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For liquid samples at Earth’s field or below, nuclear-spin motion within scalar-coupled networks
yields multiplets as a spectroscopic signature. In weak fields, the structure of the multiplets depends
on the magnitude of the Zeeman interaction relative to the scalar couplings; in Earth’s field, for
example, heteronuclear couplings are truncated by fast precession at distinct Larmor frequencies. At
zero field, weak scalar couplings are truncated by the relatively fast evolution associated with strong
scalar couplings, and the truncated interactions can be described geometrically. When the spin system
contains a strongly coupled subsystem A, an average over the fast evolution occurring within the
subsystem projects each strongly coupled spin onto FA, the summed angular momentum of the spins
in A. Weakly coupled spins effectively interact with FA, and the coupling constants for the truncated
interactions are found by evaluating projections. We provide a formal description of zero-field spin
systems with truncated scalar couplings while also emphasizing visualization based on a geometric
model. The theoretical results are in good agreement with experimental spectra that exhibit second-
order shifts and splittings. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803144]

I. INTRODUCTION

Experiments involving nuclear magnetic resonance
(NMR) are typically performed in strong magnetic fields,
which are advantageous for polarization of the spins and for
sensitive inductive detection.1 A strong field is also needed
to resolve chemical shifts; for example, protein-structure
determination2 by means of NMR requires the presence of
a large static field that maximizes the frequency spacing be-
tween peaks corresponding to different amino-acid residues.

In recent years, however, there has been a growing
interest in nuclear magnetic resonance in Earth’s field3–8

(∼50 μT), as well as in microtesla and submicrotesla
fields,9–14 and in the zero-field regime,15–21 where the Zeeman
interaction with external fields is negligible compared to the
couplings between nuclei. Samples can be prepolarized by
thermal equilibration in a relatively large field before detec-
tion in a weaker field22 or at zero field,18 or they can be hyper-
polarized, for example, by dynamic nuclear polarization,23, 24

parahydrogen-induced polarization,16, 17, 25, 26 or spin-
exchange optical pumping.27 At low frequencies where
the sensitivity of inductive detection is poor, a supercon-
ducting quantum interference device14, 28 or an atomic
magnetometer29–31 can be used for signal acquisition.

Motivations for performing experiments without a strong
applied field include the availability of portable, low-cost in-
strumentation for low-field inductive detection;3, 5, 6 the po-
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tential for portable, cryogen-free instrumentation for optical
detection;29, 30, 32 the ease with which high absolute field ho-
mogeneity and narrow lines can be obtained,6, 14 particularly
at zero field;15, 17, 18 enhanced contrast in relaxation times;33–35

minimal magnetic-susceptibility artifacts, decreased screen-
ing by eddy currents in conductive samples;33, 36–38 and the
capability for convenient in situ measurements, for exam-
ple, in geophysical applications39, 40 and in the detection of
explosives.33

Chemical shifts are of central importance for high-field
NMR spectroscopy, and the absence of resolvable chemical
shifts (except in unusual cases27) is an important distinguish-
ing feature of spectroscopic measurements at Earth’s field
or below. In weak fields and at zero field, scalar-coupled
networks yield multiplets as a spectroscopic signature. Mul-
tiplets associated with heteronuclear couplings have been
detected with high resolution in weak fields,6, 14 and two-
dimensional correlation spectroscopy has been demonstrated
in Earth’s field,41 with transfer of coherence yielding cross
peaks at the Larmor frequencies of 1H and 19F. Homonuclear
couplings can also be measured in weak fields, provided het-
eronuclear couplings break the magnetic equivalence of the
protons.42 Decreasing the field from tens of microtesla to zero
moves an isotropic liquid sample from a regime where the
Zeeman interaction is dominant to a regime where coherent
spin evolution is governed only by the scalar-coupling Hamil-
tonian HJ. For a set of equivalent protons coupled to a sin-
gle heteronucleus of spin 1/2, the dependence of the spectrum
on field strength has been characterized, and boundaries that
mark changes in complexity have been identified.43 Perturba-
tion theory has been used to analyze multiplets of strongly
coupled heteronuclear systems in Earth’s field,44 where the
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scalar coupling is the perturbation, and in the near-zero-field
regime,9 where the Zeeman interaction is the perturbation.
Multiplets are also observed at zero field, due to the presence
of weak scalar couplings that split the energy degeneracy as-
sociated with the strong couplings in HJ.15, 18, 45

