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Recently developed solid state multiple-quantum NMR methods are applied to extended 
coupling networks, where direct dipole-dipole interactions can be used to create coherences of 
very high order ( - 1(0). The progressive development of multiple-quantum coherence over time 
depends upon the formation of multiple-spin correlations, a phenomenon which also 
accompanies the normal decay to equilibrium of the free induction signal in a solid. Both the time 
development and the observed distributions of coherence can be approached statistically, with the 
spin system described by a time-dependent density operator whose elements are completely 
uncorrelated at sufficiently long times. With this point of view, we treat the distribution of 
coherence in a multiple-quantum spectrum as Gaussian, and characterize a spectrum obtained for 
a ~iven preparation time by its variance. The variance of the distribution is associated roughly 
wIth the number of coupled spins effectively interacting, and its steady growth with time reflects 
the continual expansion of the system under the action of the dipolar interactions. The increase in 
effective system "size" is calculated for a random walk model for the time development of the 
density operator. Experimental results are presented for hexamethylbenzene, adamantane, and 
squaric acid. The formation of coherence in systems containing physically isolated clusters is also 
investigated, and a simple method for estimating the number of spins involved is demonstrated. 

I. INTRODUCTION 

Most applications of 1H multiple-quantum NMR spec­
troscopy have necessarily been limited to small spin systems 
in isotropic or partially oriented phases, where the size of the 
system is clearly defined by the nature and extent of the spin­
spin coupling. 1.2 In liquids, for example, only indirect scalar 
coupling remains after anisotropic interactions have been 
averaged to zero by rapid isotropic molecular motion. If, 
instead, the molecules are dissolved in a nematic liquid crys­
tal, translational freedom is retained but reorientation via 
tumbling is restricted so that intramolecular dipolar cou­
pling becomes the principal interaction among the spins. In 
either case the spin-spin interactions are short range, and 
the system usually remains small enough to be characterized 
by a density operator that can be constructed from a finite, 
manageable number of basis operators.3 In this regard, ex­
pansions based on fictitious spin-l/2,4 spherical tensor, 5 and 
product6 operators have proved quite useful for describing 
many experiments involving multiple-quantum effects. 
Among the numerous applications reported to date have 
been methods to simplify complicated single-quantum spec­
tra,7 determine spin connectivity and topology, 8 obtain high­
resolution spectra in inhomogeneous magnetic fields,9 and 
facilitate coherence transfer and indirect detection in sys­
tems containing magnetically rare nuclei.1O On the other 
hand, the extension of 1 H multiple-quantum spectroscopy to 
strongly coupled solids, where the coupling network in­
cludes all the spins in the sample, has also been illustrated 
recently. 11 This work has demonstrated that high order mul­
tiple-quantum coherences can be prepared and detected in 
solids, provided that time reversal excitation is used to 
counter the effects of dipolar dephasing.12 

.IPermanent address: Code 6120, Naval Research Laboratory, Washing­
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Our interest here is to follow the development of multi­
ple-quantum coherence in a solid, visualizing experimental­
ly the emergence with time of a widening network of multi­
ple-spin correlations throughout the system. This 
phenomenon provides some insight into the decay of the sin­
gle-quantum free induction signal in a solid, and also leads us 
to the notion of an instantaneous effective size for the sys­
tem, which increases monotonically until it approaches a 
macroscopic number of spins. In this paper we use multiple­
quantum methods to study these aspects of nuclear spin dy­
namics in protonated solids. The preparation and detection 
of multiple-quantum coherence is illustrated for a variety of 
systems, and the concept of a time-dependent, effective spin 
size is then quantified within the framework of a statistical 
model. Time-resolved measurements of the effective number 
of spins interacting in a solid are used further to probe the 
nature of the dipolar coupling among the spins. Specifically, 
information about the relative magnitudes of intermolecular 
and intramolecular dipolar interactions and about the exis­
tence and sizes oflocal clusters of spins can be obtained from 
a careful analysis of the solid state multiple-quantum spec­
tra. 

II. THEORY 

A. Spin Interactions In a rigid lattice 

A collection of N interacting spin-l/2 nuclei in a mag­
netic field can be described by an internal Hamiltonian, 

consisting of a chemical shift (or resonance offset) term 
N 

Hz = - L ..:iw; /z 
;=1 

(1) 

(2) 
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and a dipolar coupling term 

H zz = - I Dij(3Iz; I zj - I;.Ij ) (3) 
i<j 

that is bilinear in the spin angular momentum operator. 
Each coupling constant (Dij) is inversely proportional to the 
cube of the distance between spins i andj, and is measured in 
units of angular frequency. The internal Hamiltonian com­
mutes with the external, or Zeeman, Hamiltonian, so that 
each eigenstate I i) of Hint is characterized by a magnetic 
quantum number M; and an internal eigenfrequency W;. The 
complexity of the system precludes an exact, analytical cal­
culation of the eigenstates and eigenvalues; nevertheless, it 
can be asserted that the eigenvalues do exist and that their 
spectrum of frequencies is quasicontinuous for large N. 13 

The system, described by its density operator p in the 
rotating frame, evolves under Hint according to the quan­
tum-mechanical Liouville equation, 

p(t) = exp( - iHint t) p(O)exp(iHint t), 

which, in the Ii) UI operator basis, becomes 

p(t) = I (il p(O) I j)exp [ - i(w; -liJj)t] Ii) (jl· 
ij 

(4) 

(5) 

Knowledge of the density operator at any time permits the 
calculation of any desired property of the spin system. 

