), and molecular dynamics (3). However,
one disadvantage of conventional 2D VACSY is that it is
not possible to obtain pure-absorption-mode spectra because
of “phase-twist” artifacts inherent to the experiment; the
resulting loss of resolution and lineshape distortions may
impede spectral analysis (4). In this Note, we describe the
use of linear prediction with singular-value decomposition
(LPSVD) to obtain absorption-mode 2D VACSY spectra
free of artifacts.

Phase artifacts in an NMR spectrum can be viewed as
truncation effects due to incomplete sampling of the time-
domain Fourier space. First, consider a one-dimensional
NMR signal:

S() = Jim I{(w)expliwt)de. [1]

The spectral-intensity distribution, /(w), may be obtained
from Eq. [1] by a Fourier transformation. However, the final
experimental spectrum, I'(w), must take into account line
broadening and truncation of the signal. Assuming that all
spectral components have the same Lorentzian broadening,
I'(w) is obtained through a convolution of I(w) with a
Lorentzian point-spread function ( PSF), P(w):

I'w) = [(w)*P(w). [2]
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If the signal spans the full Fourier space for positive and
negative time, P(w) is an absorption Lorentzian lineshape,
as shown in Fig. 1a. The function I'(w) is then simply the
broadened form of I(w). If the signal spans only half of the
Fourier space for positive time, P(w)is complex valued (Fig.
Ib),

Plw) = a(w) + id(w), [3]

where (5)
A
A=
d(w) = ‘52‘3? (4]

Here, ) is the exponential damping factor and a(w) and
d(w) are the absorption and dispersion Lorentzian line-
shapes. In both cases the real part of P(w) has the same
lineshape and the same spectral information is available from
spanning either all or just half of the time-domain Fourier
space.

The same principle easily generalizes to higher dimensions.
In two dimensions, the signal is written as

Sttt = [ T, enexpliCenn + wni)drdes. 15]

The experimental spectrum I'(w,, w,) is a two-dimensional
convolution of the spectral-intensity distribution, /(w,, w;),
with the 2D PSF, P(w;, w,):

I'(wg, wy) = I{wy, w2)* ¢ P(w;, w)). (6]
If there is no truncation and the signal spans the complete
Fourier space, P(w,, w;) is a 2D pure-absorption Lorentzian
lineshape, as shown in Fig. 2a. If only half the Fourier space
is acquired by truncating the signal for 1, < 0, P(w,, w,) is
complex,
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FIG. 1. One-dimensional Lorentzian point-spread function (PSF), Aw).
(a) Complete signal acquired for positive and negative time; Aw) is then a
real absorption Lorentzian lineshape. (b) Signal acquired only for t > 0. The
real component is an absorption Lorentzian lineshape, while the imaginary
component becomes a dispersion lineshape.

P(w;, w2) = 2a,(w))[ax(w;) + idr(w;)]

2[a(wi)ax(w2) + ia (wy)da(wy)],

[7]

where a,(w,) 1s the absorptive component in w;, and @, (w,)
and d,(w,) are absorptive and dispersive components in ;.
Once again the pure-absorption lineshape, a,(w;)a:(w,), can
be obtained by sampling only half of the full Fourier space
(Fig. 2b). Of course similar results may be obtained by trun-
cating the signal along the f, dimension rather than ¢,. If,
however, both the ¢, and the 7, dimensions are truncated,
i.e., only one quadrant in the Fourier space is acquired, both
the real and the imaginary components of P(w,, w;) contain
positive and negative lobes due to mixing of the absorptive
and dispersive components (Fig. 2¢),

Plwy, w2) = [a(w)) + idi(w))][a(w2) + ida(w;)]

[a(w)ay(wy) — di(w)dz(w)]
+ ila(w))do(w2) + di(w))ax(w,)],

n

(8]

and pure-absorption lineshapes are no longer possible. Con-
ventional! methods of obtaining pure-absorption-mode 2D
spectra include acquiring echoes in either the ¢, or the ¢,
dimension (6) or acquiring both the +1 and the —1 coher-
ence pathways in the ¢, dimension (4, 7). Both these methods
ensure that the signal effectively spans two of the four quad-
rants in the 2D Fourier space.

In 2D VACSY, a series of variable angle spinning (VAS)
free-induction decays are acquired and placed at angles (8)

a = tan '[RPy(cos §)] [9]

113

in the signal-acquisition Fourier space defined by the “time”
coordinates

t* = P(cos B)t

=1y, (10]
as shown in Fig. 3. Here, £* and /' define the anisotropic and
isotropic time axes, P,(cos ) is the second Legendre poly-
nomial, 8 is the angle of the rotation axis with respect to the
static field, and R is the ratio of the anisotropic to isotropic
spectral widths. Typically P, ranges from —0.5 to +0.5, so
that the signal partially spans two of the quadrants in the
Fourier space. Once the FIDs are positioned, the grid points
within the shaded region, shown in Fig. 3, are interpolated
from the experimental data points; the rest of the Fourier
space is set to zero. The phase artifacts inherent to the 2D
VACSY spectrum are due to incomplete sampling in these
two quadrants.