Here we describe the truncation of weak scalar couplings
in a zero-field environment due to the fast evolution associated
with strong scalar couplings, and we use perturbation theory
to characterize the resulting multiplets in simple systems. We
assume that residual magnetic fields can be neglected, as in
previously reported experiments where magnetic shields and
coils decreased the field to ∼0.1nT.15–18 Taking account of the
spherical symmetry of the problem leads to a geometric de-
scription of the truncated interactions. When the spin system
contains a strongly coupled subsystem A, an average over the
fast evolution occurring within the subsystem projects each
strongly coupled spin onto FA, the summed angular momen-
tum of the spins in A. Weakly coupled spins effectively in-
teract with FA, and the coupling constants for the truncated
interactions are found by evaluating projections. Section II
presents a geometric model of the spin motion in a system
consisting of a heteronucleus S and two protons IA and IB,
where S and IA constitute the strongly coupled subsystem.
The model is formalized in Sec. III by means of the projec-
tion theorem, and in Sec. IV, the formal description is ex-
tended to systems consisting of a heteronucleus S and two
sets of equivalent protons, with one set of protons strongly
coupled to S. We follow the nomenclature of Refs. 15 and 45
in letting (XAn)Bm denote this class of spin systems, where X
represents the heteronucleus, An represents a set of n equiv-
alent protons strongly coupled to X, and Bm represents a
set of m equivalent protons weakly coupled to X and An.
The importance of second-order effects in the multiplets of
(XAn)Bm systems is illustrated by experimental spectra pre-
sented in Secs. III and IV. In Sec. V, the geometric descrip-
tion of truncated weak interactions is generalized to systems
that can be divided into strongly coupled and weakly coupled
subsystems.

II. GEOMETRIC MODEL

The vector model of the atom46, 47 describes the motion
of coupled angular momenta as the precession of classical

vectors. This model can be adapted to yield a geometric de-
scription of the truncation of weak scalar couplings at zero
field, and the geometric description can be formalized using
the projection theorem. We consider a three-spin system con-
taining a heteronucleus S = 1/2 and protons IA and IB, with
IA strongly coupled to S, and IB weakly coupled to the other
two spins. The summed angular momentum of the strongly
coupled spins is denoted by

FA = S + IA.

In the absence of any coupling to spin IB, the two strongly
coupled spins can be visualized as vectors that precess about
FA, which is motionless. This motion is depicted in Fig. 1(a).

When IB is weakly coupled to S and IA, the weak inter-
actions are averaged over the fast precession about FA, so that
IB effectively interacts with the projections of S and IA onto
FA, as illustrated in Fig. 1(b). We denote these projections
by S‖ and I‖

A, respectively. Since the projections are propor-
tional to FA, the truncated weak interaction couples IB to FA.
Figure 1(c) depicts the motion associated with the truncated
interaction, which causes IB and FA to precess about the mo-
tionless vector

F = FA + IB.

Figure 1(d) shows that the slow precession of FA modulates
the fast motion of the strongly coupled spins. The modu-
lated motion is described by a pair of closely spaced high-
frequency Fourier components, which yields a doublet in the
spectrum. The motion of IB and FA yields a single low-
frequency peak. (Note that we use “high-frequency” and
“low-frequency” to refer to regions of the spectrum where the
strong and weak scalar couplings, respectively, are character-
istic transition frequencies.)

This geometric model can be used to find the coupling
constant associated with the truncated interaction. The scalar-
coupling Hamiltonian is

HJ = H0 + H1, (1)

where

H0 = JSA S · IA (2)

is the strong coupling and

H1 = JSB S · IB + JAB IA · IB (3)

(a) (b) (c) (d)

fast

slow

FIG. 1. Vector model of the spin motion in a system containing a heteronucleus S and two protons IA and IB , with IA strongly coupled to S, and IB weakly
coupled to the other two spins. The strong coupling and the weak couplings are represented by the Hamiltonians H0 and H1, respectively. (a) If the weak
couplings involving spin IB are negligible, the strongly coupled spins S and IA precess about a motionless vector that represents FA, the sum of their angular
momenta. (b) Weak scalar couplings involving spin IB are averaged over this fast precession, so that IB “sees” the projections S‖ and I‖

A rather than the
instantaneous states of S and IA. The truncated weak interaction therefore couples IB to FA. (c) The truncated interaction causes IB and FA to precess about the
total angular momentum F. (d) The slow precession of FA modulates the fast motion of S and IA, which yields a high-frequency doublet in the spectrum. The
precession of IB and FA about F is also detectable as a single low-frequency peak.
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(c)(a) (b)

fast

slow

FIG. 2. Spin vectors associated with the fast dipole oscillations. (a) Under H0, the strongly coupled spins precess about FA. The components S‖ and I‖
A are

proportional to FA and thus do not evolve. The precession involves motion of I⊥
A and S⊥, the components of IA and S that are perpendicular to FA. (b) Since the

gyromagnetic ratios for I and S are different, the spin vector (I⊥
A − S⊥) has a dipole moment μfast that precesses quickly under H0. (c) This motion is modulated

by the slow precession of FA under the truncated weak coupling. The modulated motion of μfast is responsible for the high-frequency peaks in the spectrum.

