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An approach to spin dynamics in systems with many degrees of freedom, based on a 
recognition of the constraints common to all large systems, is developed and used to study the 
excitation of multiple-quantum coherence under a nonsecular dipolar Hamiltonian. The exact 
equation of motion is replaced by a set of coupled rate equations whose exponential solutions 
reflect the severe damping expected when many closely spaced frequency components are 
superposed. In this model the evolution of mUltiple-quantum coherence under any bilinear 
Hamiltonian is treated as a succession of discrete hops in Liouville space, with each hop taking 
the system from a K-spinln-quantum mode to a K' -spin/n' -quantum mode. In particular, for a 
pure double-quantum Hamiltonian the selection rules are /:J( = ± 1 and an = ± 2. The rate 
for each move depends on the number of Liouville states at the origin and destination, and on 
the total number of spins present. All rates are scaled uniformly by a factor dependent on the 
properties of the material, such as the dipolar linewidth, but otherwise the behavior predicted 
is universal for all sufficiently complicated systems. Results derived by this generic approach 
are compared to existing multiple-quantum data obtained from solids and liquid crystals. 

I. INTRODUCTION 

A complete description of N coupled spin-l/2 nuclei is 
provided by a density operator composed of 22N orthogonal 
components, each representing an independent degree of 
freedom and each carrying with it some particular physical 
significance. 1 When expressed in terms of single-spin angu­
lar momentum operators, an eigenoperator associated with a 
given degree of freedom may be classified first according to 
the number of spins correlated out of the total set and then 
according to the difference in Zeeman quantum numbers for 
each pair of states connected by a nonzero matrix element. 2 

Of the various combinations, however, only a limited num­
ber are either single-spin/single-quantum operators, corre­
sponding to components of transverse magnetization, or sin­
gle-spin/zero-quantum operators, corresponding to 
components of longitudinal magnetization. The remaining 
degrees offreedom generally pertain to multiple-spin/multi­
pIe-quantum modes, which, although not directly observ­
able in Fourier transform NMR, may be excited nevertheless 
and monitored indirectly in two-dimensional experiments. 3 

Coherences of this sort now are routinely created and manip­
ulated in a large number of time-domain NMR methods, 
where their properties are used to shape the dynamical evo­
lution of the system; often to engineer some form of selective 
excitation or to control the spectral response. Examples of 
such methods include various techniques designed to identi­
fy subsystems with selected groupings of spins or coupling 
patterns as well as techniques designed to establish networks 
of correlated spins through coherence transfer. 4 

Multiple-quantum dynamics are clearly understood in 

isotropic phases, where the scalar, or J, coupling is the prin­
cipal mechanism for spin-spin interactions. When the differ­
ences in chemical shifts are sufficiently large compared to 
the coupling constants, the coupling effectively reduces to a 
weak form in which the z component of spin angular mo­
mentum is separately quantized for each spin. Under these 
circumstances the Hamiltonian is a sum of commuting 
terms, so there exists no way for two spins to exchange ener­
gy by a conservative "flip-flop" process. As a result, the 
dynamics are simplified to the point where the equation of 
motion can be solved analytically regardless of the number 
of spins involved.2 

The situation is far more complex in solids and aniso­
tropic fluids, however, for there the direct dipole-dipole 
couplings, typically strong, usually determine the develop­
ment of the system with time. 5-12 Analytic solutions are pos­
sible only for very small systems once strong coupling is in­
troduced, and soon even numerical solutions become 
impossible owing to the huge numbers of degrees of freedom 
that must be considered. For example, the dimension of the 
density operator grows from 4096 when N = 6 to 4.4 X 1012 

when N = 21, and to 1.6X 1060 when N = 100. These large 
numbers notwithstanding, the ability to model multiple­
quantum dynamics, even approximately, under a strong­
coupling Hamiltonian is worth developing, for recent ex­
periments have demonstrated that coherences of high order 
can be observed in solids and liquid crystalS.9-12 Analysis of 
the development of multiple-quantum coherence in these 
systems with increasing excitation time has shown that di­
lute clusters of nuclei can be identified and studied, thereby 
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suggesting a potentially new and important role for multi­
ple-quantum NMR in the area of materials characterlza­
tion. 11-

14 

Despite the complexity of a large system, or perhaps 
because of it, on the macroscopic level there may yet appear 
a pattern of behavior simple enough to predict with a model 
that neglects the complicated internal details. This principle, 
which underlies all thermodynamic treatments, frequently 
applies to magnetic resonance phenomena involving large 
numbers of spins. For example, in a rigid solid the IH tnagne­
tization observed after a 1T /2 pulse appears to decay mono­
tonically, although the free induction signal contains fre­
quency components distributed quasicontinuously over a 
broad range. The simple overall response results from the 
interference of the different frequencies, a phenomenon 
which masks the oscillations and eventually damps out the 
signal, giving rise to a broad, featureless spectrum in the 
frequency domain. IS Consequently, except for the 
linewidths, the general appearance of the IH NMR spectra 
obtained from most dipolar solids may be readily predicted 
just by recognizing the constraints imposed by the size of the 
system. Similar constraints may be expected to govern other 
aspects of the dynamics oflarge systems as well, in particular 
the excitation of multiple-quantum coherence under a non­
secular Hamiltonian. With this view in mind, we seek to 
formulate a simple model for multiple-quantum dynamics in 
the presence of strong coupling, through which may emerge 
certain features common to all systems. 