Consider the PSF, P(w?, w'), for R =2 and 0.5 < P, <
+0.5. Since « then ranges from ~45° to +45°, the total area
of the Fourier space spanned by the VACSY signal is equiv-

Re[P(w;,07)]  Im[P(w,w;)]
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FIG. 2. Two-dimensional Lorentzian PSF, P(«w,, w,), in conventional
2D NMR experiments. (a) Alw,, w,) for signal acquired in all four quadrants
of the time-domain Fourier space. P{w,, w,) is a real 2D Lorentzian lineshape.
(b) A(w,, w,) for signal acquired in two of the four quadrants. The real com-
ponent of Pw,, w;) remains a 2D absorption Lorentzian lineshape,
a;(w))ax(w,), while the imaginary component is a mixture of absorptive and
dispersive terms. (¢) P(w,, w,) for signal acquired in only one quadrant. Pw,,
w,) contains a mixture of absorptive and dispersive terms in both the real
and the imaginary components.
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FIG. 3. Trajectories of variable angle spinning FIDs in the signal Fourier
space defined by the variables [Py{(cos 8)1, t]. The dark lines represent the
trajectory of the FIDs; the dots represent experimental data points, used to
interpolate the points on the rectangular grid (dashed lines). The orientation
of each FID is determined by the angle a = tan™'[RPy(cos 3)].

alent to one quadrant. Thus P(w?, w'), shown in Fig. 4a, is
similar in form to P(w,, «,) of Fig. 2¢ but rotated by 45°.

The difference between the two PSFs is due to the star shape.

of the 2D Lorentzian (5). Had we used a cylindrically sym-
metric lineshape function, such as a 2D Gaussian, the two
PSFs would differ only by the rotation. The artifact ridges
become less intense when R increases and a larger area of
the Fourier space contains data, as shown in Fig. 4b. Un-
fortunately this is achieved at the cost of spectral resolution
in the anisotropic dimension and increased interpolation er-
ror. In addition, rearrangement of the FIDs will never com-
pletely remove the phase artifacts, since according to the
Fourier projection slice theorem (9), the projection of the
2D VACSY spectrum onto the anisotropic w® axis is equal
to the Fourier transformation of the slice along the 7* axis.
The ¢* axis, however, contains only one data point at 1* =
0, and its Fourier transformation is a constant function. Thus,
as seen from Fig. 5a, the 2D VACSY spectrum must contain
negative lobes to cancel out all spectral features in the pro-
jection. Similarly, the projection on to the isotropic w' axis
will result in a pure-absorption MAS spectrum despite the
phase artifacts.

The spectral artifacts in Fig. 5 are unique to 2D VACSY
experiments due to the unconventional truncation and in-
terpolation of the time-domain data. Since the FIDs are
placed symmetrically about the ¢ axis, the slice of the VACSY
PSF along the w® axis contains no dispersive terms, while
the width of the lineshape varies depending on the level of
truncation determined by R (Fig. 4). Thus even using a
magnitude calculation, each anisotropic pattern appears ab-
sorptive provided there is no significant interference of the
phase artifacts from the different isotropic sites in the spec-
trum. Often these artifacts may be ignored, particularly when
the spectrum is dominated by broad anisotropic patterns,
since then the artifacts also broaden, and the interference
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between different sites becomes negligible. This explains the
success of 2D VACSY despite the artifacts inherent to the
technique. However, these artifacts can become a serious
problem when the spectrum contains closely spaced isotropic
shifts with small anisotropies. The ridge artifacts emerging
from a narrow site may interfere with the anisotropic patterns
of neighboring sites, causing lineshape distortions. The re-
moval of such artifacts becomes especially important when
there are partially overlapping or a continuous distribution
of isotropic shifts, or when accurate lineshape analysis is re-
quired, as in the study of intermediate dynamics or partial
molecular ordering.