is the perturbation. In Eqs. (2) and (3), JSA, JSB, and JAB are

coupling constants that are conventionally expressed in Hz.
(Consistent with this convention, energies are expressed in Hz
throughout this paper.) Averaging over the fast evolution as-
sociated with H0 replaces S and IA in Eq. (3) by S‖ and I‖

A,
respectively. The perturbation can therefore be approximated
as

H
(1)
1 = JSB S‖ · IB + JAB I‖

A · IB, (4)

where the notation H
(1)
1 is chosen to reflect the fact that in a

formal analysis, the replacement of H1 by H
(1)
1 corresponds to

the use of a first-order effective Hamiltonian. Since the vec-
tors S and IA have the same length,

S‖ = I‖
A = 1

2
FA, (5)

as illustrated in Fig. 1(b). We can thus rewrite Eq. (4) as

H
(1)
1 =

(
JSB + JAB

2

)
FA · IB. (6)

From Eq. (6), the coupling constant for the truncated interac-
tion is (JSB + JAB)/2. The factor of 2 in the denominator can
be interpreted as scaling of the coupling constants JSB and JAB

by the projection of S and IA onto FA.
The observable in our experiments is the spin magnetic

dipole, given by

μ = γS¯S + γI¯IA + γI¯IB, (7)

where γ S and γ I are the gyromagnetic ratio of the heteronu-
cleus and the 1H nucleus, respectively. In describing the high-
frequency dipole oscillations associated with the motion of
S and IA, we write the first two terms on the right side of
Eq. (7) as20

γS¯S + γI¯IA = γI + γS

2
¯FA + γI − γS

2
¯(IA − S). (8)

In the absence of the perturbation H1, the vector FA is con-
stant, and the motion of (IA − S) governed by H0 causes
μ to evolve. The proportionality constant (γ I − γ S)/2 is
roughly analogous to a gyromagnetic ratio, since it charac-
terizes the strength of the dipole moment associated with
(IA − S). Within the geometric model, the motion of (IA − S)
can be visualized as the precession of components I⊥

A , S⊥ that
are perpendicular to FA, as shown in Figs. 2(a) and 2(b). In

Fig. 2(c), modulation of this motion by the perturbation is
depicted.

To describe the dipole oscillations associated with the
low-frequency motion of IB and FA, we express μ in the form

μ = γI + γS

2
¯FA + γI − γS

2
¯(IA − S) + γI¯IB

and drop the term proportional to (IA − S), which is responsi-
ble for the high-frequency oscillations. Writing the remaining
two terms as
γI + γS

2
¯FA + γI¯IB = 3γI + γS

4
¯F + γI − γS

4
¯(IB − FA),

(9)

we note that the vector F is constant, while (γ I − γ S)/4
characterizes the strength of the low-frequency dipole oscilla-
tions associated with the motion of (IB − FA). Comparison of
Eqs. (8) and (9) shows that the “effective gyromagnetic ratio”
for (IB − FA) is smaller by a factor of two than for (IA − S).
As illustrated in Fig. 3, the motion of (IB − FA) can be visu-
alized as the precession of components I⊥

B , F⊥
A that are per-

pendicular to F.
We conclude this section by briefly reviewing the limita-

tions of the vector model, which are discussed in greater detail
in Ref. 46. Note first that when the spin system is in a station-
ary state, the expectation values of spin operators do not vary
with time. A correspondence between quantum-mechanical
expectation values and the vectors shown in Figs. 1–3 can thus
only exist when a coherence is present. Certain forms of co-
herence yield evolution that closely matches the predictions
of the vector model, but the evolution can also take forms not
predicted by the model. For example, the experimental proto-
col described in Sec. III C yields dipole oscillations along the
z axis only, with 〈μx(t)〉 = 〈μy(t)〉 = 0.

III. FORMAL GEOMETRIC DESCRIPTION
OF A THREE-SPIN SYSTEM

In Secs. III–V, we show that for a broad range of scalar-
coupled networks, equations obtained from the geometric
model can be derived formally, which justifies the use of
the model for gaining intuition about zero-field NMR exper-
iments. In the derivations, the projection theorem48 is used
to find the restriction of spin operators to a single angular-
momentum manifold. In order to make the discussion as
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(a)

(b)(b)

FIG. 3. Spin vectors associated with the slow dipole oscillations. (a) Under
the truncated weak coupling, IB and FA precess about the total angular mo-
mentum F. The precession involves motion of I⊥

B and F⊥
A , the components

of IB and FA that are perpendicular to F. (b) The dipole moment μ includes
contributions γI¯ IB and (γI + γS )¯/2 FA. Because γ I is different than the
effective gyromagnetic ratio associated with FA, the spin vector (I⊥

B − F⊥
A)

has a dipole moment μslow that precesses under H1 and contributes a low-
frequency peak.

