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We show that arbitrary RF phase shifts can be measured precisely using the nuclear 
spins to monitor the phase of the RF field. Other imperfections like resonance offset, RF 
inhomogeneity, or symmetric phase transients are removed by the action of the multiple- 
puise sequence and have little influence on the measurements. Phase shifts can be 
trimmed to the desired value with an uncertainty of less than 10 millidegrees in favorable 
CaSeS. 0 1988 Academic Press, Inc. 

INTRODUCTION 

Many important NMR experiments require RF pulses of different phase, and 
phase shifters are now standard equipment on most all commercially available spec- 
trometers. Two-dimensional experiments in liquids (I, 2) rely heavily on orderly 
phase cycles to select a certain signal while rejecting all others. In these experiments, 
errors in the RF phase shifts result in unwanted signal breakthrough and the appear- 
ance of artifacts. Composite pulses (3-12) can require rapid, accurate phase shifts of 
arbitrary values in order to operate successfully. Multiple-pulse experiments in solids 
(13-20) are notoriously sensitive to pulse imperfections, errors in the phase shifts 
included. Finally, multiple-quantum NMR (21-29, in which a phase error A4 
propagates to nA4 for an n-quantum coherence, can prove very demanding as n 
becomes large. 

In this paper we propose a straightforward method to set transmitter RF phase 
shifts to any desired value with high accuracy. The method, a generalization of the 
work of Haubenreisser and Schnabel(26), is reasonably insensitive to other imperfec- 
tions such as RF inhomogeneity or resonance offset. It performs well in practice as 
we demonstrate by experiment. Using an oscilloscope, simple diagnostic patterns are 
produced for “rational” phase shifts of pr/q for small q, allowing quick trimming of 
the phase shifts to exactly the right values. More generally, Fourier transformation of 
the signal response allows the measurement and setting of arbitrary phase shifts. For 
systems in which the phase shifts are controlled by software, we can envision a sce- 
nario in which the computer automatically calibrates the phase shifts without opera- 
tor intervention. 

Symmetric and nonsymmetric versions of the basic sequence are shown in Fig. 1; 
they essentially differ only by the moment at which magnetization is sampled. Figure 
la becomes the Haubenreisser-Schnabel sequence when 4 = r/2, generating a net 
rotation about the y axis. The nonsymmetric sequence of Fig. 1 b generates an equiva- 
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FIG. 1. Multiple-pulse sequences for phase alignment. Part (a) shows a symmetric repetitive sequence 
that gives a net rotation of 2rp about the -y axis. The corresponding nonsymmetric sequence of(b) delivers 
a net rotation about the z axis. 

lent rotation about the z axis. The z rotation can be preferable for the Fourier trans- 
form experiment since only a single resonance is obtained. However, direct observa- 
tion of the time-domain signal is simpler with the symmetric sequence, because it 
simplifies interaction with the receiver phase. For this reason, and to facilitate a 
comparison with earlier work (26), we concentrate on the symmetric version of the 
experiment. 

THEORY 

We consider the symmetric sequence of four 90” pulses applied to an ensemble of 
isolated spins, with the timing diagram shown in Fig. la. The first and last pulses are 
applied with a reference phase of 0, which may be considered +x, and the two center 
pulses are applied with relative phase $J, -?r < C$ =z ?r. The sequence may be preceded 
by a prepulse. For the on-resonance case, assuming perfectly rectangular pulses and 
neglecting relaxation, the result of the four-pulse sequence of Fig. la can be predicted 
exactly using rotation operators, 

R = R,(a/2)R,(~)R,(n)R-,(~)R~(~/2) 

= R-,(4V?x(W-y(d), 111 
in which Rx(a) = exp(-ial,), etc. The operator R,(27r) = +- 1 depending on whether 
integer or half-integer spins are involved, so 

R = *R-,(24). PI 
Aside from the absolute sign of the operator, which we ignore hereafter, Eq. [2] shows 
that the result of the four-pulse sequence is a pure rotation of angle 24 about the -y 
axis. If the four-pulse sequence is repeatedly applied and a single data point is cap- 
tured after each segment, then we find for the x component of the magnetization 
(Z,(t)) at integer multiples of 7, 