The picture developed in this article approaches these 
goals first by defining the portion of Liouville space relevant 
to multiple-quantum phenomena, and then by treating the 
dynamical evolution as a series of discrete hops in the re­
duced space. The rate and terminal point of each hop are 
controlled by the degeneracies of the coherences involved 
and by the Hamiltonian governing the system, with the dipo­
lar linewidth establishing a basic rate of flow. In this way we 
are able to examine the development of n-quantum coher­
ence in systems of increasing size and to compare these gen­
eric results to experimental data already published for spe­
cific systems. 

11_ THEORY 

A. Exact formulation of multiple-quantum dynamics In 
Liouville space 

The assembly of N spins, represented formally by a den­
sity operator p, develops in time according to the Liouville­
von Neumann equation, 

dp = i[P,H] , 
dt 

(1) 

where H is the internal Hamiltonian in the rotating frame. 
Since any operator for the system may be constructed from a 
complete set of orthonormal basis operators, the density op­
erator is alternatively viewed as a vector in Liouville space, 16 

given by 

(2) 

Each Liouville ket IKnp) in this expression represents a basis 

operator in which K single-spin angular momentutn opera­
tors form a product that connects Zeeman states differing by 
n units. (Note that we specifically use the symbol I' .. ), rath­
er than I"'), in order to distinguish Liouville states from 
Hilbert states.) The label p associated with the operator is an 
additional index needed to keep track of the different ways of 
realizing the same values of K and n. If we denote the spin 
angular momentum operator la for a spin with index Sj by a 
ket ISP1)' then we may write a particular basis operator as 

IKnp) = ISlal)ls2a2)"'lsKaK) ' (3) 

taking n, the order of the K-spin coherence, as the algebraic 
sum of the components a( = 1,0, - lor, equivalently, +, 
z, -) for each spin. For example, there are six two-spin, 
one-quantum operators possible in a system of three spins: 
11+12z' 11z12 +, 11+13%, 11%13 +, 12 +13%, and 12z13 +. Each of 
these operators is represented in Liouville space by a ket 
IKnp) in whichK = 2, n = + 1, andp runs from 1 through 
6. In addition, the states IKnp) may be normalized so that 
their scalar products (K np IK np) , related to traces in Hilbert 
space, are equal to unity. Details and definitions pertaining 
to the Liouville states and their matrix elements are provided 
in Appendix A. 

The equation of motion now may be recast as a vector 
equation 

d A 
-\p(t» = - iH \p(t» , 
dt 

A 

where H is a superoperator, defined by 
A 

H= [H, ... ] . 

(4) 

(5) 

Expressed in terms of the components gKnp' this equation is 
given by the equivalent set 

with 

( t) _ (Knp\p(t» 
gKnp - 1 (Knp Knp) 

(7) 

and 
A 

(KnpiH IK 'n'p') 
flKnp;K'n'p' = ~:..:..:£;..c::...J.:::"':':~':"" 

(KnpIKnp) 
(8) 

Thus the behavior of even the most complex systems can 
be described formally and exactly, but with deceptive simpli­
city, by a set of coupled differential equations. In principle, 
the future development of the system is known once the ini­
tial condition p (0) and the Hamiltonian are specified. Yet 
knowledge of both the initial condition, usually Zeeman or­
der, and the Hamiltonian, which follows from knowledge of 
the internal interactions and rf pulses present during the ex­
citation period, cannot guarantee an exact solution. Since 
such a solution is not within reach for large strongly coupled 
systems, we therefore need to replace the exact density oper­
ator formalism with a picture that retains the important 
physical features while reducing the mathematical complex­
ity. 
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Bo Hopping model 

Although Eqs. (6) suggest that the various components 
of the density operator should vary sinusoidally with time, 
such oscillations are unlikely to be apparent in systems large 
enough to exhibit interference of the sort discussed in the 
introduction. If, for example, the conventional free induc­
tion signal decays monotonically to yield a spectrum with no 
fine structure, then we may reasonably expect that the devel­
opment of multiple-quantum signals will be similarly 
damped. This assumption is justified by realizing that, ex­
cept for coherences of the highest order (where n = N or 
perhaps n = N - 1), the dynamical evolution of all degrees 
of freedom will be determined by frequencies too numerous 
and too close together to be distinguished. 17 Hence, in antici­
pation ofthe most physically reasonable result, we will seek 
to replace the exact equation of motion for the density opera­
tor with a set such as 

(9) 

whose solutions are exponential, not oscillatory. In this new 
picture, g(t) is a multidimensional vector formed by the co­
efficients of Ip(t», and R is a matrix of real numbers where 
each element is a measure of the rate of change from one 
component of g(t) to another. The formulation is equivalent 
to a multisite exchange, or hopping, model; the question now 
is to define the space over which the coherences "hop" and to 
develop the rates and selection rules that govern the motion. 

t. Selection rules 

Eventually we will treat all coherences IKnp) as equiva­
lent and just use the quantum numbersK and n. According­
ly, a simplified picture of the relevant portion of Liouville 
space may be obtained by projecting the whole of the space 
onto the K-n plane, as in Fig. 1. What remains is a two­
dimensional grid in which each point denotes a family of 
coherences (or basis operators) IKn), with K> 1 and n = K, 
K - 1, ... , 0, ... , - K. In this way the number of operators 
that must be considered is reduced from 22N to a figure on 
the order of N. 