B. Multiple-spin processes and the free induction decay 

Our approach to the study of spin dynamics in large 
systems employs multiple-quantum NMR to monitor con­
certed interactions in groups of spins. Multiple-quantum co­
herences, described in the Ii) UI representation by off-diag­
onal elements of p(r) for which n = M; - ~ =1= ± 1, can be 
excited using pulse methods and detected indirectly in a two­
dimensional experiment. 14 

The basic division of a multiple-quantum experiment 
into distinct preparation (r), evolution (t 1), mixing (r'), and 
detection (t2) periods is illustrated in Fig. 1, and several spe­
cific pulse sequences are shown in Fig. 2. A simple and wide­
ly known example, composed of three (1T/2) pulses, 14 is de­
picted in Fig. 2(a). Although this particular version is not 
designed for solids, we can use it here to grasp the essential 
features of the problem before specializing to the more so­
phisticated sequences described in the next section. The im­
portant point to note is that the eventual multiple-quantum 
spectrum is determined by the distribution of mUltiple-spin 
operators at the end of the preparation period, which in this 
case is marked by the second pulse. However, just prior to 
the application of the second pulse, the system has simply 

Preparation Evolution Mixing Detection 

Propagator: u v 

Time voriable: t" 

FIG. 1. General form of the multiple-quantum pulse sequence. Multiple­
quantum coherences are created by the preparation period propagator U (1") 
and respond to local fields during the evolution period t I. The mixing period 
propagator V(1") transfers multiple-quantum coherence to single-quantum 
coherence for detection during t2 • 

.". .". 

2" 2" 

(a) nL---=T"~nL-____ --,t , ___ --'fLL 

(b) 

T" T" 
(e) 

(d) 

FIG. 2. Pulse sequences for multiple-quantum NMR: (a) Basic three-pulse 
experiment suitable for systems where individual transitions can be re­
solved. (b) and (c) Time reversal sequences used for solids. The preparation 
and mixing propagators. generated by m cycles of eight ."./2 pulses with 
duration tp and spacings of .J and .J' = 2.J + tp. produce lilO) = ~ 
(Hyy - H=) for RF phases x and x and il lO) = - !(Hyy - Hxx) for RF 

phasesy andy. To separate the multiple-quantum orders. the relative phase 
t/J between preparation and mixing is incremented in proportion to the evo­
lution time t I. About 2 ms after mixing, the z component of magnetization is 
monitored with the aid of an x pulse followed by a 100 p.s spin locking pulse 
(symbolized here by a single pulse). One point is sampled for each value of tl' 
and the time-domain data are Fourier transformed with respect to t I to pro­
duce the multiple-quantum spectra. (d) Experiment designe to refocus mul­
tiple-quantum coherence in solids. High-order coherences created during 1"0 
evolve backwards in time during 1"' to return to low-order coherences. (See 
Sec. IV B.) 

undergone free evolution following a single (1T/2) pulse. Con­
sequently, the growth of multiple-quantum coherence and 
the decay of the free induction are necessarily linked, since 
both phenomena depend upon the development of similar 
many-body correlations among the coupled spins. 

To be more explicit, we consider first the origins of dipo­
lar dephasing in a rigid lattice. For the initial condition 

N 

p(O) = Ix = I Ix;, (6) 
;=1 

which is obtained when the system in thermal equilibrium is 
subjected to the first 1T/2 pulse, the observable magnetiza­
tion is given by 

Sx(r) = Tr[ p(r)Ix ] 

= I I (i/Ix /jW exp [i(liJ; - liJj)r] . (7) 
;<j 

This expression shows that the spectrum of allowed frequen­
cies is limited to those connecting pairs of states Ii) and Ij) 
which differ by n = ± 1. The single quantum signal decays 
with time, owing simply to destructive interference among 
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the numerous modes of oscillation. 13 

Having noted this point, we can express the density op­
erator in a basis which clearly illustrates the essential fea­
tures involved both in the loss of observable magnetization 
with time, and with the appearance of correlations among 
increasing numbers of spins: The density operator pIT) [Eq. 
(4)] naturally takes on a product form when written as a 
power series; viz. 

pIT) = p(O) + iT[ p(O),Hint ] 

- ! rz [ [ p(O),Hint ] , Hint] + .... (8) 

Substitution of Eqs. (1)-(3) and (6) into Eq. (8) reveals the 
basic features of free evolution under the dipolar Hamilton­
ian. The nested commutators produce product terms, such 
as Izq I zq _ I ···Izl Ixl , which involve q interacting spins and 
which are associated with powers of DIJ T. A conventional 
NMR experiment is sensitive to the values of the coefficients 
associated with Ix and Iy single-spin operators. Under free 
evolution in the presence of a bilinear Hamiltonian, the den­
sity operator acquires additional product terms which are 
invisible to the detector, and the observable magnetization 
diminishes. The loss of magnetization in a system of rigidly 
held spins is not irreversible, however, since the norm of p is 
conserved under the unitary transformation ofEq. (4). Rath­
er, the new terms, which reflect the development of complex 
correlations among increasing number of spins, increase 
their amplitudes at the expense of the observable terms. 

C. Time development of the dipolar coupling network 

The influence of a coupling between two spins on the 
development of the system depends on the time elapsed, with 
the value of Dij 'I providing a measure of the effectiveness of 
a particular pair interaction at each instant. When Dij '1< 1, 
insufficient time has elapsed for the interaction between i 
andj to be significant. However, as time passes, more cou­
plings become sufficiently large to contribute beyond first 
order, and the number of admissible single-spin operators 
increases. The contribution of these high-order terms to the 
power series becomes more and more important with time. 
In addition, the strongly coupled spins which determine the 
early time development continue to influence the dynamics 
at later times. Overall, long periods of free evolution allow 

, 
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FIG. 3. Symbolic representation of the growth of a coupling network with 
time. Initially, the spins act independently, having had insufficient time to 
communicate via dipole-dipole interactions. Pairwise couplings become ef­
fective as time passes. Roughly speaking, small dipole-dipole couplings re­
quire longer "propagation times" than large ones. 

more spins to communicate fully with each other via their 
dipolar coupling and the effective "size" of the system 
grows. To emphasize this point, we show in Fig. 3 a symbolic 
representation of the growth of multiple-spin correlations 
under a many-body bilinear Hamiltonian. When the system 
has evolved to the point where many spins are able to act in 
concert, application of the second pulse can transform a 
term like Izq ... Izl Ixl> which represents single quantum co­
herence of spin k = 1, into terms representing coherences 
between all possible combinations of aU q spins. The simplest 
example, the presence of double-quantum and zero-quan­
tum coherence between spins k and I, arises from a term such 
as I kx I/x ' which connects states differing by n = 2 and 
n = O. In the general case, coherences among any number of 
spins, up to the effective size of the system at time r, can be 
created. 