(ZsC(mc)) = sin(2n+) 131 
if the spins are initially prepared at thermal equilibrium, and 

(z;(m,)) = cos(2nc#)) [41 
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if they are initially prepared along the x axis of the rotating frame by a 9OJ, prepulse. 
Fourier transformation of the cosine component determines 24 modulo 7r up to a sign 
ambiguity, while if both components are available the sign of 24 can be determined as 
well. Since the value of the phase shift is usually approximately known beforehand, 
either component can be used to determine 4. The precision of the measurement 
depends on the number of data points that can be collected before the driven free 
induction decay is lost in the noise. 

Equation [2] is only valid if the RF pulses are ideal, so it is very important to assess 
the likely impact of spectrometer imperfections on the phase calibration procedure. 
Our approach is to concentrate on the exact formula for the imperfections and then 
to recover the average Hamiltonian (13) result by expanding the error terms in a 
perturbation series. In this way the connection between the exact expressions and the 
average Hamiltonian approximation is made clear. One strategy we repeatedly em- 
ploy is to express a product of small error rotations as a power series using the Baker- 
Campbell-HausdorIf formula: 

n exp(-&mk.I) = exp 
k I) 

. [51 

In Eq. [5] the ?jk are small rotations about unit axes mk and the terms in the product 
on the left hand side are understood to be ordered with larger k to the left. The errors 
“cancel out” when the rotation they induce is nearly the identity operator. The alge- 
braic conditions 

c 6kmk = 0 El 

2 6k6jmk X Illj = 0 
bj 

[71 

express this cancellation to first and second order in 6 which, rather confusingly, is 
referred to as zeroth or first order in the average Hamiltonian expansion. The other 
formula we need is the net rotation angle for a small rotation combined with a larger 
rotation. If fl and 6 are arbitrary angles, and 

exp(-$?m,. I) = exp(-idm2. I)exp(-iGml . I), PI 
then ,6 is given by 

cos(/3/2) = i (1 + ml. m,)cos !9+a 1 
( - 2 1 +j(l 

8-6 
- ml.m2)cos ( 2 1 . [91 

If m, = km2 then fi = 8 f 6, while if m, .m2 = 0 and 6 is small, /3 x 8. An important 
special case occurs for 0 = ?r, when B = 6 if ml. m2 = 0 regardless of 6. 

We consider three sources of error: RF inhomogeneity, resonance offset, and sym- 
metric phase transients. Of these, RF inhomogeneity has the greatest impact for 
liquid-state spectrometers employing saddle-coil configurations, while the symmetric 
phase transients could be more important for high-power applications in solids. Reso- 
nance offset is the least important imperfection since it is reasonable to assume that 
the frequency of the RF carrier can always be adjusted very near to resonance if a 
liquid sample such as water or acetone is used. 
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The rotation operator describing the four-pulse sequence in the presence of RF 
inhomogeneity, in which each spin experiences a flip angle x/2 + E(T) depending on 
its spatial position, can be written, for a single volume element, 

R = R,(a/2 + t)R,(c#~)R,(a + 2c)R-,(&)RJr/2 + t) 1101 
which can be simplified to 

R = R-,(2$)R, [Ill 
with 

R = ~R,(~~)R,(~)R-,(~~)I[R~(~)R,(~E)R-~(~)IR~(~). [Ql 
The grouping of the terms is meant to emphasize the “toggling-frame” transforma- 
tion of the errors under the ideal rotation (13). Since the y rotations only act to tilt 
the axis of the t rotations into the xz plane, Eqs. [5] and [8] show that, provided 24 
dominates t, R represents a rotation by an angle 24 to first order in t. Thus, the 
error terms are quenched by the rotation induced by the phase difference between 
the pulses. 