The specific points in Liouville space accessible to the 
system are determined by the Hamiltonian, through the sca­
larproducts OKnp;K'n'p' defined above in Eq, (8). In general, 
the interactions will be described by K-spin, n-quantum op­
erators of various orders, but for multiple-quantum coher­
ence to emerge the spins must develop under a nonsecular 
Hamiltonian that is at least bilinear in the spin angular mo­
mentum operator. The properties of several two-spin Hamil­
tonians are discussed in Appendix B, but for now we choose 
the double-quantum Hamiltonian 

1 
Hyx = -- L Djk(l +J +k +1 _jl _k)=~DjkHjk 

2 j<k 

(10) 

used previously in experimental studies of multiple-quan­
tum phenomena in solids and anisotropic fluids,6.9 to make 
the treatment concrete. In practice, this form of the dipolar 
coupling usually is obtained as an average Hamiltonian, 
typically over a cycle of eight rf pulses. Note that Hyx is 

n 5 
4 
3 
2 
1 
o 

-1 
-2 
-3 
-4 
-5 

1 2 3 4 5 K 

FIG. 1. Projection of Liouville space onto a two-dimensional plane. Each 
point represents a family of K-spin/n-quantum coherences. 

related to the secular dipolar interaction H zz as 

Hyx=!(Hyy-Hxx ), (11) 

where 

Haa = L Djk (3laj l ak - IjoIk ), a = x,y,z, (12) 
j<k 

and that each dipolar coupling constant Djk depends on the 
length and orientation of the internuclear vector joining 
spinsj and k. 

The allowed pathways in Liouville space, hence the se­
lection rules, follow from the evaluation of all coefficients 
OKnP;K'n'p' according to Eq. (A7), using the Hamiltonian 
( 10) and the commutation relations 

(13a) 

and 

[/+,L] = 2/z • (13b) 

The result for each pair of spins, 
A 

(KnplHjk IK'n'p') = ~K.K± l!5n•n ±2 , (14) 

where Inl <.K andK> 1, shows thatHyx acts both to increase 
or decrease the order of coherence by two units and to add or 
subtract one spin to the cluster among which the coherence 
is shared. The clustering process is limited by the require­
ment that the absolute value of n must not exceed K. A "road 
map" of the Liouville space then may be constructed on the 
basis of these rules once the starting point is specified. The 
routes open to a system of six spins initially in thermal equi­
librium in high field and at high temperature, where the re­
duced density operator p(O) is proportional to Iz (K = 1, 
n = 0), are illustrated in Fig. 2 as an example. Only the up­
per half-plane (n>O) is shown since the pathways are sym­
metric about the K axis; owing to this degeneracy, the prob­
lem may be simplified accordingly, provided that the 
substitution n -In I is always implicit. With a different start­
ingpoint, sayp(O) proportional to Ix orly (K = l,n = 111), 
the same selection rules lead to the development only of odd­
order coherence, i.e., Inl = 1, 3, 5, ... , rather than of even­
order coherence. 

We note in passing that Fig. 2 clearly shows that four­
quantum coherence will not develop in a four-spin system 
initially in equilibrium and then subject to Hyx , an observa­
tion made in other studies as well.4

(b),12 Selection rules for 
other Hamiltonians, however, such asH xx or H yy , permit the 
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n 

2 3 4 5 6 

K 

FIG. 2. Pathways in Liouville space open to a system of six spins evolving 
under the double-quantum Hamiltonian Hp1t ' Liouville states for which 
t:J( = ± I and an = ± 2 are connected under this Hamiltonian. In gen­
eral, if N spin-l/2 nuclei initially are in thermal equilibrium, where (in the 
high temperature approximation) the reduced density operator is propor­
tional to I. (K = I, n = 0), then all even orders of coherence, up to N, may 
develop with time. Pathways are symmetric about the K axis. 

formation off our-quantum coherence among four spins (see 
Appendices B and e). 

2. Hopping rates 

At this point, the equation of motion under Hyx may be 
brought into the form (9) by taking 

d 
-d gK" (t) = L r K'"';K,,gK',,' (t) - r K";K,,,,gK,, (1) , 

t K'=K±I 
,,'=,,±2 

(15) 

where 

r K,,;K± l,n±2 
A 

= l:j<kl:p,p'IDjk 1'1 (KnplHjk IK ± l,n ± 2,p') I 

(KnIKn) 
(16) 

and 

(KnIKn) = L (KnpIKnp) . (17) 
p 

Thus each of the four potential routes into and each of the 
four potential routes out of every accessible point in Liou­
ville space is governed by an appropriate coefficient r, which 
sets the rate of flow. In general, the expression (16) is still 
too complex to solve, but a considerable simplification can 
be effected if the complicated, and possibly unknown, spec­
trum of coupling constants Djk is removed from the summa­
tion to yield 

r K,,;K± l,n±2 = WKn;K± l,n±2 'SI' 

where 
A 

"IV _ l:j<kl:p,p, 1 (KnplHjk IK ± I,n ± 2,p') I 
Kn;K± l,n±2 - (KnIKn) 

(18) 

(19) 

and where SI is a quantity that depends on the structure of 
the material. There are no absolute guidelines for construct­
ing the parameter SI' but its form should reflect the coupling 
constants associated with a particular system. We may, for 
example, take a lattice sum of the coupling constants, so that 

1 
SI =- L IDjkl, (20) 

N j<k 

or, alternatively, we may simply take SI as proportional to 
the dipolar linewidth. Although such an ad hoc rearrange­
ment is a drastic departure from the exact form, it is entirely 
in keeping with the "thermodynamic" spirit of the hopping 
model. Now the exchange between any two accessible sites in 
Liouville space is viewed as proceeding at a rate determined 
by the degeneracy of the coherences in question, and is 
scaled uniformly by just one structural parameter. There­
fore, within this approximation the behavior of all large spin 
systems is universal: the rates depend on a material property, 
but the general patterns of development are the same. Since 
all large systems tend to look alike, the units of time can 
always be scaled in such a fashion. This assumption is sup­
ported experimentally, to some extent, by studies of multi­
ple-quantum dynamics in solid solutions. II 