self-contained as possible, we include in Sec. III A a review
of the projection theorem and simple methods for evaluat-
ing projections. This review is given in the context of a for-
mal description of the same three-spin system modeled ge-
ometrically in Sec. II. The system contains a heteronucleus
S = 1/2 and two protons IA and IB, with IA strongly coupled to
S, and IB weakly coupled to the other two spins. The Hamil-
tonian is given by Eqs. (1)–(3). In Sec. III A, we obtain an
expression for the truncated weak Hamiltonian and second-
order estimates of the energies. Section III B shows that the
high-frequency and low-frequency spectra of 〈μ(t)〉 are asso-
ciated with the motion of operators (I⊥

A − S⊥) and (I⊥
B − F⊥

A),
respectively, whose definitions are motivated by the geomet-
ric model. Section III C discusses the amplitudes and phases
of the peaks in the zero-field spectrum and presents example
spectra.

Note that the approach used here to describe nuclear-
spin systems is closely related to well-known methods for
analyzing the fine and hyperfine structure of atoms. For ex-
ample, the Landé g-factor for atomic energy levels is com-
monly evaluated by using the projection theorem to find
the restriction of spin operators to single angular-momentum
manifolds.48

A. Energy levels

We use perturbation theory to find zero-order eigenstates
and second-order energies for the three-spin system, where
H1 of Eq. (3) is treated as the perturbation. The unperturbed
Hamiltonian H0 acts only on spins IA and S, and its eigen-
states can be written in the form |φ〉|ψ〉, where |φ〉 is a state
of the two strongly coupled spins and |ψ〉 is an arbitrary state
of spin IB. Because of the spherical symmetry of the scalar-
coupling Hamiltonian with respect to spin rotations, the two-

spin eigenstates |φ〉 can be grouped into degenerate angular-
momentum manifolds labeled with quantum number FA, the
summed angular momentum of the strongly coupled spins. In
particular, the unperturbed eigenstates of H0 can be written
as |FA, mA〉|ψ〉, where FA is 0 or 1, and where mA is the z
component of the angular momentum FA. States with FA = 0
have energy −3JSA/4 under H0, while states with FA = 1 have
energy JSA/4.18

To find zero-order eigenstates and first-order energies of
HJ, we diagonalize the perturbation H1 within the degener-
ate eigenspaces of H0. In describing the couplings introduced
by H1 within these degenerate spaces, we first consider the
matrix elements of the operator S · IB that appears on the
right side of Eq. (3). For a pair of states |FA, mA〉|ψ〉 and
|FA,m′

A〉|ψ ′〉 that are degenerate under H0, we obtain the ma-
trix element

〈ψ |〈FA,mA| S · IB |FA,m′
A〉|ψ ′〉

= 〈FA,mA|S|FA,m′
A〉 · 〈ψ |IB |ψ ′〉. (10)

Because S is a vector operator, the Wigner-Eckart theorem
implies that

〈FA,mA|S|FA,m′
A〉 ∝ 〈FA,mA|FA|FA,m′

A〉, (11)

and the proportionality constant does not depend on mA or
m′

A. The projection theorem48 expresses this proportionality
constant in the form

〈FA,mA|S · FA|FA,mA〉
〈FA,mA|FA · FA|FA,mA〉 = 〈S · FA〉

〈FA · FA〉 , (12)

where the expectation values 〈S · FA〉, 〈FA · FA〉 do not de-
pend on mA. Using (11) and (12), we define

S‖ = 〈S · FA〉
〈FA · FA〉FA (13)

as the projection of S onto FA. The matrix element of Eq. (10)
can then be written as

〈FA,mA|S‖|FA,m′
A〉 · 〈ψ |IB |ψ ′〉.

For the purpose of diagonalizing the perturbation within a
degenerate subspace of H0, we can replace the operator S · IB

by S‖ · IB in Eq. (3). Similar arguments show that IA · IB can
be replaced by I‖

A · IB , where

I‖
A = 〈IA · FA〉

〈FA · FA〉FA. (14)

Making these replacements in Eq. (3), we recover Eq. (4) as
the first-order description of the perturbation, where the pro-
jections S‖ and I‖

A depend on FA. Note that Eqs. (13) and (14)
can be interpreted geometrically, since projection of classical
vectors would give expressions of the same form.

To evaluate S‖, we use a standard algebraic trick. From

I2
A = (FA − S)2 = F2

A + S2 − 2S · FA,

we obtain

S · FA = 1

2

(
F2

A + S2 − I2
A

)
,
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which gives

〈S · FA〉 = 1

2
[FA(FA + 1) + S(S + 1)

− IA(IA + 1)] (15)

and

S‖ = FA(FA + 1) + S(S + 1) − IA(IA + 1)

2FA(FA + 1)
FA. (16)

Similar manipulations yield

I‖
A = FA(FA + 1) + IA(IA + 1) − S(S + 1)

2FA(FA + 1)
FA. (17)

Evaluating Eqs. (16) and (17) for the manifold with FA = 1,
we recover Eq. (5) of the geometric model. Within this mani-
fold, the first-order approximation to H1 is therefore given by
Eq. (6) as

H
(1)
1 =

(
JSB + JAB

2

)
FA · IB.