The same conclusion can be reached by using the average Hamiltonian method. 
In this case we select a rational phase shift 4 = pr/q and choose k so the 2k$ is a 
multiple of 27r. This ensures that the sequence is cyclic in the average Hamiltonian 
sense. The exact formula for Rkt over the entire sequence becomes 

Rkr = exp(-icZ,){ n exp(-2k[Z,cos(n$) + ZZsin(n$)])}exp(-iel,). [I31 
n=2k- I 

Using Eq. [5] we find 

Rkc = exp{ -2i[t 2 Z,cos(n4) - Z,sin(n4) + O(t’)]}. 
n=O 

t141 

The x and z components can be combined into a single complex version of Eq. [6]: 
2k-1 

C exp(-in4) = 0. ]151 
n=O 

Equation [ 151 is satisfied for all I$ Z 0, because the sum is invariant to multiplication 
by exp(i4). In the case of an “irrational” phase shift, not of the form pa/q, the series 
must be extended to infinity (the sequence is never cyclic) but still becomes arbitrarily 
small. Paradoxically, all phase shifts other than zero appear to offer some compen- 
sation. 

It should be remembered, however, that a power series offers a local description 
only. Even though all values 4 Z 0 produce an essentially parabolic dependence of 
24 on 6, Eq. [ 151 gives no hint of the size of the second-order term, which in fact 
depends strongly on d. For C#I # 0 we find, to second order, 

2k-2 

Rkc = exp{2i[t2ZY 2 (2k - 1 - n)sin(@) + O(t’)]}. 
ll=l 

1161 

Equation [ 161 shows that values of 4 near g, for which the terms are all small and 
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alternate in sign, offer the best compensation. This conclusion should be geometri- 
cally obvious, for phase shifts near 7r cause the formation of rotary echoes that are 
insensitive to variations in the pulse flip angles. An inspection of the exact expression, 
Eq. [ 121, shows that R, + 1 as Cp + K. Accordingly, all terms in the average Hamilto- 
man expansion must vanish in this limit. 

Equation [ 161 makes an important point: aside from the exceptional points (i, = 0 
and 4 = 7r, the effect of RF inhomogeneity is to increase the magnitude of the appar- 
ent rotation angle, regardless qfthe sign oft. Because of this effect, 14 I will be set to 
a slightly smaller value than desired. 

To calculate resonance offset effects we use the &pulse approximation, equivalent 
to neglecting the tilt of the effective field and slight lengthening of the a/2 pulses (27) 
while still retaining the evolution due to free precession in the windows. If we assume 
a resonance offset Ao and let 6 = Aw7 then, by the same procedure used for Eq. [lo], 
we find 

where 

R = R-,(24)&, [171 

& = [R,(2~)R-,(6/2)R-,(2~)1[R,(~ + WWY-,(4 + WL(W). [I81 
Equations [5] and [8] again show that the error 6, provided it is small, has no effect 
on the net rotation 24 to first order in 6 unless I$ is close to a or an odd multiple 
thereof. 

These assertions can be confirmed using the average Hamiltonian method. Using 
the same assumptions as before, the rotation operator for the cyclic sequence be- 
comes 

Rk6 = exp [J!J exp(-ia[Z,cos(d + (2n - ~)c#J) + Z,sin(s + (2n - 1)4)]) 
n=k 

X exp(i&[Z,cos(2(n - 1)4) + Z,sin(2(n - l)f$)])]exp 
( 1 

-ii Z, . [I91 

The 6 terms in the arguments of the sine and cosine functions do not affect the first- 
order term in 6 and can be ignored. We then find 

Rk6 = exp{ it5 2 Z,[cos(2(k - I)$) - cos((2k - 1)4)] 
?I=1 

+ Z,[sin(2(k - I)#J) - sin((2k - l)@)] + O(E~)} [20] 

which makes Rkd the identity operator to first order in 6 if 
2k- 1 

2 (- 1 )“exp( in4) = 0. 1211 
n=O 

The sum is invariant to multiplication by exp(2i4) and hence vanishes for all 4 except 
4 = a or an odd multiple thereof. Higher-order terms with respect to resonance offset 
are irrelevant for the present discussion since we assume that 6 will be almost zero 
when the experiment is carried out. 
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The effect of symmetric phase transients can be modeled by replacing each RF 
pulse by a sandwich of three rotations 

&(749 --) Ry(P)&(dW$@) PA 
and assuming that a phase shift transforms all three rotations in the same way as for 
a single pulse. The exact nature of the transients present in the experiment depends 
on the characteristics of the probe and RF circuitry, so that Eq. [22] is an oversimpli- 
fication. Nevertheless, an analysis based on Eq. [22] can give some idea of the perfor- 
mance in an actual tuned circuit. 