To evaluate the hopping rate WKn;K± l,n±2' we first ex­
amine the scalar product (Kn IKn) appearing in the denomi­
nator of the defining expression (19). This scalar product, 
reflecting the degeneracy of the Liouville state IKn), is the 
total number of ways of realizing n-quantum coherence from 
K spins-!. In each instance there will be c + single-spin opera­
tors / +, C _ single-spin operators / _, and Co single-spin oper­
ators /zin the product term. Note that c+ and c_ sum to n 
and that c+, c_, and Co sum to K, so that Co is not indepen­
dent. For a given selection of c+ and c_, there are then (~ ) 
[::=K!/c+!(K - c+)!] different ways of choosing c+ sp~s 
out of K and (~_- c+) different ways of choosing c_ spins out 
oftheremainingK - c+, for a total of (~ ). (~- c+) possibi­
lities. The full set is obtained by summing over all admissible 
values of c+, beginning with c+ = n, and multiplying the 
total by the factor (~), the number of ways of selecting a 
subset of K spins from N. The result is 

(KnIKn) = ~QK" , (21) 

where 

C

mu (K\( K - c ) 
QK" = C~"I cJ c-Inl . 

(22) 

According to this definition, Qoo = 1, QIO = 1 and QKK = 1; 
moreover, QK" = 0 for n > K. The summation is terminated 
when (c -Inl) exceeds (K - c). 

Similar combinatorial arguments are used to calculate 
the number of ways of connecting Liouville states IKn) and 
IK ± l,n ± 2), by which is determined the numerator ofEq. 
( 19). The final expressions are 

and 

"IV = K(N-K) 
K,,;K + I," ± 2 N _ 1 

QK-I,,, + QK-I,n±1 

QKn 

(23a) 

W = K(K + 1) QK-I,,, + QK-I,n±1 
K+ 1,,,±2;Kn N _ 1 Q 

K+ l,n±2 

(23b) 

with QKII as defined above in Eq. (22). 
We see immediately from these expressions that moves 

forward, to increasing K, are distinguished from moves 
backward by the prefactors K(N - K)/(N - 1) and 
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TABLE I. Hopping rates for six spins under By" . 

K n K' n' WK.;K'., 

1 0 2 2 1.00000 
2 2 1 0 0.40000 
2 2 3 0 1.60000 
3 0 2 2 0,17143 
3 0 4 2 1.28571 
4 2 3 0 1.20000 
4 2 5 0 1.44000 
5 0 4 2 0.70588 
5 0 6 2 0,68628 
6 2 5 0 2.33333 
4 2 5 4 0.64000 
5 4 4 2 3.20000 
5 4 6 2 1.000 00 
6 2 5 4 0,33333 
5 4 6 6 0.20000 
6 6 5 4 6.00000 

K(K + 1 )/(N - 1), respectively. Hence for very large N 
and relatively small K, the reverse rates are zero and the 
forward rates are on the order of K. Consequently in a homo­
geneous solid, where N is effectively infinity, there will be an 
overwhelming tendency to correlate larger 'and larger 
numbers of spins until K approaches ..[ii, at which point 
reverse moves become probable. When K nears N, forward 
motion slows and the reverse rates go as K in the limit that 
N .... 00. In this way a balance between forward and reverse 
moves is always maintained, regardless of the true size of the 
system. Eventually any assembly of coupled spins, however 
large, will exhibit the characteristics of a bounded system. 

Hopping rates for a six-spin system under Hyx are listed 
in Table I in order to convey some idea of the details of the 
exchange processes. Rates for other Hamiltonians are de­
rived in Appendix C. 

3. SolutIon 01 the rate equatIons 

The final set of rate equations is familiar from many 
other physical problems, and naturally can be solved by 
standard methods. It is convenient to assign a serial number 
to each occupied point in Liouville space (e.g., 
IK = 1,n = 0) = 1, IK = 3,n = 0) =2, IK = 5,n = 0) =3, 
etc.) and form a column vector g( t) and rate matrix R as in 
Eq. (9). Laplace transformation ofEq. (9) then yields 

g(s) = (sl- R)-Ig(t = 0) , (24) 

where s is the complex variable in the transformation. Solu­
tion of Eq. (24) is facilitated by diagonalizing the rate ma­
trix via the similarity transform 

RD = Z-IRZ (25) 

to find the eigenvalues A ( = AI,A.2,'" ). 18 Use of the identity 
ZZ-I = 1 in Eq. (24) eventually gives the simpler form 

'" Zij ~ _I g;(s) = £.i-- Zjk gk(O) 
j S - Aj 

(26) 

for each component, since Z diagonalizes (sl - R) as well. 
Application of the Laplace inversion formula to this last 
expression yields the desired result: 

(27) 

Analytical solutions are readily obtained for small sys­
tems, but in general the problem must be solved numerically. 
The results reported in the next section were obtained on an 
IBM 3081 G, using IMSL subroutines for the matrix diagon­
alization and inversion. Double-precision arithmetic was 
employed throughout. 