Artifacts in 2D VACSY spectra can be reduced if the missing
points in the signal Fourier space can be extrapolated using the
experimental data. However, due to the large number of missing
data points, the extrapolation technique must maintain accu-
racy over several cycles of the signal. Linear prediction with
singular-value decomposition is one such technique that has
been used for extrapolation and spectral estimation in NMR
to improve resolution and signal-to-noise ratios ( /0, /7). It has
also been used to minimize artifacts in pulsed ESR spectra

Re[P(0",0)]

Im[P(0’,®")]

FIG. 4. Two-dimensional Lorentzian PSF, P(«', o?), for 2D VACSY
experiments. All functions are calculated using —0.5 < P, < +0.5. The
different values for R determine the overall area of the time-domain Fourier
space covered by the data, as shown by the shaded regions. (a) P(w', w®) with
R = 2. The total area containing data is equivalent to one quadrant. A«
w?) is similar in form to P(w;, wy) in Fig. 2¢ but rotated by 45°. (b) P(«!, w*)
with R = 4. The intensity of the ridge artifacts decreases as a larger area of
the time-domain Fourier space is filled with data, and the overall width of
P(o', «®) al o' = 0 is narrower than that in (a). (¢) P(«', w*) with R = |. The
ridge artifacts are more intense and lineshapes are broader at o' = 0.
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FIG. 5. Simulation of 2D VACSY spectra. The simulations were made using R = 2, 14 = 200 s, and three sites with the chemical-shift tensors: (a,,,
0y 022) = (0.3, 1.0, 2.3), (0.5, ~0.5, —1.5), (—2.5, =2.0, —1.0) (kHz2). (a) Normal phased 2D VACSY spectrum obtained using 0.5 < P, < +0.5 and
R = 2. The area of the Fourier space outside of the shaded region is set to zero. The 2D spectrum reveals the phase artifacts inherent to the normal 2D
VACSY experiment. The projection onto the «* axis yields a constant function, whereas the projection onto the «' axis yields the pure absorption isotropic
spectrum. (b) 2D VACSY spectrum after extrapolation using LPSVD. The area set to zero in (a) is extrapolated from the interpolated simulation data in
the shaded region. LPSVD is used to extrapolate the data in each slice, parallel to the £ axis, to the £ = 0 point. The phase artifacts are eliminated from
the 2D spectrum. The projection onto the w* axis yields the overlap of the different traceless anisotropic powder patterns, while the projection onto the o'

axis again yields the isotropic MAS spectrum,

(12). The LPSVD method assumes the signal to be a time
series represented by a sum of decaying exponentials with the
addition of white Gaussian noise, w(n) (13),

M
2 amexplliwy, = Am)la(n + 8)] + w(n),

m=1

n=0,l,...,N—1,

Vn

(11]

where a,,, w,, A, are the complex amplitude, frequency,
and damping factor of each exponential term, respectively,
M is the total number of exponential components, 4 is the
dwell time of the time-series signal, N is the total number of
points in the time series, and & is an integer that specifies the
shift from the time origin to the first sampled data point.

We now briefly discuss the steps involved in the LPSVD
computation; more complete presentations may be found
elsewhere (10, 11, 13, 14). A set of linear prediction (LP)
equations may be set up in backward mode as

N Y2 co yi bo Yo
}’.’2 }f3 YL‘+1 b_l _ y_‘1

,VN~.L—1
(12]

Yn-L  Vn-L+1 YN+1 b

or in brief form as

Ab = —h, [13]

where b is the vector of the backward LP coeflicients, A is
the (N — L) X L data matrix, and h is the data vector with
N — L components. The number of LP coeflicients ( predic-
tion order), L, is bounded by the condition M < L < N —
M, but is typically set to 0.75N (13).

The singular-value decomposition (SVD) of the matrix A
may be written as a product of three matrices (/4),

A=y Sl

o [14]

where 1 denotes Hermitian conjugate; U and V are orthog-
onal matrices of dimensions (N — L) X (N — L)and L X
L, respectively; 8 is a diagonal matrix with the singular values
{or, k=1,2-+-min(L, N— L)} as its diagonal elements;
and O is a null matrix. Denoting the column vectors of the
matrices U and V by {u;, uy, ..., un_p} and {v,, v2, ...,
v, }, the backward linear prediction coefficients are computed
as
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b=-2> —(uyh)v,,

m=1 Tm

(15]

where the summation limit, M, truncates the SVD solution
for b. For low-noise data, M is simply the total number of
peaks in the spectrum,; if, however, the data contain signif-
icant noise, M becomes an adjustable parameter that may
be chosen to have a higher value (15, 16). Once the backward
LP coefficients have been calculated, the missing data points
in the time series in Eq. [11] may be extrapolated as

L
yn'—_—zbkyrﬁk’ n:(_la_za---»_a), [16]
k=1

where n = —& specifies the data point at the time origin.
However, to take advantage of the signal-to-noise ratio im-
provements in LPSVD, the entire time series should be re-
constructed by calculating the spectral parameters associated
with the data set. The parameters, «,, and w,,, can be ob-
tained by constructing a polynomial
B(z)=1+bfz"+b3z72+ -+ +bfz7t, [17]

which has roots at z,, = exp[iw,, + a,,]. The complex am-
plitude, a,,, can then be obtained by substituting «,, and w,,
back into Eq. [12].