For the manifold with FA = 0, the projections of S and IA onto
FA are zero, which gives H

(1)
1 = 0. Equations (5) and (6) can

be considered to hold trivially in this case as well.
To find the zero-order eigenstates of HJ, we recall that the

degenerate eigenspaces of H0 each consist of a set of product
states |FA, mA〉|ψ〉 that have the same value of FA. We can vi-
sualize each of these spaces as the product space of two spins
FA and IB that interact through a scalar coupling FA · IB . Be-
cause the coupling is invariant under a uniform rotation of
the two spins, the resulting eigenstates can be grouped into
degenerate manifolds of the total angular momentum F. Ex-
plicit formulas for the eigenstates can be found by using the
Clebsch-Gordan coefficients to add the angular momenta FA

and IB. Since

FA · IB = 1

2

(
F2 − F2

A − I2
B

)
,

the first-order energy correction is

�(1) = 1

4
(JSB + JAB)

× [F (F + 1) − FA(FA + 1) − IB(IB + 1)]. (18)

We outline the derivation of the second-order energy
corrections �(2), which is presented in greater detail in the
Appendix. The second-order corrections can be calculated us-
ing nondegenerate perturbation theory, because the matrix el-
ements of H1 that were neglected in the first-order estimates
of the energies introduce couplings only within isolated sub-
spaces spanned by states with distinct zero-order energies. To
evaluate the matrix elements of H1 within these subspaces, we
use the Wigner 6j symbols to express the zero-order eigen-
states in basis sets where the operators S · IB and IA · IB are
diagonal. Algebraic manipulations similar to those performed
in deriving Eqs. (15) and (18) yield analytic expressions for
the eigenvalues of these operators, which in turn yield an-
alytic expressions for the matrix elements of H1 that cou-
ple states with distinct zero-order energies. Substitution of
these expressions into the standard formulas of nondegenerate

TABLE I. Approximate energy levels of the three-spin system. The zero-
order eigenstates can be grouped into degenerate angular-momentum mani-
folds labeled with quantum numbers S, IA, FA, IB, and F. All of the manifolds
have S = IA = IB = 1/2; the values of FA and F are shown in the table. The
zero-order energy is denoted by E(0), while the first-order and second-order
energy corrections are denoted by �(1) and �(2), respectively. The energy
level with FA = 0 has �(1) = 0 because the projections of S and IA onto FA

are zero within this level. Because H1 is a scalar operator, it does not couple
states that have distinct values of F. As a result, �(2) = 0 for the energy level
with F = 3/2, which is not coupled to the two levels with F = 1/2.

Angular momenta E(0) �(1) �(2)

FA = 1, F = 3/2 JSA/4 (JSB + JAB)/4 0
FA = 1, F = 1/2 JSA/4 −(JSB + JAB)/2 3 (JSB − JAB)2/16JSA

FA = 0, F = 1/2 −3JSA/4 0 −3(JSB − JAB)2/16JSA

perturbation theory and simplification of the resulting equa-
tions yields the second-order energy corrections shown in
Table I.

The zero-order energy E(0) and the first-order correction
�(1) have a geometric interpretation. These contributions to
the energy are eigenvalues of H0 ∝ S · IA and H

(1)
1 ∝ FA · IB ,

respectively. Since the dot product of two classical vectors is
proportional to the cosine of the angle between them, E(0) and
�(1) are each associated with the angle between two vectors.
Within the zero-order eigenstates, the angle between S and IA

remains fixed during the correlated motions of the spins, as
does the angle between FA and IB . Note that this interpreta-
tion is consistent with the depiction of the spin motion shown
in Fig. 1(d).

Several of the results derived to this point can be sum-
marized by expressing H0 and H1 in a basis of zero-order
eigenstates. From Table I, these states belong to angular-
momentum manifolds specified by the quantum numbers FA

and F. Denoting these states by |FA, F, m〉, where m is the z
component of the total angular momentum, we define basis B
by ordering the states lexicographically, in decreasing order
of FA, F, and m:

B = {|1, 3/2, 3/2〉, . . . |1, 3/2,−3/2〉,

|1, 1/2, 1/2〉, |1, 1/2,−1/2〉,

|0, 1/2, 1/2〉, |0, 1/2,−1/2〉}.