D. Approach to multiple-quantum NMR in solids 

Where an extensive network of dipolar couplings exist, 
as in a typical protonated solid, coherences of very high or­
der are possible. However, if multiple-quantum signals are to 
be observed, certain steps must be taken to insure that all 
contributions to a given order of coherence are generated 
with the same phase. Otherwise, destructive interference 
among the innumerable lines within an order will severely 
attenuate the signal. II 

The intensity and phase of an individual multiple-quan­
tum line are determined by the detailed history of the spin 
system up to the point of detection. In the general case, 
where propagators U (r) = exp( - iH rl and V (r') = exp 
X ( - iH' 1") govern the dynamics during the preparation and 
mixing periods, the detectable magnetization at t2 = 0 is giv­
en by 

S(r,tI,r') = Tr Iz p(r,tl,r') 

= Tr Iz Vt(r')exp( - iHinttdUt (r)!. U(r) 

Xexp(iHinttt!V(r'). (9) 

Defining complex matrix elements PIJ (ilUtIz U li> and 
Qj; = (jl VIz Vtli), we can express this signal as 

S(r,tl,r') = I- PIJ(r)Qji (r')exp[ - i((i)i - (i)j)td. (10) 
ij 

from which it is clear that the phase factor associated with 
each transition may be different for every oscillation fre­
quency. However, if the propagator V can be made either 
equal to U t or different from it only by a phase factor X, then 

V = exp( - i X /z)Ut exp(i X Iz ). (11) 

and the signal reduces to a Fourier series with real coeffi­
cients: 

S(T,tlJr') = I- I-1P1J12 exp(in x)exp[ - i((i); - (i)j)td· 
n iJ 

(12) 

Now all lines within a given order have the same phase, and 
lines between neighboring orders differ in phase by ± X. 

The requirement that Vand Ube Hermitian conjugates 
can be satisfied if the preparation and mixing Hamiltonians 
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are equal in magnitude but opposite in sign. This condition, 
which results from an apparent time reversal,12 is brought 
about using coherent averaging methods, as shown in Ref. 
11. The result is that very high-order coherences can be ob­
served in solids, without loss of signal from phase cancella­
tion. 

III. EXPERIMENTAL CONSIDERATIONS 

A. Pulse sequence design 

1. Preparation period 

Coherences of even order can be created with a nonsecu­
lar even-quantum average Hamiltonian, such as 

H(O) =! (Hyy Hxx) 

= -! L Dij (Ii + ~ + - Ii _ ~ ), (13) 
i<j 

where ~ ± = ~x ± i~y' 7(b) This desired average Hamiltonian 
is attainable with a variety of specific pulse trains, each em­
ploying a four-pulse subcycle as the basic design unit. In the 
limit of infinite RF power, any series of x and x pulses with 
alternating delays of..::1 and 2J will produce the average dipo­
lar Hamiltonian! (H yy - H xx )' provided that the interaction 
is cyclic. The overall sequence can be compensated for RF 
inhomogeneity and resonance offset effects by the proper 
combination of two or more subcycles. 

Two different eight-pulse cycles used in the experiments 
to be reported are shown in Figs. 2(b) and 2(c). Both pulse 
sequences consist of 1T/2 pulses of duration tp ' separated by 
delays..::1 and.:::1' = 2J + tp' The finite width of the pulses is 
accounted for in the long delay, .:::1', and the cycle time, te , is 
equal to 12( tp +.:::1 ) in each case. Sequence 2(b) is preferred 
whenever resistance to resonance offset effects during prep­
aration and mixing is particularly important. For example, 
in multiple-quantum imaging experiments in solids, 15 coher­
ences must be prepared in the presence ofIarge offsets creat­
ed by the imposition of an external field gradient. By con­
trast, sequence 2(e) is more appropriate in cases when rf 
inhomogeneity is a serious problem. 

Although the density operator prepared at time 7" con­
tains predominantly even-order coherences, pulse imperfec­
tions can lead to the creation of unwanted odd-order coher­
ences. These can be reduced by cycling the phases of all 
pulses in the preparation period between O· and 180· in alter­
nate experiments, and coadding the resulting signals appro­
priately.16 In addition, it is necessary to label the orders of 
coherence by the overall RF phase of the preparation period. 
The method of time proportional phase incrementation 
(TPPI),5.17 under which the phases of the preparation pulses 
are augmented regularly for each value of t l , serves to intro­
duce an artificial offset term into the evolution period. Four­
ier transformation of the resulting multiple-quantum inter­
ferogram then separates orders n = M; - ~ in the 
frequency domain, as suggested by Eq. (12) for.:::1X = .:::1ill.:::1t l • 

2. Evolution period 

During the evolution period, the system responds to the 
internal Hamiltonian, 

(1) 

where Hz formally contains an order-dependent offset term 
resulting from TPPI. The interferogram is mapped out 
point-by-point for successive values of t l' The spectral width 
of the multiple-quantum spectrum is given by lI.:::1t I' and the 
number of orders detected, ± nmax ' is determined by the 
phase increment, .:::1<,6 = 21T 12nmax • Both.:::1t I and.:::1<,6 must be 
chosen so that all signals from different coherence orders fit 
into the available bandwidth without aliasing and without 
overlapping. 

3. Mixing period 

After evolving in the local fields for a time t» the multi­
ple-quantum coherences are converted to observable single­
quantum coherences through the action of the mixing period 
propagator V(7"). Since the average Hamiltonian ofEq. (13) is 
a pure double-quantum operator, time reversal is accom­
plished here by a simple 90· phase shift of each pulse in the 
eight-pulse cycle. The mixing period therefore contains 
pulses with phases y and y, irrespective of any manipulations 
of the phases in the preparation period. 