III. RESULTS AND DISCUSSION 

A. Development of coherence under a double-quantum 
Hamiltonian 

If no approximations are made, then a description of the 
dynamics of N coupled spins requires the solution of a 
2N X 2N density matrix and knowledge of up to N(N - 1 )/2 
dipole-dipole coupling constants. Therefore for systems of 
6, 21, and 40 spins, we begin with 4096, 4.4X 1012

, and 
1.2 X 1024 matrix elements, respectively, and as many as 780 
coupling constants. Under the assumptions of the hopping 
model, however, the linear dimension of the rate matrix, 
equal to the total number of sites visited as the coherences 
migrate through Liouville space, is 8 for the case N = 6, 66 
for the caseN = 21, and 220 for the case N = 40. At the same 
time, the full set of coupling constants is replaced by a single 
parameter that reflects the width of the dipolar spectrum. 

Curves illustrating the predicted development of 
n-quantum coherence under Hyx in these three systems are 
presented in Fig. 3. Each curve traces the combined history 
of all modes of a given order n by showing the variation of the 
coherence amplitude 

(28) 

with time. Prior to excitation the spins are assumed to exist 
in equilibrium in the high-temperature limit; during excita­
tion the units of time are arbitrary, normalized to the inverse 
of the parameter SI' 

The course of development is qualitatively similar in all 
three systems, with lower orders of coherence always ap­
pearing before higher orders and with the system reaching a 
steady state under prolonged excitation. In each instance the 
amplitude of the two-quantum coherence quickly peaks and 
then falls off to a constant level as the excitation is main­
tained. Coherences of higher order develop in tum, each 
reaching a steady-state value of its own after sufficient time. 
As the total number of spins increases, the maximum in the 
curve gz(t) becomes more pronounced and higher orders 
g" (t) continue to grow in, up to approximately n = 2JN. 
The sum of all the amplitudes, including go(t), remains 
equal to unity at all times. 

The need for an "induction time" to elapse before coher­
ence of a given order is observed has been predicted in exact 
theoretical treatments of small systems 17 and verified experi­
mentally in studies of anisotropic fluids and, recently, of 
polycrystalline solids.9

•
11 The delay arises because an n­

quantum coherence can be sustained by no fewer than n 
spins, interdependent in a dynamical sense owing to the two­
spin Hamiltonian, and because it takes time to establish the 
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-1 

Time (units of 5, ) 

FIG. 3. Development of n-quantum coherence in systems of various sizes, 
as predicted by the hopping model. Zero-quantum coherences, not shown, 
begin as go(O) = 1 and decay to steady-state values. In each example the 
time axis is scaled to the inverse sum of the dipole-dipole coupling con­
stants. 

necessary correlations. The formal solution to the equation 
of motion, 

p(t) = exp( - iHy"t)p(O)exp(iHy"t) , (29) 

suggests that the time required for a coupling Djk to propa­
gate from spinj to spin k is related to the inverse rate 1/ Djk ; 

consequently, distant spins, with smaller couplings, are 
drawn into the network at later times. According to the hop­
ping model, which neglects variations in the coupling con­
stants, similar delays still must arise since the migrating co­
herence must travel to more distant regions of Liouville 
space as the order of coherence, and hence the size of the 
correlated cluster, increases. This point is implicit in the 
pathways in Fig. 2, which show that the coherences IKn) are 
reached sequentially, in order of increasing K and n. 

Long-term stability of multiple-quantum coherence am-

plitudes has been noted before in numerical simulations of 
the exact density operator dynamics in systems of approxi­
mately six spins. 17 Such behavior inevitably emerges when 
the dynamics are sufficiently complex, as we assumed origin­
ally in developing the hopping model. These observations 
have been used to support an earlier statistical picture in 
which it is assumed that, in the limit oflong excitation times, 
all coherence amplitudes have the same magnitude but ran­
dom phases. In this view the contribution of an n-quantum 
coherence, reflected by the integrated intensity of the 
n-quantum spectrum, is proportional to the number of pairs 
of states differing by n units in the Zeeman quantum num­
ber. Combinatorial arguments then predict a Gaussian dis­
tribution, 

(30) 

for the n-quantum coherence after a steady state is at­
tained. 17 Precisely the same results are obtained with the 
hopping model, which takes a statistical view of the develop­
ment at all times: the limiting values of all coherences gn 
plotted in Fig. 3 are well fit by the Gaussian distributions 
above with N = 6, 21, and 40. 

In Fig. 4, the theoretical predictions for gn (t) are com­
pared with existing mUltiple-quantum intensity data for 6 
and 21 spins excited under Hyx .12 The smaller system is actu­
ally a dilute solid solution consisting of guest molecules with 
six protons in a perdeuterated host, so the simple picture of 
six spins, valid for short excitation times, may change as the 
excitation is prolonged. The larger system is a molecule with 
21 spins, oriented in a nematic phase, and is a realistic exam­
ple of an isolated cluster of finite size. To facilitate the com­
parison, we have normalized each curve to the intensity of 
the entire multiple-quantum spectrum (n > 0), plotting 
gn (t)/[g2(t) + g4(t) + ... ] vs time in units of reciprocal 
SI' These experimental results, which match the important 
features of the generic theoretical curves both at short and 
long times, lend support to the basic assumptions used to 
construct the hopping model. 