Expressed in basis B, the strong coupling and the perturbation
take the form

H0 = JSA

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

1

−3

−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)
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and

H1 = JSB + JAB

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

−2

−2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
√

3(JSB − JAB)

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0 1

0 1

1 0

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)

In Eqs. (19) and (20), zeros that do not lie along the diago-
nal have been omitted for clarity. The zero-order energies are
given by Eq. (19), while the first-order corrections are given
by the first term on the right side of Eq. (20). The second term
on the right side of Eq. (20) is neglected in a first-order treat-
ment and is responsible for higher order corrections.

The significance of second-order corrections can be es-
timated by substituting characteristic values of JSA, JSB, and
JAB into the formulas for �(2) that appear in Table I. For
molecules where S represents a 13C nucleus coupled through
a single bond to IA, with IB coupled to the other spins
through two or more bonds, we can use JSA ∼ 150 Hz and
(JSB − JAB) ∼ 10 Hz to make the order-of-magnitude esti-
mate �(2) ∼ ±0.125 Hz. Note that shifts of this magnitude
are detectable in zero-field experiments,15, 17, 18 as illustrated
by spectra presented in Secs. III C and IV B.

B. Spin dipole

Motivated by the discussion of Sec. II, we write the spin
dipole of Eq. (7) in the form

μ = γI − γS

2
¯(IA − S) + γI − γS

4
¯(IB − FA)

+3γI + γS

4
¯F. (21)

During a period of free evolution under the Hamiltonian HJ,
the term proportional to F in Eq. (21) does not contribute to
the oscillations of 〈μ(t)〉, since F commutes with HJ. In con-
sidering the frequency components of 〈μ(t)〉, we simplify the
discussion by dropping the static term and using

μ = γI − γS

2
¯(IA − S) + γI − γS

4
¯(IB − FA). (22)

Figure 2 suggests that the high-frequency oscillations in
〈μ(t)〉 involve motion of the components of IA and S that are
“perpendicular to FA.” To formalize this geometric idea, we
define operators

S⊥ = S − S‖, (23a)

I⊥
A = IA − I‖

A. (23b)

Note that Eqs. (16) and (17), which were derived by consid-
ering the restriction of S and IA to a manifold of FA, can be
considered to define S‖ and I‖

A on the full Hilbert space for
the three-spin system, and so S⊥ and I⊥

A are well-defined on
the same space. In describing the formal properties of these
operators, however, it is convenient to first consider them as
defined on the two-spin space spanned by the states |FA, mA〉.
Decomposing S in the form

S = S‖ + S⊥

separates its matrix elements into two sets. The matrix ele-
ments that couple states belonging to the same manifold of
FA are denoted by S‖, while the matrix elements that couple
states belonging to different manifolds are denoted by S⊥. The
operators I‖

A and I⊥
A can be described in a similar way.

The geometric model shown in Fig. 3 motivates similar
decompositions of FA and IB . Projecting these operators onto
the manifolds of F listed in Table I, we obtain

F‖
A = F (F + 1) + FA(FA + 1) − IB(IB + 1)

2F (F + 1)
F, (24a)

I‖
B = F (F + 1) + IB(IB + 1) − FA(FA + 1)

2F (F + 1)
F (24b)

and

F⊥
A = FA − F‖

A, (25a)

I⊥
B = IB − I‖

B. (25b)

The projections F‖
A, I‖

B have nonzero matrix elements only
within manifolds of F, while F⊥

A and I⊥
B couple states belong-

ing to different manifolds of F.
Simple algebraic manipulations show that

I⊥
A = −S⊥, (26a)

I⊥
B = −F⊥

A. (26b)

Equation (26a) gives formal support for the picture in which
the vectors IA, S, and FA form a triangle, as shown in
Fig. 1(a), since this picture implies that I⊥

A = −S⊥, as shown
in Fig. 2(a). Similarly, Eq. (26b) is consistent with the visual-
ization shown in Fig. 3(a).

In demonstrating that the high-frequency components of
〈μ(t)〉 are formally associated with the motion of (I⊥

A − S⊥),
we first recall that the zero-order eigenstates were obtained
by diagonalizing H1 within subspaces that can be visualized
as containing IB as well as a single manifold of FA. Low-
frequency oscillations correspond to transitions within one
of these subspaces, while high-frequency oscillations corre-
spond to transitions between them. Since the operators IB and
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FA have nonzero matrix elements only within a subspace ob-
tained by adding IB to a given manifold of FA, the term pro-
portional to (IB − FA) in Eq. (22) does not contribute to the
high-frequency oscillations. Rather, these oscillations are as-
sociated with the matrix elements of (IA − S) that couple dis-
tinct manifolds of FA. Alternatively stated, the high-frequency
spectrum of 〈μ(t)〉 is due to the motion of (I⊥

A − S⊥), as in
Figs. 2(b) and 2(c).