Proceeding exactly as before, we find 

R = R-,G#J)R,, 

where 

]231 

RP = R,(P)[R,(2~)R,(P)R-,(2~)1IR,(~)R,(P)R-,(2P)R-,(P)R-,(~)lR-,(P)R,(P). 
~41 

Once again, Eqs. [5] and [S] show that R is a rotation of angle 24 if 24 dominates /3. 
The error part for a cyclic sequence is 

k-l 

Rkg = eXp{i[p 2 1,{COS(2tl4) - COS(2(?2 + I)$)} 
n=O 

+ I,{sin(2@) - sin(2(n + 1)6)} + O(p*)]} [25] 

which vanishes to first order in @ if 
k-l 

nzo exp(2in4) - exp(2i(n + l)$) = 0. WI 

The telescoping sum is an identity for all 4, since exp(2ik&) = 1. Inspection of the 
exact expression, Eq. [24], shows that R, + 1 as C#J + K. Symmetric phase transients 
thus show the same qualitative behavior as RF inhomogeneity with regard to 4, ex- 
cept that the compensation is better near C$ = 0. 

In summary, the errors induced by RF inhomogeneity or symmetric phase tran- 
sients are increasingly compensated as 4 approaches X, while the tolerance to reso- 
nance offset effects is superior as #J approaches 0. Operation on resonance allows all 
the offending terms to be removed by choosing values of 4 near enough to r. 

PHASE CALIBRATION PROCEDURE 

The first step in the phase calibration procedure is to balance the amplitudes be- 
tween the channels. For this purpose, the sequence of Fig. 1 can be used with all four 
pulses set to the same phase, but with sampling after each 90” pulse, the so called 
“flip-flop” sequence. With the receiver reference phase correctly set, the periodically 
sampled time-domain signal gives rise to a pattern of three lines when wI is set to the 
nominal value. A small deviation away from the 90” condition shows as a divergence 
of the central feature. Inhomogeneity of the RF field causes a decay of the observed 
magnetization; ifthe w, distribution is symmetric about the nominal value the central 
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feature can still be nulled at all times, when the amplitude is correctly adjusted. In 
the case of a skewed distribution the central feature always shows some divergence 
and a compromise must be made (27). The important point is that all the channels 
should be adjusted to give the Same pattern. If the phase and amplitude variables 
interact when the phase or amplitude of one channel is altered, it may be necessary to 
readjust the amplitudes after the phases have been adjusted, and proceed iteratively. 
Sequences are described in the literature for the measurement and characterization 
of any phase transients that may be present (28-30). 

It is possible to calibrate rational phase shifts between the channels in essentially the 
same way as the amplitudes, by observing the patterns produced for the periodically 
sampled time-domain signal. A correctly adjusted phase shift of pa/q, where q > 2 
and p are relatively prime, gives a pattern of (q + 1)/2 lines if q is odd, and (q + 2)/2 
lines if q is even, for the periodically sampled cosine component of Eq. [4]. The sine 
component, Eq. [3], gives q lines if q is odd, q/2 lines if q is even and not a multiple 
of 4, and (q + 2)/2 lines otherwise. Conversely, the observation of a k-line pattern for 
the cosine component limits q to 2k - 1 or 2k - 2. The two cases can be distinguished 
by displaying only the odd-numbered time-domain data points. If q = 2k - 1 then a 
k-line pattern results; if q = 2k - 2 fewer lines will result, allowing the two cases 
to be distinguished. Confirmation is possible by displaying the sine component and 
verifying that the correct number of lines is obtained. 

The special case of 7r/2 phase shifts has been discussed by Haubenreisser and 
Schnabel(26). The sequence of Fig. la is used with 4 = r/2, without the initial pre- 
pulse. In this case it is advantageous to sample the magnetization at both the midpoint 
and the end of the four-pulse sequence, giving a three-line pattern. An error in the 
90” phase shift shows up as a divergence of the central feature. This divergence is 
easier to identify visually than the incipient appearance of a cosine wave on a two- 
line pattern (produced with the prepulse included), since the latter can be hard to 
distinguish from the natural decay of the magnetization at the correct phase setting. 