Multiple-quantum dynamics in infinitely extended sys­
tems, such as dipolar solids, can be understood only by 
studying finite systems of increasing size, for the complete 
rate matrix from K = 1 to K = N must always be used. 
When N is large, the rates for the reverse moves K .... K - 1 
are vanishingly small except as K approaches N. If the rate 
matrix is truncated at K < N, the coherences will move 
towards the highest value of K considered-at which point 
they are trapped, unable to go back because the rate is too 
low and unable to go forward because of the arbitrary cutoff. 
With the detailed balance of the system thus destroyed, the 
rate equations typically cannot be solved, and even when 
they can be solved, the solution is without physical meaning. 
Consequently, to model the dynamics in a solid we need to 
extrapolate the trends observed in smaller systems. We can 
reasonably predict that low orders of coherence will peak 
and then falloff to a limiting value, and that higher orders of 
coherence will grow in more slowly without necessarily exhi­
biting local maxima. If the system is in fact infinite, then at 
very long times all coherence amplitudes should reach the 
same level. These expectations are confirmed in Fig. 5, 
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FIG. 4. Development of n-quantum co­
herence within isolated groups of 6 and 
21 spins, predicted theoretically (left) 
and measured experimentally (right). 
Each point is normalized to the total 
spectral intensity excluding zero-quan­
tum contributions. The experimental re­
sults are for a dilute solid solution of a 
molecule with 6 IH nuclei in a deuterat­
ed host (top) and for a molecule with 21 
IH nuclei in a nematic phase (bottom). 
The different time scales reflect differ­
ences in structure and molecular motion 
between the two materials. For the 6-
spin system, 12 units of "theoretical" 
time correspond to 1500 J.ls of experi­
mental excitation time; whereas for the 
21-spin system, 25 units of theoretical 
time correspond to 4200 J.lS of real time. 
Agreement is excellent in the case of the 
liquid crystal, where averaging of inter­
molecular dipole-dipole interactions ef­
fectively isolates the molecules. Cou­
pling between guest molecules in the 
solid solution, however, ultimately in­
creases the effective cluster size beyond 
6. (Experimental data courtesy of J. 
Baum. 12

) 

0.5 t-
4 4 

6 
8 ~L; 

0.0 12.5 25.0 o 2100 4200 
Time (units of 51 -1) 

where previously reported experimental multiple-quantum 
intensity data for polycrystalline hexamethylbenzene are re­
produced. ll Curves for n = 4,8, 12, and 16 are shown, and 
the shapes, if not the coherence orders, are similar to those in 
each part of Fig. 3. The distribution of coherence after 600-
700 J-ls is consistent with an effective cluster size of several 
hundred spins, so it is not surprising that g4 (t) reaches a 
maximum and that all curves gn (I) appear to approach the 
same value. 

B. Development of clusters of correlated spins 

To follow the formation of interparticle correlations un­
der a two-spin Hamiltonian such as Hyx, we now consider 
the quantity 

0.3 
• n = 4 
on = 8 
on = 12 
• n = 16 

0.2 

gn 

0.1 

O~~~ __ ~-L~ __ ~ 

o 396 792 

Excitation time (lJSec) 

FIG. 5. IH multiple-quantum intensity in polycrystalline hexamethylben­
zene, measured for increasing excitation times. Smooth curves have been 
drawn through the points. The general pattern of coherence development in 
this unbounded system is similar to that predicted in Fig. 3 for groups of 
finite sizes. (Reprinted from Ref. II.) 

Time (lJsec) 

(31) 
n 

the sum of all coherence amplitudes derived from a cluster of 
K spins. This combined amplitude provides a measure of the 
growth of a network of K spins within which coherences 
from n = 0 to n = K may develop. 

Curves illustrating the predicted development of K -spin 
coherence (for K = 2, 13, and 20) in a system of21 spins are 
shown in Fig. 6. Two important features are immediately 
apparent. First, clusters of increasing size appear at increas­
ing times, as expected; and second, coherence originating 
from small clusters peaks early and then falls off, while co­
herence originating from large clusters reaches a plateau as 

gK 

0.0 7.5 15.0 

Time (units of 51 -1) 

FIG. 6. Formation of K-spin coherence within a group of 21 spins, accord­
ing to the hopping model. Larger clusters contribute to the spin dynamics at 
later times. 
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20 

5 10 15 

Time (units of 81 -1) 

FIG. 7. Varilition of the effective size of the system with time under Hyx. 
The points connected by the broken line give the induction time t K associat­
ed with each K-spin coherence. The solid line results from fitting the calcu­
lated n-quantum intensities to the function exp ( - n2 

/ Kmax ). In each view, 
the largest cluster approaches N ( = 21) spins after prolonged excitation. 

time passes. An induction time t K' defined as the time need­
ed for gK (t) to reach half its maximum value, therefore can 
be associated with each cluster. A point-to-point plot of K vs 
t K, connected by a broken line, is presented in Fig. 7 to show 
how the 21 spins, initially uncoupled, eventually become 
completely interdependent as the correlations develop. The 
network formed in this way widens with time and ultimately 
encompasses all N spins, at which point the system is dyna­
mically "mature" and thereafter the effective size Kmax re­
mains equal to the true size N. , , 

Hence at any time there exist independent clusters rang~ 
ing from 1 to Kmax correlated spins, with the largest cluster 
defining the instantaneous effective size of the system. The 
simplest approximation for Kmax , made in previous studies, 
follows from assuming a Gaussian distribution of n-quan­
tum coherence. 11 According to this view, Kmax then may be 
obtained by fitting an observed (or calculated) distribution 
of multiple-quantum spectral intensity to Eq. (30). The pic­
ture is tantamount to assuming that the system is always in 
the long-term statistical limit, admittedly a chancy proposi-

9n 

n 

FIG. 8. Plots of 8n vs n, normalized to 82' for three excitatio~ times in a 
system of 21 spins. The points give the values of 8n/82 predicted by !he 
hopping model, and the curves show the best fit ofthese data to a Gaussian 
distribution. Times were selected to obtain Kmax - 4 (solid line), 12 (dotted 
line), and 21 (dashed line). 

o 600 1800 3000 4200 
Excitation time (~sec) 