Since S‖ = I‖
A, we have

(IA − S) = (I⊥
A − S⊥). (27)

It follows from Eq. (27) that (IA − S) does not contribute to
the low-frequency spectrum of 〈μ(t)〉, since I⊥

A and S⊥ have
nonzero matrix elements only between states labeled with dif-
ferent values of FA. Equation (22) thus implies that the low-
frequency oscillations of 〈μ(t)〉 are associated with matrix
elements of (IB − FA) that couple states of different
energy. These matrix elements can be identified with
(I⊥

B − F⊥
A), since the manifolds of F used in defining the pro-

jections I‖
B , F‖

A are degenerate energy levels. Consistent with
Fig. 3(b), the low-frequency oscillations of 〈μ(t)〉 can be
associated with the motion of (I⊥

B − F⊥
A).

C. Spectrum

The dipole 〈μ(t)〉 can oscillate at the three transition fre-
quencies of the system. The second-order approximations to
these frequencies can be obtained from Table I:

ν1 = 3

4
(JSB + JAB) − 3

16

(JSB − JAB)2

JSA

,

ν2 = JSA − 1

2
(JSB + JAB) + 3

8

(JSB − JAB)2

JSA

,

ν3 = JSA + 1

4
(JSB + JAB) + 3

16

(JSB − JAB)2

JSA

.

(28)

The amplitudes and phases of the spectroscopic peaks at fre-
quencies νk depend on the methods used to polarize the sam-
ple and acquire the spectrum. References 15–18 describe ex-
perimental schemes for zero-field spectroscopy based on the
use of an atomic magnetometer as a detector. Here we ana-
lyze an acquisition protocol where the sample is prepolarized
in an applied field along z. After the field is dropped suddenly
to zero, 〈μz(t)〉 is detected during a period of free evolution.
Note that it suffices to detect 〈μz(t)〉, since the symmetry of
the initial state and the scalar-coupling Hamiltonian imply
that 〈μx(t)〉 = 〈μy(t)〉 = 0 during the detection period. The
observable can therefore be defined as μz.

In order to describe the resulting spectrum, we write the
density matrix of the polarized spins at the beginning of the
detection period as

ρ0 = (IA,z − Sz) + 1

2
(IB,z − FA,z), (29)

where the proportionality constant that characterizes the
strength of the polarization has been dropped, together with
the contribution of the identity matrix. Equation (29) was ob-
tained by noting that the spin order associated with weak ther-

mal prepolarization is represented by a density matrix propor-
tional to μz. As in Eq. (22), we drop the term proportional to
Fz, which does not evolve under HJ. Equations (23) and (25)
can be used to decompose each spin operator as the sum of a
projection and a perpendicular component. Using Eq. (27) to
simplify the resulting expression gives

ρ0 = (
I⊥
A,z − S⊥

z

) + 1

2

(
I⊥
B,z − F⊥

A,z

)
+1

2

(
I

‖
B,z − F

‖
A,z

)
. (30)

Since the only nonzero matrix elements of the operator
(I ‖

B,z − F
‖
A,z) are within degenerate manifolds of F, this

term is static during a period of free evolution, and it can
be dropped. A further simplification can be made using
Eqs. (26a) and (26b), which give

ρ0 = 2I⊥
A,z + I⊥

B,z. (31)

The spin order represented by Eq. (31) consists of a set
of coherences that oscillate during the detection period. For-
mally, this motion is described by the time-dependent density
matrix

ρ(t) = exp(−itHJ ) ρ0 exp(itHJ ), (32)

and the resulting dipole oscillations are given by

〈μz(t)〉 = Tr{μzρ(t)}. (33)

Note that since ρ0 ∝ μz, it follows from Eqs. (22), (32), and
(33) that the 〈μz(t)〉∝ (γ I − γ S)2.

In describing the spectrum of 〈μz(t)〉, we use a simplified
expression for the operator μz. Beginning from Eq. (22), we
drop the contributions to μz that have matrix elements only
within degenerate energy levels. Arguments similar to those
used in deriving Eq. (31) show that the matrix elements of μz

relevant for describing the dipole oscillations can be written
in the form

μz ∝ 2I⊥
A,z + I⊥

B,z, (34)

where physical constants have been dropped, since our inter-
est is in the relative amplitudes of the peaks, rather than the
absolute amplitudes. From (32)–(34), we obtain

〈μz(t)〉 ∝ 4 Tr
{
I⊥
A,z exp(−itHJ ) I⊥

A,z exp(itHJ )
}

+ Tr
{
I⊥
B,z exp(−itHJ ) I⊥

B,z exp(itHJ )
}
. (35)

In (35), the terms involving I⊥
A,z and I⊥

B,z represent the high-
frequency and low-frequency contributions to the signal, re-
spectively. The amplitude of the low-frequency peak is there-
fore |I⊥