Suppose that 2q phase shifts of a/q are to be systematically calibrated so that chan- 
nel p has relative phase pr/q. This would be the case in a typical multiple-quantum 
experiment, for example. A phase shift lzear r, e.g., (q - 1 )r/q, is selected as the basic 
unit and calibrated between channels 0 and q - 1. For example, in the case of a series 
of 45” phase shifts, a 135” phase shift is established between channels 0 and 3 by 
adjusting channel 3 until the correct three-line pattern is obtained. The receiver refer- 
ence phase is adjusted by 135” (by software) and the process repeated between chan- 
nels 3 and 6. In the general case, each successive channel, n(q - 1) mod 2q, is then 
calibrated with respect to the first pair: channel 2q - 2 is adjusted until the same 
pattern is obtained between channels q - 1 and 2q - 2, etc., until n(q - 1) mod 2q is 
channel 0 again. If this last pair of channels also gives the correct pattern then all the 
phases are correctly set. 

A significant systematic miscalibration shows up as a discrepancy on the last pair 
of channels, allowing a check on the procedure. In the example of 45” phase shifts, a 
series of 37r/4 - c phase shifts results in a phase difference of 3~14 + 7~ between the 
last pair of channels, which differs by 8t from the other phase shifts and may be 
detectable even though the individual errors were not. By recording the initial setting 
of channel 0 and the setting (- -86) required to obtain a response congruent with 
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the other pairs of channels, channel 0 can be adjusted by approximately -t. The 
response between channels 0 and 3 is then recorded and taken to represent a 135” 
phase shift and the circuit is repeated. The remaining adjustments are then very small. 
It should not take more than one additional circuit to bring all the phases into 
alignment. 

This check for self-consistency is of importance when very accurate calibration is 
desired, or if the RF field shows a wide distribution around the nominal value. As 
discussed earlier, the second-order term for RF inhomogeneity results in a slight in- 
crease in the apparent nutation frequency. A positive phase shift 0 < 4 < R will thus 
be set to a somewhat smaller nominal value 4 - [, where [ depends on the shape of 
the distribution, and on 4. As we show in the experimental section, merely adjusting 
the phase shift to give a pattern closely resembling the naive prediction for the case 
of a perfectly homogeneous field keeps 4 typically well below 0. lo if the RF homoge- 
neity is good. In contrast to the flip-flop sequence, the quadratic dependence on t 
expressed by Eq. [ 161 results in a compromise setting even if the RF distribution is 
symmetric. 

The phase calibration is tedious when many channels are involved. The obvious 
solution is to use software control to trim the pulse amplitudes and phases. The proce- 
dure described here is repetitive enough that it can be programmed easily. All the 
phases could then be adjusted under computer control. 

EXPERIMENTAL 

Multiple-pulse free induction decays were obtained using a homebuilt spectrome- 
ter operating at 178.9 MHz for protons. This frequency was generated by mixing the 
output of a PTS 500 synthesizer with a 30 MHz intermediate frequency (IF), both of 
which were derived from the same 10 MHz clock. Transmitter phases were selected 
by apparatus normally used to generate quadrature pulses for multiple-pulse work 
(31, .?2), acting on the IF. Four independently switched RF channels with mechanical 
amplitude and phase controls modified the 30 MHz IF prior to the final mixing stage 
to generate the Larmor frequency. 

For these experiments the channels to be compared were first approximately 
aligned at the IF level using a Hewlett-Packard Model 8405A vector voltmeter. Only 
two channels were required for the experiments shown here, but three were generally 
checked for consistency. Two were kept in quadrature and the third was adjusted to 
the nonquadrature phase being investigated. After this preliminary adjustment, final 
calibration was performed by observing the NMR signal, using the familiar “flip- 
flop” sequence to set the amplitudes, and the new sequence described here to set the 
phases. 