4. Detection period 

After mixing, a 2 ms delay is inserted, during which 
spurious transverse magnetization is allowed to decay. The 
desired signal, stored as population information along the z 
axis, is detected with a (1T/2)x pulse, followed by a 100 f.tS 

spin-locking pulse along y. Spin temperature inversion, 18 

achieved by a 180· phase alternation of the detection pulse, is 
used to reduce artifacts arising from receiver ringing. A sin­
gle point in t2 is then sampled for each value of t l , with the 
width of the single-quantum spectrum determining the opti­
mum receiver bandwidth. 

B. Implementation 

Experiments were performed on two home-built spec­
trometers operating at IH Larmor frequencies of 360 and 
180 MHz. 19

•
2o Both spectrometers are equipped with qua­

drature phase generation circuits that produce RF pulses 
with relative phases of 0·, 90·, 180·, and 270· at 30 MHz IF. 
Additional phase shifts needed for TPPI are generated by a 
30 MHz 8-bit digital phase shifter in series with the quadra­
ture generation network. 

Pulse widths and phases must be set carefully with the 
aid of a standard (H20) tune-up sequence before each experi­
ment.21 .22 The overall performance of the matched prepara­
tion/mixing periods is optimized by adjusting the total RF 
amplitude to obtain maximum signal for t1 = 0, .:::1t1 = O. 
With the preparation and mixing sequences arranged "back­
to-back", the experiment is reduced to a simple time reversal 
procedure. The optimum cycle time is then selected by vary­
ing te to peak the signal obtained at a fixed value of 7". Signal 
losses occur because the time reversal sequence begins to fail 
at long 7". Pulse imperfections and effects due to higher-order 
correction terms accumulate over many cycles, and the sub­
sequent degradation in performance ultimately reduces the 
SIN in the multiple-quantum spectra. 

The pulse programmer for each spectrometer is gov-
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erned by a 10 MHz clock, which limits the minimum incre­
ment in t I to lOOns. When additional bandwidth is needed to 
accommodate the multiple-quantum spectrum, we use a 
home-built delayed clock generator to shift the phase of the 
clock pulses by one, two, or three quarter cycles. Increments 
of 25, 50, 75 ns thus become available, increasing the band­
width to 40 MHz. Ultimately, the performance of the experi­
ment is limited by the accuracy ofthe phase shifter: A small 
phase error 6¢J will introduce a phase shift of n6¢J for each 
order, and will inevitably become a big phase error when n 
becomes sufficiently large.23 

C.Samples 

Before presenting experimental results, we note some 
basic room temperature structural and dynamical properties 
of the molecular systems to be studied. The molecules are 
diagrammed in Fig. 4. 

1. Adamantane (C1oH16; po/ycrystalline) 

Adamantane forms a plastic crystal in which the nearly 
spherical molecules tumble rapidly and isotropically in the 
solid phase. The motion averages all intramolecular dipolar 
couplings to zero, but does not eliminate intermolecular cou­
plings. However, the motion leaves only one distinct cou­
pling between every pair of molecules, thereby reducing the 
adamantane molecule to a point dipole source containing 16 
spins. The molecules pack into a face-centered-cubic lattice, 
with each adamantane molecule surrounded by 12 neighbors 
at a distance of 6. 60 A, 6 more at 9.34 A, and an additional 16 
at 11.4 A.24 

2. Hexamethylbenzene [C6(CH:J6; polycrystalline} 

Hexamethylbenzene (HMB) exists in a triclinic unit cell 
with the planar benzene rings forming a nearly hexagonal 
net. 25 Two varieties of anisotropic molecular motion deter­
mine the dipolar properties of this system. First, each methyl 

a) b) 

M ¥fCH3 
H~ CH3 

H3 

c) o~ 
d) 

:W=: H/ ... _, 
I I 

'-' , 
0, 0' , 0 0 

FIG. 4. Systems studied: (a) Adamantane, (b) hexamethylbenzene, (c) 
squaric acid, (d) 1,8- dimethylnaphthalene-d6 • 

group rapidly reorients about its C3 axis, rendering the three 
IH nuclei equivalent. Second, the entire molecule undergoes 
fast-limit sixfold hopping about the C6 axis of the benzene 
ring,26 which reduces the intramolecular dipolar couplings 
between artha, meta, and para methyls. Intermolecular cou­
plings remain but, as in adamantane, interacting molecules 
behave as point sources. Within a molecule, average dis­
tances between protons on different methyl groups range 
from 3.3 A (artha) to 6.6 A (para), and between molecules, C­
C distances range upwards from 3.7 A. Sheets of molecules 
in the a-b plane are separated by 5.3 A. 

3. Squaric acid (C4 0 4 H2; single crystal) 

Squaric acid is monoclinic but pseudo-body-centered te­
tragonal at room temperature. It is a layered two-dimension­
al structure consisting of hydrogen-bonded "squaric" sub­
units of C40 4 • The hydrogens form chains perpendicular to 
the a-c plane, with the hydrogens in different sheets separat­
ed by b /2 = 2.6 A.27 During the experiment the crystal was 
oriented with the b axis perpendicular to the static magnetic 
field. The crystal was doped with chromium ions to reduce 
the IH spin-lattice relaxation time. 

4. Partially deuterated 1,B-dimethylnaphthalene (C12H6D6; 
polycrystalline) 

1,8-dimethylnaphthalene (DMN) forms a monoclinic 
structure, with the methyl hydrogens on adjacent molecules 
facing each other in pairs. The shortest intermolecular IH_ 
IH contact is approximately 2.0 A along the b axis, and the 
intramolecular methyl substituents are separated by 2.93 
A.28 All positions on the rings have been deuterated in order 
to isolate the 12 methyl protons in the dimeric units. 