FIG. 9. Largest cluster of correlated spins vs excitatio~ time for the ~ema~c 
system of Fig. 4, computed by fitting measured mul~lpl~-quant~m ~tensl­
ties to a Gaussian distribution. The pattern observed IS virtually Identical to 
that shownih Fig. 7. For the relationship between real time and theoretical 
time, see Fig. 4. (Courtesy of J. Baum. 12

) 

tion when the effective size is still increasing but one that 
yields reasonably consistent results nonetheless. To explore 
this idea, we first calculate the values of Kmax that result 
from assuming that the n-quantum coherence amplitUdes 
gn (I) predicted by the hopping model can be fit ~o a Gaus­
sian, and then examine the growth in Kmax over tIme. Some 
idea ofthe quality of the fit is conveyed in Fig. 8, where the 
calculated amplitudes for N = 21 are compared with the val­
ues exp[ - n21Kmax (t)] obtained by extracting a time-de­
pendent effective size from the same calculated amplitudes 
according to Eq. (30). Even whenKmax is significantly less 
than N, the computed intensities are reasonably well de­
scribed by a simple Gaussian, subject to the usual underesti­
mation of the contributions from the highest orders of coher­
ence. 17 In Fig. 7 the solid line shows how Kmax changes with 
time, steadily increasing up to the true size N and then lev.el­
ing off. Comparing the two curves, we see that the behaVior 
predicted by the hopping model, although certainly not de­
scribed by a simple time dependence, roughly tracks the be­
havior predicted by the model of an expanding system al­
ways in the statistical limit. In particular, the system 
matures at the same time, and, when smoothed, the early 
time development is remarkably similar in both pictures. 
This basic agreement is critical if mUltiple-quantum intensi­
ties are to be used to determine the extent of real spin clusters 
in various materials. 

For comparison, values of the time-dependent effective 
size measured in the 21-spin system studied in Ref. 12 are 
reproduced in Fig. 9. Each point has been obtained by fitting 
the experimentally observed multiple-quantum intensities 
shown in Fig. 4 to the Gaussian (30), and the curve that 
results agrees very satisfactorily with the pattern predicted 
in Fig. 7. 

C. Nonequlllbrium Initial conditions 

We now briefl.y consider the development of multiple­
quantum coherence in systems initially out of equilibrium, 
taking as a first example the case N = 6 with the eight Liou­
ville states accessible under Hyx equally populated before 
excitation begins. Under these conditions n-quantum coher­
ence develops as in Fig. 10 rather than as in Fig. 3. The in~tial 
nonequilibrium distribution gKn (0) = 1/8 (for the eight 
points shown in Fig. 2) evolves, however, to the same steady­
state distribution gn -exp( - n21N) reached by a system 

J. Chem. Phys., Vol. 86, No.6, 15 March 1987 



3180 Munowitz. Pines. and Mehring: Multiple-quantum dynamics in NMR 
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FIG. 10. Development ofn-quantum coherence as predicted by the hopping 
model for six spins not initially in equilibrium. Initial conditions are 
gK. = 1/8 for each of the eight points shown in Fig. 2, so that 
go(O) =g2(0) =0.375 and g.(O) =g.(O) =0.125. After some time the 
system follows the same course as one beginning in thermal equilibrium. 

originally in thermal equilibrium, i.e., whereg1.o (0) = 1. A 
similar result is also obtained for other nonequilibrium ini­
tial conditions-for example, six-quantum coherence. Note 
that in these circumstances the notion of a Gaussian distri­
bution of coherence intensities, as well as the notion of a 
continuously increasing effective size, becomes meaningless. 

The hopping model, by positing a set of exponential so­
lutions to the Liouville-von Neumann equation, may pre­
dict curiously unphysical behavior given certain nonequilib­
rium initial conditions. For example, if p (0) is proportional 
to one of the eigenstates of the rate matrix, denoted by u (0), 
then the solution to Eq. (9) is 

u(t) = exp(A.t)u(O) , (32) 

where A. is the corresponding eigenvalue. Under these condi­
tions the density operator either decays to zero or diverges 
with time, depending on whether the eigenvalue is negative 
or positive. This difficulty poses no serious challenge to the 
hopping model in practice, however, for the initial condi­
tions required to bring out such behavior are unlikely to be 
attained. 

IV,SUMMARY 

The approach described in this paper provides a general 
framework for understanding spin dynamics in systems too 
large or too complicated to be treated exactly. In these sys­
tems the Liouville-von Neumann equation for the density 
operator is replaced by a set of rate equations with exponen­
tial rather than oscillatory solutions, in recognition of the 
severe damping that inevitably accompanies the superposi­
tion of a large number of independent frequency compo­
nents. The equations that result then can be solved straight­
forwardly for groups of spins of various sizes. According to 
this picture, the evolution of the density operator is viewed as 
a series of discrete hops in Liouville space, with the selection 
rules determined by the commutation properties of the 
Hamiltonian. For the pure double-quantum Hamiltonian 
Hyx , each move takes the system from a K-spin/n-quantum 
mode to a (K ± 1)-spin/(n ± 2)-quantum mode. The rate 
for going from one point in Liouville space to another de­
pends on both the number of Liouville states with quantum 
numbers K, n, K ± 1, and n ± 2 at each end and on the mag-

nitude of the effective cluster size K relative to the true size of 
the system N. The model shows that, except when K ap­
proaches N, the rates for the reverse pathways (decreasing 
K), vanish for infinitely extended systems such as dipolar 
solids, but that all pathways are allowed when N is finite. 
Overall, the jump rates are uniformly scaled by some quanti­
ty that depends on the properties of the material, such as the 
dipolar linewidth, but otherwise the behavior predicted is 
universal. The same approach can be taken for other phe­
nomena-for example, the problem of relaxation of multi­
ple-quantum coherence under a secular dipolar Hamilto­
nian. Less drastic approximations can of course be 
introduced, although some of the simplicity of the present 
model will undOUbtedly be lost by so doing. Extensions of 
this sort will be discussed in future reports. 
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APPENDIX A: LIOUVILLE STATES FOR NCOUPLED 
SPINS 