All experiments employed a single sample of heavily doped (0.01 M Cr(Acac)3) 
acetone in a 4 mm bulb housed within a sealed 30 mm length of 8 mm o.d. Pyrex 
tubing. The r, for the proton resonance was approximately 200 ms; the field was 
shimmed to give a linewidth of less than 40 Hz. No field/frequency stabilization of 
the superconducting magnet was employed. The sample was centrally located within 
a 6 turn solenoid, 30 mm long and 8 mm in diameter. Flattened copper wire was 
used to improve the RF homogeneity across the sample. The probe coil was series 
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tuned for 178.9 MHz and matched, with a parallel capacitance, to 50 0 to better than 
10% reflected voltage. The quality factor for the matched resonance circuit was 
Q = 90 at room temperature. 

Radiofrequency power was supplied by a broadband EN1 5 1 OOL amplifier, capable 
of an output power of -200 W at 178.9 MHz. This proved sufficient to generate a 
field w,/27r = 7 1.4 kHz, giving a 90“ pulse time of 3.5 PS. An interpulse delay 7 = 40 
ps provided an acceptable duty cycle while at the same time resulting in driven FIDs 
that decayed appreciably faster than would be expected due to relaxation alone. This 
allowed the predicted compensation for RF inhomogeneity to be verified experimen- 
tally. The relatively rapid decay under the flip-flop sequence could be empirically 
fitted quite closely by an w, distribution consisting of a superposition of a Lorentzian 
distribution with a Lorentzian squared, both slightly skewed to lower field values. 
No theoretical significance is attributed to this particular functional form: it merely 
provided a simple means to simulate the expected decays for the phase calibration 
sequences. 

The first trace of Fig. 2 shows the familiar three-line pattern, representing a nomi- 
nal 90” phase shift, obtained with the sequence of Haubenreisser and Schnabel(26). 
Using the sequence of Fig. la without the initial prepulse, sampling of the x compo- 
nent of the magnetization occurs once at the midpoint of each four-pulse segment 
and once at the end. A total of 384 points are displayed for each multiple-pulse FID, 
corresponding to about 33.4 ms. By deliberately misadjusting the pulsewidth to 3.6 
PLS (a = 92.6”) and 3.7 PS (CX = 95.1”) the tolerance to RF inhomogeneity can be 
monitored. An incipient slow oscillation on the outer features is evident for cy = 92.6” 
and becomes considerably more pronounced for (Y = 95.1”. 

The topmost trace of Fig. 3 shows the three-line pattern expected for a nominal 
45” phase shift, sampling at the endof each four-pulse segment. The 384 points shown 
correspond to 66.8 ms, twice the length of the signals shown in Fig. 2. The small 
divergence of the central feature results from the RF inhomogeneity across the sam- 
ple. As the 90” pulses are deliberately misadjusted, there is an increasingly rapid decay 
of the time-domain signal accompanied by faster oscillations. The oscillations can be 
slowed by misadjusting the phase shift as well, to a value slightly smaller than 45“. 
The exact value depends on how badly the pulses are in error. This behavior is in 
accord with the prediction of Eq. [ 161. 

Figure 4 shows the simulated time-domain signals corresponding to the experimen- 
tal data in Fig. 3, including the effects due to the o1 distribution, but neglecting relax- 
ation. Closest agreement is obtained by supposing a phase shift 4 = 44.96”. Simula- 
tions in which 4 varies by as little as 0.01” from this value give recognizably different 
behavior. Further simulations (not shown) were carried out to investigate the exact 
extent of the phase calibration error when the pulses are in error. Setting 01 = 92.6” 
gives a three-line pattern for 4 = 44.80”, whereas (Y = 95.1” produces a three-line 
pattern for 4 = 44.20”. Thus, with this rather narrow RF distribution, a 2.6” error in 
the flip angle results in a 0.2” phase error, while a 5.1” flip angle error gives a phase 
error of 0.8”. 