IV. RESULTS AND DISCUSSION 

A. Multiple-quantum excitation dynamiCS 

1. Effective cluster size 

Figure 5 contains a set of IH multiple-quantum spectra 
obtained from hexamethylbenzene using sequence 2(b) with 
preparation times ranging from 66 to 792 f.ls. These plots 
illustrate the distribution of spectral intensity over the ·co­
herence orders at the specified preparation times. Separation 
of the different orders has been accomplished by TPPI, so 
that the subspectrum of each order n occupies 156.25 kHz. 
Since coherences of + nand - n are equally probable, the 
full spectra are naturally symmetric about n = O. Conse­
quently, only one-half of each spectrum is needed to obtain 
all the information available. 

A general tendency for coherences of higher order to 
develop with time is clearly evident in the spectra shown in 
Fig. 5; the results are particularly striking for T = 792 f.ls, 
where there are strong signals extending out to, and appar­
ently beyond, n = 64. The experimentally observed redis­
tribution of spectral intensity into high-order coherences is a 
tangible manifestation of the growth of multiple-spin corre­
lations during the preparation period. Subspectral structure 
and linewidths are determined by the response of the pre­
pared system to the local field of all the other spins during 
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FIG. 5. 360 MHz IH multiple-quantum spectra of hex am ethyl benzene for 
T = 66 to T = 792 #s recorded with sequence (b) of Fig. 2. The basic cycle 
time in these experiments, and in all others to be reported here, is 66 #s 
(tp = 3#s,.:1 = 2.5#s,and.:1' = 8#8). ForT 66 to 462#s, thefl increment 
is 100 ns and the phase increment is 217"/64; this separates each order by 
156.25 kHz. For T>528 #s, the (I and phase increments are 50 ns and 211"/ 
128, respectively. The distribution of spectral intensity over the coherence 
orders broadens continuously as the preparation time increases. The lower­
most trace, an expanded view of the spectrum obtained for T = 792 #s, em­
phasizes the highest orders of coherence observed. 

the subsequent evolution period. Here, a spectrum of broad 
featureless lines arises from the almost continuous distribu­
tion of eigenfrequencies in a sample containing virtually an 
infinite number of spins. 

Exact calculation of the time development of a large and 
complex spin system is usually impossible, owing both to the 
limits of computing power and to the need for prior knowl­
edge of an enormous number of spin-spin couplings. How­
ever, for very short preparation times, 

p(1') ::::p(O) + i1'[ p(O), Hint] 

! ".z [ [ p(O), Hint] , Hint] (14) 

so the excitation dynamics are initially determined only by 

the very strongest dipolar couplings. If, for simplicity, we 
assume that at later times the infinite spin system can be 
partitioned intofinite spin systems, and, further, that all pos­
sible coherences have been excited with equal probability, 
then calculation of the growth of the distribution of coher­
ence is reduced to a combinatorial problem. The total inten­
sity within a given order is related simply to the number of 
different ways of arranging the states consistent with the 
value of n.29 However, in making this assumption, we are 
attempting to extend a concept familiar from systems where 
the number of coupled spins is well defined. For the case of 
small molecules oriented in liquid crystal solvents, earlier 
experimental and theoretical studies have validated the as­
sumption of equal coherence magnitudes after long periods 
of excitation.30 However, the situation in a dipolar solid is 
considerably more complex since the number of interacting 
spins is never really well defined. For example, while coher­
ence within some finite cluster of spins may have been excit­
ed to a limiting value after a given time, higher-order coher­
ence arising from a larger cluster may still be present, 
although less developed. 

We address this question in Fig. 6, where we examine 
the time development of the 4-, 8-, 12-, and 16-quantum 
transitions in HMB by plotting the integrated intensity of 
each line, normalized to the total spectral intensity, vs prep­
aration time. The graph suggests that contributions from 
different orders of coherence peak at well separated inter­
vals, so that at any specified preparation time, clusters ex­
ceeding some nominal range of sizes hardly affect the dy­
namics at all. Consequently, we can, with some justification, 
account for a very complicated time development by charac­
terizing the system by a single time-dependent cluster size, 
N(1'). 

0.3 r-----.r-----r----,----,...-...,..--......-...., 

0.2 

~ 
I total 

0.1 

2 4 6 
T/te 

• n = 4 
o n = 8 
)( n = 12 
... n = 16 

8 10 12 

FIG. 6. Intensity vs preparation time for n = 4, 8, 12, and 16 in HMB. The 
intensity for each order has been normalized relative to the total spectral 
intensity, and smooth curves have been drawn through the data points to 
aid the eye. Contributions from different orders of coherence grow in at 
different rates, consistent with the notion that a finite number of spins can 
be used to characterize the system at any time. 
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FIG. 7. N vs Tlte for adamantane (circles), hexamethylbenzene (squares), 
and squaric acid (triangles). The smooth curves through the points empha­
size the continuous expansion of the effective size of the unbounded spin 
systems. 

Among this group of N interacting spin-lI2 nuclei, the 
number of equivalent configurations for a coherence of non­
zero orderis (2N)!/[(N - n)!(N + nIl], whichiswellapproxi­
mated by 22N (N17r 1/2 exp ( - n2 IN) for N> 6. In this pic­
ture a multiple-quantum intensity distribution can be 
described by a Gaussian curve with variance U2 = N (1")12. 
The variance of the distribution is thus associated roughly 
with the number of spins among which coupling has been 
established within the time limit of the preparation period. 
However, since such a frontier is normally indistinct in a 
solid, N (r) is best regarded as a parameter of a particular 
system. Its change with time is determined by the structure 
of the solid, and is influenced by factors such as spin topol­
ogy and the relative magnitudes of intramolecular and inter­
molecular dipolar interactions. Ultimately, all the spins be­
come correlated in a network of macroscopic size. 

Values of N(r) vs 1" for hexamethylbenzene, adaman­
tane, and squarlc acid, are plotted in Fig. 7. These were ob­
tained by fitting the integrated intensities of the lower orders 
to a Gaussian distribution. The intensity of each order was 
normalized relative to n = 2 for each preparation time. In 
this manner reasonable estimates for N can be obtained even 
when the very highest orders possible cannot be observed 
experimentally. Deviations from strictly statistical behavior 
are most pronounced in the tail of the distribution, where the 
combinatorial method consistently underestimates the in­
tensities of the highest orders.30 

2. Random-walk model 

Many statistical interpretations of the multiple-quan­
tum excitation dynamics are possible. Here we model the 
increase of N (r) with 1" by adopting a purely stochastic view 
of the time development of p(r) for long r. In this limit, 
reached perhaps after three or four dipolar correlation times, 
the values of matrix elements Pii (1") at different times are least 

likely to appear correlated, and a simple time dependence 
may become apparent. 

