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Excitation of multiple quantum coherence in dipolar coupled spin systems is usually accomplished with a two-quantum 
multiple pulse sequence which can be time reversed by means of a 90° phase shift. The application of such an excitation 
scheme to a spin system in thermal equilibrium excites only even orders of multiple quantum coherence. We demonstrate here 
time reversible pulse sequences that excite all orders of coherence by creating a pure onequantum average hamiltonian. We 
also describe pulse schemes which can be used to create pure one- or two-quantum average hamiltonians with variable scaling 
between + 1 and - 1. These excitation schemes are relevant to the study of spin clustering by multiple quantum NMR. 

1. Introduction 

It was realized recently that time reversal se- 
quences [l] can considerably simplify some multi- 
ple quantum and two-dimensional (2D) experi- 
ments [2-111. Conventionally, a 2D experiment is 
divided into four periods: preparation, evolution, 
mixing and detection. If we denote the average 
hamiltonian over each of these periods of HP, 
HE, HM and HD respectively, the density oper- 
ator at the beginning of the detection period can 
be written as 

p (t,, I,, t, , 0) = e-iH”h e-iH”h e-i@bp (0) 

Xe iHPrp eiHetl eiH”t, 
(1) 

and the expectation value of an observable Q at 
that time is 

(Q>( tp, t,, CM, 0) 

= Tr(e-iHMtM e-iHetl e-iHPtpp(o) 

Xe iHPtp eiHer, eiH”tM 
Q) 

= Tr(e-iHeb e-iHPbp(o) 

Xe iHPtp eiHEtl eiH”tMQ e-iH”tM _ 

> (2) 

In the special case 

&O-Q 
and 

H”t, = - HPtp 

this simplifies to 

(3) 

(Q>( t,, t,, tM, 0) = Tr(e-iHErl$ eiHE’$) 

= C 1 p;s 12 e-i+h, 

r,s 
where 

(4 

p’ = p( tp) = e-iHP’pp(0) ei@f, 

=e iH”rMQ e-iH”tM 

and 

9, =H,f-HE. (5) 

All matrix elements are evaluated in the eigen- 
base of HE. The signal observed as a function of 
t, is thus given by the sum of the absolute squares 
of the density operator elements and therefore 
independent of any phase factor 121. This 
eliminates destructive interference of degenerate 
transitions by adding the power spectra of all the 
individual transitions of the system. This is a 
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convenient property in multiple quantum (MQ) 
NMR where the phases of the individual transi- 
tions are a complicated function of the prepara- 
tion of the spin systems and the information asso- 
ciated with them cannot be easily retrieved. The 
conventional approach to this problem, calculat- 
ing absolute value spectra, does not eliminate de- 
structive interference and the associated loss of 
sensitivity. This is a crucial problem in solids 
where the number of transitions becomes virtually 
infinite, leading to a loss of signal due to destruc- 
tive interference between overlapping transitions 
with different phases. The problem is illustrated 
schematically in fig. 1. 

The hamiltonians HP and HM are usually 
average hamiltonians generated by an appropriate 
multiple pulse sequence [12]. The sequences which 
have been used for multiple quantum NMR in 
solids [13,14] create a zero-order average 
dipole-dipole hamiltonian 

Ejpz’=+(~,,-H,,) 

= (d/2)(Z,+Z,+ + Zl-Z*-1, (6) 

where 

%I = d(3W*, - 11 - 4 1 (7) 

and d represents the dipole-dipole coupling con- 
stant. This average hamiltonian has very simple 

a) 

W 

Fig. 1. If the excitation and detection schemes are independent, 
the phases of the individual transitions are random (a), leading 

Fig. 2. Possible quantum numbers for N-spin operators after 
excitation with a 2-spin-2-quantum average hamiltonian. The 

to destructive interference and low signal intensity if the indi- allowed values are for N even: m = T2, T6, T 10 ,_.., and for 
vidual transitions are not resolved. With conjugate detection Nodd: m=O, T4, 78 ,..., 1 m 1~ N. Clearly there are two 
(b) all lines appear in positive absorption, eliminating destruc- infinite series of n-values with the same possible quantum 

tive interference. numbers. 

transformation properties under phase shifts: 

e -Wzjj(0) eWz 

= 2d(e 2i+Zl+Z2+ + e-2i*Zl_Z2_). (8) 

HY,, - H,, thus represents a pure two-quantum 
operator which changes sign under a phase shift of 
90 O. The spin system can therefore be forced to 
evolve backward in time, fulfilling condition (3) 
by shifting the phase of the multiple pulse se- 
quence. However, such a double-quantum ham- 
iltonian will excite only even orders of coherence 
for a system in thermal equilibrium in high field. 