Figure 5 demonstrates the superior compensation for RF inhomogeneity offered 
by a nominal 135” phase shift. Comparison with Fig. 3 shows that, even with the 
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FIG. 2. Experimental results obtained with the sequence of Haubenreisser and Schnabel(26). A nominal 
90” phase shift yields a three-line pattern when sampling occurs twice per period. Misadjustment of the 90 
pulse lengths induces an oscillation on the outer features. 

pulses badly misadjusted, long decays, having only very slow oscillations, are pro- 
duced. In addition, with the pulses adjusted to a! = 90”, there is less divergence of the 
central feature. It is therefore easier to make the correct adjustment visually. The 
simulations shown in Fig. 6 indicate a phase shift 4 = 134.987” and are sensitive to 
changes as small as 0.005”. The noticeably larger amplitude near the end of the simu- 
lated signals is due to the neglect of relaxation in the calculation. The best three-line 
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FIG. 3. Experimental results obtained with the sequence of Fig. la and a nominal 45” phase shift. The 
time-domain signal decays quickly when the 90” pulses are misadjusted, showing only limited compensa- 
tion for RF inhomogeneity. 

patterns (not shown) with the flip angles deliberately misadjusted are obtained with 
phase shifts of 134.945” (CY = 92.6”) and 134.82” (CY = 95.1”), errors of 0.055” and 
0.16”, respectively. 

We conclude this section with a demonstration of the patterns obtained for nomi- 
nal phase shifts 4 = 112.5” and 4 = 108”, shown in Fig. 7. The 112.5” phase shift gives 
the pattern of five lines (p = 5, q = 8) expected for the sine component, Eq. [3]. A 
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FIG. 4. Simulated multiple-pulse FIDs corresponding to the experimental data shown in Fig. 3. The RF 
field distribution across the test sample has been taken into account in the calculation, but relaxation has 
been neglected. Best agreement is obtained for a phase setting 4 = 44.96”. 

108” phase shift also gives a pattern of five lines (p = 3, q = 5) in this case. The patterns 
are easily distinguishable in the figure, but are somewhat harder to identify from an 
oscilloscope trace alone. The simulations give the best agreement for the values 
C#J = 112.479” and 4 = 107.98”, respectively. The systematic error of about 0.02” is 
nearly the same for the two phase shifts because they are so close. 

We have found that six- and seven-line patterns are very hard to identify on an 
oscilloscope trace, so smaller phase increments place greater demands on display res- 
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FIG. 5. Experimental results obtained with the sequence of Fig. la and a nominal 135” phase shift. 
The time-domain signal is quite insensitive to misadjustment of the 90” pulse lengths, showing excellent 
compensation for RF inhomogeneity. 

olution and operator patience. For very small increments (large q) the number of 
“lines” predicted for the time-domain signal is impractically large. In such a case one 
may resort to computer simulation of the multiple-pulse FID: as the figures show, 
once the wi distribution has been determined, computer simulation of the time-do- 
main signal yields an accurate determination of the phase shift. Direct Fourier trans- 
formation of the signal, possibly using the sequence of Fig. 1 b, provides an alternative 
way to measure the phase. Increased compensation for RF inhomogeneity manifests 
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FIG. 6. Simulated multiple-pulse FlDs corresponding to the experimental data shown in Fig. 5. Best 
agreement is obtained for a phase setting 4 = 134.987”, showing considerably less systematic error than in 
the case of nominal 45” phase shifts. 

itself as a narrower resonance and hence reduced phase uncertainty, so the precision 
of the Fourier method should be correspondingly high. 

CONCLUSIONS 

We have shown that RF phase shifts can be very precisely measured and accurately 
calibrated using the nuclear spins themselves to monitor the phase of the RF field. 
The sequences proposed here successfully eliminate the influence of other imperfec- 
tions to a large extent, so that the behavior of the spins is dominated by a nutation 
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FIG. 7. Rational fractions of K phase shifts give rise to systematic patterns, as shown above. Both 
4 = 108” (3~/5) and 4 = 112.5” (5+/8) give pleasing five-line patterns. The simulated multiple-pulse FIDs 
give best agreement for &J = 107.98” and $ = 112.479”, respectively, a systematic error of about 0.02”. 

depending only on the relative phase of the RF pulses. We expect these sequences 
to be of practical value in aligning transmitter phases, and in devising automated 
algorithms for phase alignment under computer control. 
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