In general, the density operator for N spins can be repre­
sented compactly by an expansion in product operators, 

p(r) = L bs(r) Bs( q,N) 
s 

with the 22N basis operators, 
N 

Bs(q,N)=2(Q- 11 IT (Ikvtk 
k=1 

(IS) 

(16) 

forming a complete orthonormal set, defined by 
Tr(Bs Bt ) = Ost.

6 In the expression above, v = x,y, or z, and 
q is the total number of single-spin operators in the product. 
The exponent ak takes on the value 1 for the q operators of 
interest and 0 for the remainder. In the picture of multiple­
quantum excitation dynamics described above, the effective 
spin size, N (1"), is allowed to expand with increasing prepara­
tion times. Consequently, the space basis operators needed 
to represent p(r) expands as well. If, in the statistical Iimit, 
elements of the density operator at different times are truly 
uncorrelated, then the time development of the system can 
be treated as a random walk over the space of product opera­
tors which represents all possible mUltiple-spin states. The 
probability that an operator B ( q,N) at r will '~ump" to an 
operator B ( q', N') at 1'" is then simply the product of the 
degeneracies of the two operator manifolds. The basic as­
sumption is that all elements of p are equally accessible un­
der the multiple-quantum Hamiltonian, which, given the 
complexity of the dynamics and the long times involved, is 
not unreasonable. 

A random walk over product operator space is illustrat­
ed schematically in Fig. 8. In this picture, one set of terms, 

2 
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q 
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N 

3 
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... 

FIG. 8. Schematic representation of a random walk over a space of product 
operators used to form a basis for the density operator. The space consists of 
22N llinearly independent q-spin operators (1 <.q<.N). excluding the unit 
operator. The sizes of the blocks have been chosen to illustrate the relative 
proportions of q-spin operators in a manifold of N spins. The dimensionality 
of the space is allowed to expand to stimulate the growth of the effective size 
of the spin system. 
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the q-spin operators B ( q,N), is monitored as it moves 
throughout the expanding operator space. Nine options are 
provided for B ( q,N) to jump to B ( q', N '), i.e., 

{

q-2, N-I 
q, N-I 
q +2, N 1 

{

q-2, N 
(q,N)_ q, N 

q+2, N 

{

q-2, N+l 

q, N+ 1 
q+2, N+ 1 

provided that 0 < q' <N I. These pathways have been selected 
to approximate the operators actually accessible under the 
even-quantum Hamiltonian of Eq. (13). The number of q­
spin operators B (q, N) at any step is given by 

f- _ N! 3 q (17) 
':JqN- I(N )1 ' q. q. 

so the normalized probability for the move B (q, N) 
_B ( q', N') is simply 

P _ [;qN [;q'N' (18) 
qNq'N' -

L [;qN'[;q'N' 
q'N' 

The trajectory is determined by comparing the statistical 
probabilities at each step to a random number, as in a Monte 
Carlo approach. The time development of N is thus directly 
available, and can be compared to the time dependence ob­
served in the experimental spectra. 

A typical simulation is shown in Fig. 9. This plot of N vs 
number of steps clearly indicates a linear dependence in the 
statistical limit. On average, the effective size of the system 
increases by 1 in approximately 73% of the moves, is un­
changed in approximately 21 % of the moves, and decreases 
by 1 for the remaining 6%. These probabilities provide an 
overwhelming impetus for the system size to grow, appar­
ently monotonically, with time. Although other pathways 
can be selected in a model ofthis type, the basic time depen-

N 

Number of Steps 

FIG. 9. Monte Carlo simulation of a random walk over product operator 
space, with ilN = 0, ± 1 and ilq = 0, ± 2. The curve is the result of averag­
ing 100 independent trials of 1000 steps. 

dence remains unchanged. The data plotted in Fig. 7 suggest 
that the onset of statistical behavior occurs after - 300 J.lS for 
the systems studied. 

B. Monitoring of time reversal via the refocusing of 
multiple-quantum coherence 

It is perhaps not surprising that the excitation of multi­
ple-quantum coherence in a dipolar solid can be approached 
as a random walk problem, in view of the connection 
between multiple-quantum events and some other more well 
known consequences of evolution under a bilinear Hamil­
tonian. For example, spin diffusion, an intuitively appealing 
concept originally introduced by Bloembergen31 to explain 
unexpectedly short T,'s in CaF2, also shares many of the 
qualitative features of macroscopic, random diffusion. Nev­
ertheless, the apparent success of diffusive models of nuclear 
spin dynamics belies an underlying regularity demanded by 
the quantum mechanical equations of motion. Although it 
may appear to be stochastic, the time development of a spin 
system according to Eq. (4) is actually well determined, and 
can be reversed if the sign of the effective internal Hamilton­
ian is changed. 

That coherent averaging methods can reverse supposed­
ly irreversible dipolar dephasing has already been amply 
demonstrated by "magic echo" experiments. 12 However, we 
can gain added insight into such dephasing and rephasing by 
visualizing the time reversal process explicitly through mul­
tiple-quantum spectroscopy. The novelty here is that we can 
show how time reversal is effective even for very high-order, 
multiple-spin processes. 

Sequence (d) of Fig. 2 is designed to reverse the forma­
tion of the network of spin correlations common to both 
multiple-quantum excitation and spin "diffusion." The plan 
is to allow couplings to develop normally for a rather long, 
fixed time 1"0' and then to focus the multiple-quantum coher­
ences over the interval 1"'. The refocusing during 1"' is accom­
plished by phase shifting the excitation pulses by 90· to 
change the sign of the average Hamiltonian. The mixing pe­
riod is altered symmetrically to fulfill the requirement for 
overall time reversal relative to the preparation period. 