2. One-quantum average hamiltonian 

A spin system in thermal equilibrium, repre- 
sented by the density operator 

P(0) = CL (9) 
i 

in the high-temperature-high-field limit, does not 
show any correlations between the individual spins 
and its density operator is invariant under phase 
shifts. It consists therefore of l-spin-O-quantum 
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operators. Under the influence of the two-spin 
operator H,, - H,,, correlations develop and the 
density operator at later times contains N- 
spin-m-quantum operators with N and m arbi- 
trarily large. However, there are certain conditions 
which restrict the possible values of m for a given 
N-spin operator [5]. For spins I = l/2, the mag- 
netic quantum number m is confined to the range 

-N<m<N, (10) 

independent of the pulse sequence. In addition, 
with the above average hamiltonian, only the fol- 
lowing values can be obtained: 

N even: m= T2, T6, TlO ,_.., (ml <N; 

N odd: m=O, T4, T-8 ,..., 1rn1 BN. (11) 

The scheme is represented in fig. 2 [6,7]. Clearly 
the same sets of m-value occur for different values 
of N. In fact, there are two infinite series of 
N-spin operators that show the same pattern: 

N,=4K+l and N;=4K+3; 

N,=4K+2 and N;=4K+4, 

K=O,l,2 ,.... (12) 

It has been shown that the pattern and time 
dependence of multiple quantum intensities can 
be used to distinguish between different distribu- 
tions and clustering of spin systems [lo]. If the 
clusters are small, then the excitation of only even 
orders of coherence is a disadvantage. For these 
experiments it would be desirable to have a pulse 
sequence which excites all orders of multiple 
quantum transitions, providing a more sensitive 
measure of the cluster size. One possibility is to 
use a pulse sequence which produces a pure 2- 
spin-l-quantum average hamiltonian. Such an 
operator is, up to a rotation about the z-axis, 
given by 

@:? = WJ,, + LL>, 03) 

where d’ is proportional to the unperturbed cou- 
pling constant d. This can be accomplished by the 
pulse sequences in fig. 3. The repetitive part of 
these sequences consists of a cycle of two, four or 
eight 90 o pulses with phase +_x that generate a 

(45)” (9’3, PO), (45h 

(45).. (45k7 

cl 72 72 
y-xr,x r* i?r,x T2 x T, R 72 X1,X, 

Fig. 3. Pulse sequences that generate 2-spin-l-quantum aver- 
age hamiltonians. The cycle itself consists only of the 90, and 
90_, pulses while the 45,, and 45 _-y pulses are applied only at 
the beginning and at the end of the whole sequence. They are 
therefore not part of the cycle and can be treated as I-function 
pulses. The average dipole-dipole hamiltonian is in all cases 
(d/3) (Z,,Z,, + Z1,Zz,). (a) This sequence works only in the 
limit of ideal delta-function pulses and has a non-zero average 
offset hamiltonian. (b) For this sequence the zero-order aver- 
age offset hamiltonian vanishes. The delays T and c’ are 
related by TV = 27, + fp where tp is the length of the 90 o 
pulses. This pulse sequence can also be used in a semi-window- 
less way where 71 = 0. (c),(d) These sequences generate zero 
overall rotation and are therefore less sensitive to, pulse errors. 

The timing is the same as for sequence (b). 

zero-order average hamiltonian 

i$‘,, = d’(l&, - IJ,,). (14) 

The 45O f y pulses are not part of the cycle, 
but are added only once at the beginning and at 
the end of the whole sequence which may include 
an arbitrary number of cycles. Their objective is to 
rotate the average hamiltonian of eq. (14) into its 
desired form (13). The cycle of the simplest se- 
quence, fig. 3a, consists of only two 90” pulses 
with opposite phase. The average of the dipole-di- 
pole hamiltonian already has the desired property, 
but the average of the Zeeman hamiltonian, 