Using the single-spin spherical tensor operators 

- 1 1 
To/=I.j , T+ j == ,j2 I+j , and T_ j = ,j2I_j , 

we construct orthonormal Liouville states 

ISlal"'sKaK)=2K2-N12ITs,a, "'TS~K)' 

such that 

(Al) 

(A2) 

(tKf3K" ·tpdsla1·· 'sKaK ) = {js,t/ja,tJ, .. ·{jsrK{jaJllK . 

(A3) 

In the above expression, the scalar product of two operators 
A and B is defined as 

(A IB) =Tr{A tB} , (A4) 

where A t is the adjoint of A. To emphasize that each Liou­
ville state is formed as a product of K single-spin operators 
whose combined action is responsible for an n-quantum co­
herence, we use the abbreviated notation 

IKnp)=lsla1"'sKaK) , (A5) 

where 

n = L aj • (A6) 
j=I.K 

The parameter p labels the various states with given values of 
Kandn. 

Matrix elements involving the superoperator Ii are de­
fined as 
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(A IH IB) =Tr{A t[H,B]}. 

APPENDIX B: FORMS OF THE DIPOLE-DIPOLE 
HAMILTONIAN 

(A7) 

Dipole-dipole Hamiltonians of different symmetries 
can appear as average Hamiltonians in multiple-pulse NMR 
experiments. All these operators can be condensed into the 
form ' 

H - ~D H(Jk) 
afJ-~ Jk afJ, 

J<k 
where 

a,{3 = x,y,z , 

H (jk) - 31 1 1 -I aa - ajak- j k' 

(B1) 

(B2) 

In terms of the raising and lowering operators, we have 
(jk) _ 

H"" - -1zJ1zk +!(/-J+k +1+j1_k) 

+ i(/ +J1 + k + 1 -J - k) , (B3) 

H ;Jk) = - 1zJzk +! (/ _ J + k + 1 + J1 _ k ) 

-i(/+J+k +1-J-k)' 

H !jk) = 2/ ~1zk -! (/ + j1 _ k + 1 _ J1 + k) , 

and the combination 

(B4) 

(B5) 

H ;lk) = ! [ H ;;k) - H ~k)] = -! (1 + J + k + 1 _ j1 _ k) . 

(B6) 

Note that Hy" contains only the two-quantum operators 
1 +j1 +k and 1 -J -k, and that the "natural" Hamiltonian 
H zz contains only the zero-quantum operators 1 + J _ k and 
1 _j1 + k' In contrast, H"" and Hyy contain both zero-quan­
tum and two-quantum terms. 

APPENDIX C: HOPPING RATES IN LIOUVILLE SPACE 
UNDER VARIOUS HAMILTONIANS 

Hopping rates r were defined in the text as 

rKn;K±I,n±2 = W Kn;K±I,n±2 'SI' 
where the universal factor 

A 

(CI) 

W = ~J<k ~p,p'l (Knpl~k IK ± l,n ± 2,p') I 
Kn;K ± I,n ± 2 (Kn IKn) 

(C2) 

establishes the basic rate and where S I is a parameter depen­
dent on the specific set of dipolar coupling constants-for 
example, the lattice sum 

(C3) 

In this Appendix we give expressions for WKn;K'n' under dif­
ferent Hamiltonians. 
(1) Hzz(an=O): 

w = K(N-K) 
Kn;K+ I,n N _ 1 

. 2QK_I,n + 3QK_I,n_1 + 3QK_I,n+ I 

QKn 

(C4) 

w = K(K + 1) 
K+ l,n;Kn N _ 1 

2QK_I,n + 3QK_I,n_1 + 3QK_I,n+ I 

QK+I,n 

(C5) 

(2) H"",Hyy (an = 0): 

W = K(N-K) 
Kn;K+I,n 2(N-l) 

2QK_I,n + 3QK_I,n_1 + 3QK_I,n+ I 

QKn 

(C6) 

W = K(K + 1) 
K+I,n;Kn 2(N -1) 

2QK_I,n + 3QK_I,n_1 + 3QK_I,n+ I 

QK+I,n 

(C7) 

Note that these rates are exactly half the corresponding ex­
pressions for H zz ' 

(3) H"",Hyy(an = ± 2): 

W = 3K(N-K) 
Kn;K+ l,n±2 2(N-1) 

. QK - I,n + QK - I,n ± I 

QKn 
(C8) 

W = 3K(K + 1) . QK-I,n + QK-I,n± I 
K+ l,n±2;Kn 2(N _ 1) Q 

K+ l,n±2 

(C9) 

(4) H y" (an = ± 2): 

W = K(N-K) • QK-I,n +QK-I,n±1 
Kn;K+ l,n±2 N _ 1 Q 

Kn 

(ClO) 

w = K(K + 1) QK-I,n + QK-I,n± I 
K + I,n ± 2;Kn N _ 1 Q 

K+ l,n±2 

(Cll) 

QKn is defined as 

Cmax (~(K - c) QKn = ') , 
c=fnl c c - Inl 

(C12) 

with O<lnl<Kand Qoo = QlO = QKK = 1. 
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