The reversibility of multiple-quantum excitation is illus­
trated experimentally in Fig. 10. Shown at the left are three 
180 MHz IH spectra of adamantane obtained in the usual 
fashion with sequence 2(c) and 1" = 462,330, and 66 J.ls. Di­
rectly opposite are the equivalent refocused spectra, record­
ed with 1"0 = 528 J.lS and 1"' = 66, 198, and 462 J.ls. In each 
case, the net forward preparation times are identical, since 
1" = 1"0 - 1"'. To the extent that the time reversal works per­
fectly, the development of all the multiple-quantum coher­
ences during 1"0 will be retraced during the 1" interval, during 
which the clock governing the dipolar Hamiltonian appears 
to run backwards. Indeed, the spectra to be compared in Fig. 
10 are reasonably similar. In particular, note that for 1" = 66 
J.ls, only two-quantum coherence is observed after normal 
excitation by sequence 2(c). For the comparable spectrum 
produced by sequence 2(d) the system generates coherences 
up to n = 32 during the initial development period of 528 J.lS, 
and then reverses the process for 1"' = 462 ps to leave primar­
ily two-quantum coherence. 
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FIG. 10. 180 MHz IH spectra of adamantane illustrating the feasibility of 
refocusing multiple-quantum coherence via time reversal. Phase cycling 
and spin temperature inversion have not been implemented in this experi­
ment. Left: Spectra obtained with sequence (c) of Fig. 2 for r = 66, 330, and 
462/Ls. High-order coherences develop normally with lI(O) = !(Hyy - H = ) 
during the preparation period. Right: Spectra obtained with sequence d of 
Fig. 2 for ro = 528/Lsandr' = 462, 198,and66/Ls. In each case, the reversal 
of the time development during 1" leaves the net forward preparation time 
equivalent to that used for the corresponding spectrum at the left. The ob­
served spectral distribution arises as the system evolves backwards in time 
from high·order to low-order coherences. 

This demonstration of time reversal complements simi­
lar single-quantum approaches. For example, in the magic 
echo experiment, a pulse sequence applied to the system 
after the free induction signal has decayed can restore the 
signal to its initial intensity under ideal conditions. How­
ever, in the magic echo experiment there is no direct evi­
dence that the time reversal is proceeding through multiple­
spin events. By following the development of multiple­
quantum coherence, we have shown here that time reversal 
can tum back the clock for coherent evolution involving 
large numbers of nuclear spins. 

c. Dilute spin systems and clusters 

An especially interesting potential application of multi­
ple-quantum spectroscopy would be to characterize distri­
butions of spins more directly than is possible with conven­
tional single-quantum methods. Since multiple-quantum 
statistics are highly sensitive to the spatial arrangement of 
the nuclei, the time development of multiple-quantum co-

herence may vary significantly depending on whether the 
spins are distributed regularly or randomly, or grouped into 
dilute isolated clusters. In this section we consider how mul­
tiple-quantum excitation dynamics are affected by the differ­
ent spatial distributions of spins encountered in individual 
systems. To facilitate these comparisons, we employ isotopic 
dilution to alter IH dipole-dipole interactions in a controlled 
fashion. The specific systems to be considered here are (1) a 
solid solution of HMB in perdeuterated HMB with a molar 
ratio of 1: 10, (2) a sample of HMB randomly deuterated to a 
level of 80%-90%, and (3) a 1 :20 solid solution of partially 
deuterated DMN in perdeuterated DMN. All the samples 
are polycrystalline, the mixtures having been obtained by 
evaporation of solvent. 

1. Dilution effects-Hexamethylbenzene 

Measured values of N (r) for the two deuterated hexa­
methylbenzenes and for neat HMB are plotted in Fig. 11. It 
is evident that the same series of spectra is eventually ob­
tained in each case, but that the preparation time required to 
realize a particular distribution depends strongly on the indi­
vidual dipolar characteristics. Consequently, we can replace 
the independent variable r by a scaled variable ar to define a 
common time dependence for N. It is apparent from the data 
that a = 1 for neat HMB, a 1.65 ± 0.10 for the randomly 
deuterated material, and a = 3.1 ± 0.3 for the 1: 10 mixture. 

Intramolecular dipolar couplings, presumably large, 
strongly influence multiple-quantum spectra at short prep­
aration times. Since the dilution of HMB in a deuterated 
lattice does not affect these couplings, we might expect to see 
no changes in the initial development of coherence in the 
mixture. However, the straightforward scaling of the time 
dependence for T ~ 250#s clearly indicates that the strongest 
intramolecular couplings have matured much earlier, appar­
ently before 50-100 p,s have elapsed. This is consistent with 
the crystal and molecular structure of HMB, which forces 
the longest intramolecular IH_1H distances to be compara­
ble to, and sometimes greater than the shortest intermolecu­
lar distances.25 Therefore, except for couplings among the 

N 

20 24 28 32 

Tile 

FIG. II. Nvs 1'/te for neat hexamethylbenzene (squares), a 1:10 solid solu­
tion ofHMB-h 18 in HMB·d 18 (open circles), and randomly deuterated HMB 
(shaded circles). The rates of increase of the effective size are slower in the 
two dilute systems. 

J. Chern. Phys., VoL 83, No.5, 1 September 1985 



2024 Baum et al. : Multiple-quantum dynamics in solid state NMR 

three IH nuclei of a single methyl group, the distinction 
between intermolecular and intramolecular dipolar cou­
plings is blurred in this system. Once interspin communica­
tion within one methyl group, and possibly with its two ortho 
neighbors, has been established at short T, subsequent for­
mation of coherence is likely to be dominated by intermole­
cular effects. These effects are attenuated, but not eliminat­
ed, by dilution. It is interesting to note here that the observed 
scaling factor of - 3 for N (T) is close to the predicted scaling 
of the intermolecular dipolar linewidth by the square root of 
the concentration of protonated molecules in the dilute mix­
ture.32 This prediction follows from treating all distant mole­
cules as point dipole sources, with each producing a local 
field averaged to one distinct value by the rapid sixfold mo­
lecular reorientation. 