(15) 
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does not vanish. The performance of this sequence 
is therefore strongly offset-dependent. Further- 
more it works only with ideal delta-function pulses. 
The simplest sequence with the same average di- 
pole-dipole hamiltonian and a vanishing Zeeman 
hamiltonian has a cycle of four 90” pulses with 
equal phases, fig. 3b. The delays are related by 
72 = 27, + t,. This sequence works equally well 
with finite pulse width, and may therefore be used 
in a semi-windowless manner [15,16]. The net 
rotation of this sequence is 2~ so that pulse errors 
accumulate. It is more useful in practice to use 
one of the longer sequences of figs. 3c and 3d. 
They can also be used in the semi-windowless 
manner. 

a) m 

b) m 

Fig. 4. (a) Possible quantum numbers for N-spin operators 
after excitation with a 2-spin-lquantum operator and initial 
condition Z,. The allowed values are for N even: m = T 1, T 3, 
T5 ,..., and for N odd: m=O, T2, T4 ,.__, Irnl (N. (b) 
Same with l-spin-l-quantum operators as the initial condition, 

e.g. Z,. The allowed values are for N even: m = 0, T 2, T 4,. . . , 

Fig. 5. (a) Siiulated single quantum spectrum for an AA’BB’ 
spin system with the coupling constants d,, = d,, = 6.25 kHz, 
d,, = d, = - 0.24 kHz, d14 = - 0.625 kHz and d,, = - 5 kHz. 

(b) Calculated multiple-quantum intensities for the same spin 
system using the even-order selective sequence and an excita- 
tion time or = 100 us. Initial condition and observable are 
both Z,. Apparently it is not possible to distinguish this system 

from a two-spin system only by measuring the multiple quan- 
tum intensities. (c) As (b), but with initial condition and 
observable set to Z,. In this case only odd orders are observed. 
(d) As (b), but using the sequence of fig. 3c. Initial condition 
and observable are Z,. (e) As (d), but the initial condition and 
observable set to Z,. Only under these conditions is the 

andforNodd: m=Tl, T3, T5 ,..., Iml <N. highest-order transition excited. 

The possible values of the magnetic quantum 
number m for N-spin operators generated by these 
average hamiltonian from spin systems at equi- 
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d’ _J!L- 
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n (number of quanta) 
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librium are shown in fig. 4a. Clearly the sequences 
never excite the highest-order transitions, but all 
N-spin operators are of order m < N - 1. This is 
due to the initial condition of 1, which is a l- 
spin-O-quantum operator. The highest possible 
transition can be excited by changing the initial 
condition and the observable to I,, a l-spin-l- 
quantum operator, e.g. by a 90,, pulse, as shown in 
fig. 4b. Fig. 5 shows a computer simulation for 
various excitation schemes, applied to a system of 
four spins l/2. If the even quantum selective 
sequence is used with initial condition I,, it is not 
possible to distinguish this system from a two-spin 
system by looking only at the multiple quantum 
intensities. This becomes possible by using 1, as 
an initial condition. The two spectra, figs. 5b and 
5c, together are roughly equivalent to the single 
spectrum, fig. 5d, obtained with the one quantum 
sequence of fig. 3d. The highest orders can be 
excited only with this sequence and the initial 
condition I,, as shown in fig. 5e. 

Fig. 6 shows experimental multiple quantum 
spectra of solid hexamethylbenzene. The compari- 

.Ll 

Two Quantum Excitation 

?iy - %x 

T,, = 132~s 

L 

Tp = 264ps 

I_LL_ 
-20 -10 0 IO 20 -20 -10 0 10 20 

One Quantum Excltatlon 

I Hxz + Hz, I 
,,,b_$;,: is 132ps 

-20 -10 0 IO 20 -20 -10 0 10 20 

n (number of quanta) 

Fig. 6. Experimental spectra of hexamethylbenzene. The top 
spectra were obtained with the even quantum selective se- 
quence. Excitation times were 132 ps (2 cycles) and 264 ps (4 
cycles). The bottom spectra were obtained with the sequence of 

fig. 3c. 

son of the two sequences shows that the single 
quantum sequence leads to a slower excitation of 
higher quanta, but with a more sensitive measure 
of multiple quantum intensity distribution at short 
times. 