The 2D VACSY signal after interpolation may be written
in the same discrete time-series form as Eq. [11],

M
Vnsni = 2, GmaeXPiwimtan’ — Ny,

m=1

(18]

where

Appps = f](w‘,,,, w?)exp[iw®gn?/Rdw?. [19]
Here, I(w!,, w?) is the 2D correlated isotropic-anisotropic
spectrum, while n' and n? specify the discrete time increments
in the ¢! and ? dimensions. Since the VACSY spectrum cor-
relates isotropic frequencies with distributions of anisotropic
frequencies, only the sequence of data points parallel to the
¢! axis can be assumed to form a time series represented by
a sum of decaying exponentials. Thus LPSVD must be ap-
plied to each slice parallel to the ¢' axis to extrapolate the
missing data and completely fill two of the quadrants in the
time-domain Fourier space, as shown in Fig. 5b.

The advantages of using LPSVD with experimental 2D
VACSY data are demonstrated by *C NMR of solid lauric
acid. All spectra were recorded at 7.07 T with a '3C resonant
frequency of 75.40 MHz. Lauric acid poses a particularly
difficult problem for the VACSY technique because of the
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combination of a large spectral width and small chemical-
shift anisotropies of the aliphatic sites. Four isotropic reso-
nances are completely resolved in the MAS spectrum, which
contains the carboxyl resonance at 181 ppm and three ali-
phatic resonances centered about 24 ppm. Thirty-one VAS
FIDs were acquired, each containing 512 points and using
angles restricted to the range —0.5 < P,(cos 8) < 0.5. After
interpolation onto a 128 X 512 grid, LPSVD computations
were carried out with MATLAB-SGI (Version 4.0), using
matrix software developed by the LINPACK (/7) and EIS-
PACK (18) projects. The signal parameters for each n® slice
parallel to the ¢' axis were obtained using N = 512 + n, —
65forn,<65and N=512 —n,+65forn,>65and L =
284. The profile of the M values used in the computations,
shown in Fig. 6, was determined empirically by comparing
Fourier transformations of several n? slices with and without
LPSVD. This ensures that for each n? slice the signal param-
eters obtained from LPSVD reproduced the correct experi-
mental spectrum.

Figure 7 shows the MAS spectrum and the anisotropic
patterns obtained from a 2D VACSY experiment. The as-
signments for the different isotropic '*C sites are based on
liquid-state '3*C NMR spectra (19). The spectra in column
I were obtained directly through Fourier transformation,
while the spectra in column II were obtained using the
LPSVD spectral estimation method described above. Fourier
transformation directly after interpolation results in severe
artifact interference among the aliphatic carbon resonances
b, ¢, and d, making examination of individual anisotropic
patterns difficult. The ridge artifacts from site b can even be
seen in the anisotropic spectrum of the carboxyl carbon (site
a), appearing as lobes on both sides of the powder pattern.
These spectral artifacts are significantly reduced using
LPSVD as shown in column II. In particular, site a shows
that the anisotropic lineshape remains unchanged when
LPSVD is used, while the artifact lobes are completely re-
moved. Comparable results (not shown ) have also been ob-
tained using the commercial LPSVD routine in FELIX data-

101
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FIG. 6. Profile of the M parameter used for LPSVD processing, as de-
scribed in the text. The M value used for extrapolation varied, depending
on the anisotropic slice index, n*.
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FIG. 7. The isotropic and anisotropic spectra obtained from a 2D
VACSY spectrum of lauric acid. The MAS spectrum, in ppm units relative
to TMS, reveals four completely resolved sites. Site a corresponds to the
carboxyl carbon 1. site b to carbons 4-10 and 2; site ¢ to carbons 3 and 11,
and site d to the methyl carbon 12. The anisotropic patterns in column 1
were obtained by Fourier transforming the interpolated data with zeros out-
side of the region spanned by the FIDs. The anisotropic patterns in column
11 were obtained using LPSVD to construct a data set that completely spanned
two of the four quadrants in the time-domain Fourier space.

processing software (Biosym Technologies). Further analysis
and interpretation of the anisotropic lineshapes of lauric acid
and lauric acid in an inclusion compound will be presented
elsewhere.

In summary, we have shown that 2D VACSY artifacts
have the same origin as the phase-twist artifacts observed in
conventional 2D NMR experiments. These artifacts may be
removed by using LPSVD to fill in missing data in the time-
domain Fourier space. The resulting pure-absorption spec-
trum eliminates resolution problems associated with closely
spaced isotropic lines and interference of phase artifacts. This
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should allow 2D VACSY to be applied to investigate a wider
range of complex systems. Similar spectral-analysis methods
may be applicable to the 3D VACSY exchange experiments
that also suffer from artifacts due to holes in the time-domain
Fourier space (20).
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