Random deuteration of HMB affects both intramolecu­
lar and intermolecular dipolar couplings to some extent. 
Analysis of this material by multiple-quantum spectroscopy 
enables us to distinguish it both from neat HMB and from 
the other dilute system with approximately the same total 
number of IH nuclei. The growth of N (T) with T for the ran­
domly deuterated molecules is intermediate between the two 
extremes, a difference more striking than the subtler changes 
observable in the single-quantum IH spectra. We can ac­
count for the more rapid formation of spin correlations in the 
randomly deuterated sample, as compared to the 1:10 mix­
ture, by noting that the distribution of IH nuclei is both high­
er and more uniform throughout the randomly deuterated 
material. More spins are in a position to communicate with 
each other at any given time. 

2. Clustering effects-Dimethylnaphthalene 

Clearly, if coherence in a solid is to be localized among a 
group of spins, there must exist a variation in dipolar cou­
plings sharp enough to create isolated clusters on a specific 
experimental time scale. The basic requirement is for the 
couplings among proximate spins within a cluster to be suffi­
ciently large as to preclude any communication with distant 
spins during the preparation period. In this situation the 
number of spins effectively interacting is limited, as in a liq­
uid, and N (T) should grow either very slowly or not at all 
once the strong couplings have matured. Where an isolated 
cluster does exist, multiple-quantum NMR can estimate the 
number of spins involved, thereby enhancing the more gen­
eral information available from single-quantum line shape 
analysis. 

The existence of local spin clusters can be discerned in 
the multiple-quantum spectra of dilute DMN, shown in Fig. 
12 together with comparable spectra from neat DMN. The 
neat spin system is essentially unbounded, a state which is 
reflected in the spectra by a steady growth of the number of 
orders observed and of the parameter N (T) used to character­
ize the distribution. In marked contrast, the spectra obtained 
from the 1 :20 solid solution never extend beyond n = 6, and 
N (T) increases only gradually from approximately 5 to 8 over 
the range T = 66 to T = 462 f..ls. Since an N spin system will 
have coherences no greater than N, we can immediately es­
tablish N = 6 as a lower bound for the number of interacting 
spins in the dilute system. This is consistent with at least the 
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FIG. 12. 360 MHz IH multiple-quantum spectra of dimethylnaphthalene 
recorded with sequence (b) of Fig. 2. Top: Neat DMN, ring positions deuter­
ated. Bottom: 1:20 solid solution in a perdeuterated host. The two sets of 
spectra clearly demonstrate the different multiple-quantum excitation 
pathways possible in bounded and unbounded spin distributions. Only low 
order coherence can develop among the six isolated spins in the diluted sys­
tem; consequently the distribution of multiple-quantum intensity changes 
very little over the range of preparation times shown. By contrast, the effec­
tive size of the neat material increases continuously over the same range of 
times. 

presence of the two neighboring protonated methyl groups 
in the large DMN molecule. Further dilution by large per­
deuterated molecules creates the physical isolation neces­
sary to excite the pairs of coupled methyl groups selectively. 
Small increases in N (T) beyond 6 probably arise from the 
inevitable influence of long-range couplings as T increases, 
and from the presence of a small percentage of 12-spin mo­
lecular dimers in the 1 :20 mixture. The dilute spin system 
has a much more limited set of strong dipolar couplings than 
does the neat system, and hence the complicated coherences 
develop far more slowly in the dilute system. 

V.SUMMARY 

The development of multiple-quantum coherence in a 
system of coupled nuclei is a collective phenomenon, rooted 
in the concerted interaction of many spins. The dynamical 
evolution of such a system is determined largely by the com­
plete network of spin-spin interactions, dominated initially 
by the largest couplings but ultimately affected by every spin 
present. The influence of weakly coupled, usually distant, 
spins grows with time, and with it so does the number of 
spins able to interact effectively. In this work, we have ex­
perimentally monitored the progressive development of di­
pole induced multiple-spin correlations by the detection of 
multiple-quantum spectra in systems of IH nuclei. We have 
noted that this continuous expansion of the spin system is an 
essential feature common to both the excitation of multiple­
quantum coherence via a nonsecular Hamiltonian as well as 
to the decay of the free induction signal under normal dipo­
lar evolution. The reversibility of multiple-quantum excita­
tion has also been demonstrated explicitly here, thereby 
completing this link. Multiple-quantum events are thus re-
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cognized as originating in rather fundamental processes in 
coupled systems. 

The presence of an almost continuous range of dipolar 
couplings in a typical solid often makes it unrealistic to draw 
artificial boundaries delineating molecules or functional 
groups. Consequently, multiple-quantum coherence can ex­
tend over large numbers of spins, and involve transitions of 
very high order. Here, we have taken a statistical approach 
to the development and distribution of coherence in these 
large systems, based upon the assumption of equal coherence 
magnitudes over long periods of excitation. In this view, the 
intensity distribution of a multiple-quantum spectrum is de­
scribed roughly by a Gaussian, which is characterized by a 
variance proportional to the instantaneous spin size. The 
effective size, N(1'), is best regarded as a parameter reflecting 
both the expansion of the coupling network with time and 
the growing in and maturing of lower-order coherences. A 
random walk, or diffusive, picture is then used to model the 
apparently monotonic increase of N (1') under the influence of 
the coupling Hamiltonian. 

Finally, we have shown that where isolated clusters of 
spins exist in a solid, multiple-quantum spectroscopy can be 
used as a rudimentary "spin counting" tool. However, isola­
tion is always a relative concept in a dipolar solid, and must 
be defined operationally with reference to a certain experi­
mental time scale. The results presented here have demon­
strated that spin counting can be accomplished successfully, 
provided that there exists a sharp disparity between intra­
and intercluster dipole couplings. We expect these methods 
to be applied fruitfully to a variety of systems in chemistry 
and physics, especially to molecules isolated in matrices or 
adsorbed on surfaces. 33 
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