3. One- or two-quantum average hamiltonian with 
scaling 

A problem which occurs with both the one 
quantum and two-quantum average hamiltonian is 
the limit on short-time resolution of multiple 
quantum excitation dynamics. The system must be 
excited in steps of HPrG where rc represents the 
cycle time of the pulse sequence. If smaller excita- 
tion steps are required to look at the early dy- 
namics then either 7c must be reduced or a smaller 
HP must be implemented without increasing the 
cycle time. Reduction of 7c is obviously limited by 
experimental considerations such as power. It is 
therefore desirable to design a pulse sequence that 
implements an average hamiltonian with a smaller 
effective coupling constant. Such an average ham- 
iltonian effectively slows down the evolution of 
the spin system while maintaining the one- or 
two-quantum nature and the possibility of time 
reversal by phase shift. 

Pulse cycles for such scaled average hamilto- 
nian with one- or two-quantum selectivity can be 
derived from the sequence (b--90,-( a - z,,/ 
2)-90,-2c-90,~(a - t,/2)-90,-2b-90,-( a - t,/2) 
-9O,,-2c-90,,-( a - t,/2)-90,-b), shown in fig. 7), 
where a, b and c represent adjustable delays and 
t, the duration of a 90” pulse. This sequene 
generates a zero-order average hamiltonian 

fi(“)=d(u+b+c+3r,/2)-1 

X [1,,1,,(2c - b - u) 

+&,1,,(2a - b - c) 

+1,,1,,(2b - a - c)]. (16) 

The zero-order average. hamiltonian of the off- 
set vanishes. Rq. (16) shows that it is possible to 
generate pulse sequences with a pure two-quan- 
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c- 

,_LP ._b ,_k ,_k 
b x 2 y2=y 2x 2b x 2 y2=y 2x b 

Fig. 7. Basic pulse sequence for pure n-quantum average 
hamiltonians with scaled effective coupling strength. The effec- 
tive coupling constant can be chosen by setting the delays n, b 
and c appropriately (see text). With the timing of the pulses as 

shown, the sequence. generates a pure two-quantum average 
hamiltonian with an effective coupling constant scaled by a 

factor -l/2. 

turn average hamiltonian if 

b=(a+c)/2. (17) 

The average hamiltonian of the sequence then 
becomes 

H'O'ZQ=d[(c-a)/(c+a+r,)] 

Thus the effective coupling constant can be 
scaled by a factor which varies between +l and 
- 1. For c = a, the average hamiltonian becomes 
zero and the resulting pulse sequence is identical 
to the SHRIMP sequence [17]. Because the effec- 
tive coupling constant can be varied through zero, 
this sequence can be used for time-reversal experi- 
ments not only by adjusting the transmitter phase, 
but alternatively by changing the length of the 
delays between the pulses. 

The corresponding one-quantum selective se- 
quences can be obtained via the same indirect 
procedure as was used for the unscaled sequences. 
We first require H,,Y to vanish by setting 

a = (b + c)/2, (19) 

which leads to an average hamiltonian 

~‘O”Q=d[(c-b)/(c+b+t,)] 

x(4,4, - 4z4z)~ (20) 

which can then be converted into the desired 
one-quantum operator by adding a 45,, pulse at 
the beginning and a 45_, pulse at the end of the 
whole sequence. Again, the effective coupling con- 
stant can be scaled from + 1 to - 1 by adjusting 
the length of the delays. We use the names 
SQUASH (single quantum average scaled ham- 

iltonian) and DQUASH (double quantum average 
scaled hamiltonian) for these sequences. 

The sequences derived from the scheme of fig. 
7 are more susceptible to pulse length errors than 
the standard sequence [14]. If inhomogeneity of 
the radiofrequency field becomes an experimental 
problem, it may therefore be advantageous to 
minimize errors by using only one cycle of the 
scaling sequence in the preparation and mixing 
period to get the desired value of HPrc. 

4. Conchsions 

Dipolar coupled spin systems can be made to 
absorb quanta from the radiation field either indi- 
vidually or in pairs and can be made to undergo 
multiple quantum dynamics which can be slowed 
down, stopped or inverted by adjusting the phases 
and the delays of the pulse sequence. The se- 
quences presented in this paper should be useful 
for the study of spin dynamics in small clusters 
where the interesting time evolution occurs over a 
relatively short time and it is a pity to lose the 
additional resolution provided by the odd quan- 
tum transitions. They also make it possible to 
observe the highest possible n-quantum transition 
in a spin cluster of any size. For large spin sys- 
tems, however, it may still pay to use the even 
quantum selective sequence. The intensities are 
distributed among a smaller number of transitions 
and the excitation of high quanta occurs more 
rapidly. 
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