B,z|2, where the norm of an operator T is defined by

|T | =
√

Tr{T †T }.
The sum of the amplitudes of the two high-frequency peaks is
4|I⊥

A,z|2.
The amplitude of the low-frequency peak can be evalu-

ated by exploiting a generalization of the Pythagorean theo-
rem that holds for the two orthogonal components of IB, z:

|IB,z|2 = |I ‖
B,z|2 + |I⊥

B,z|2. (36)
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Using Eq. (24b), we find that

|I ‖
B,z|2 = 10

9
,

and since |IB, z|2 = 2, it follows from Eq. (36) that the ampli-
tude of the low-frequency peak is

|I⊥
B,z|2 = 8/9. (37)

Similar manipulations show that the sum of the amplitudes of
the high-frequency peaks is

4|I⊥
A,z|2 = 4. (38)

To find the relative amplitudes of the high-frequency
peaks, we first use the Clebsch-Gordan coefficients to obtain
explicit formulas for the eigenstates: addition of S and IA gives
states |FA, mA〉, and addition of FA and IB gives zero-order
eigenstates |FA, F, m〉. Each high-frequency peak is associ-
ated with a pair of energy levels, and the amplitude of the
peak can be found by first evaluating the matrix elements of
IA, z that couple states within the two levels and then summing
the squared norms of these elements. Performing these calcu-
lations shows that the ratio of the amplitudes for frequencies
ν2 and ν3 is 1:2.

In combination with Eqs. (37) and (38), this result im-
plies that the relative amplitudes of the three peaks in the
spectrum are 2:3:6. It follows from (35) that the peaks are “in
phase,” since each of the oscillating components of 〈μz(t)〉
takes its maximum value at time t = 0. These conclusions are
illustrated in Fig. 4, which shows the spectrum derived from
perturbation theory for an example three-spin system.

An alternative to thermal prepolarization in an applied
field is the use of parahydrogen-induced polarization (PHIP)
at zero field.16, 17, 25 As an example, we consider the reaction
shown in Fig. 5, in which parahydrogen is added to dimethyl
acetylenedicarboxylate (DMAD) to yield dimethyl maleate
(DMM). With 13C present at natural abundance, the reaction
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FIG. 4. First-order description (dashed lines) and second-order description
(solid lines) of the zero-field spectrum of an example three-spin system. The
amplitudes, which were evaluated using zero-order eigenstates, correspond
to an experimental protocol in which the molecule is prepolarized in an ap-
plied field. After the field is dropped suddenly to zero, the oscillations of
the sample dipole are detected. The relative amplitudes of the three peaks are
2:3:6, and the second-order approximations to the frequencies νk are given by
Eqs. (28), where JSA = 167.2 Hz, JSB = −2.2 Hz, and JAB = 13.0 Hz. These
scalar couplings correspond to a system consisting of two 1H nuclei and a
13C nucleus in the vinyl group of dimethyl maleate,25 shown on the right
side of Fig. 5. In this system, the exact transition frequencies differ from the
second-order approximations by about 10 mHz.
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FIG. 5. Hydrogenation of dimethyl acetylenedicarboxylate (DMAD) to form
dimethyl maleate (DMM). When the reaction product contains a single 13C
nucleus in the vinyl group, the hyperpolarized molecule can be modeled as a
three-spin system.

yields a mixture of isotopomers. The signal is primarily gener-
ated by isotopomers that have a single 13C nucleus in the vinyl
group or in the carboxyl group; for the isotopomer with 13C in
the methyl group, the spin order introduced by the addition of
parahydrogen is not converted to a detectable signal because
the heteronucleus is isolated from the spins of the initial sin-
glet state.25 The vinyl isotopomer can be modeled as a three-
spin system, since the couplings between the vinyl group and
the methyl protons are weak. A detailed analysis of the evo-
lution occurring in this isotopomer during the zero-field PHIP
experiment predicts that its spectrum contains three peaks of
equal amplitude, including a high-frequency antiphase dou-
blet and a single low-frequency peak.25

Figure 6 shows the experimental zero-field spectrum for
hyperpolarized DMM, together with the first-order descrip-
tion (dashed lines) and second-order description (solid lines)
of the spectrum of the vinyl isotopomer. The methods used
for the experiment are reported in Ref. 17. The antiphase
doublet in the spectrum is associated with the strong single-
bond heteronuclear coupling JSA ≈ 170 Hz in the vinyl iso-
topomer, and the spacing between the peaks of the doublet is
determined by the weak couplings |JSB|, |JAB| � 10 Hz. The
antiphase peaks have equal integrated area; the small split-
tings in these peaks are due to weak couplings to the methyl
protons,25 which are not included in the three-spin model of
the vinyl isotopomer. The low-frequency region of the spec-
trum is primarily determined by the carboxyl isotopomer,25

which can be modeled as a weakly coupled network of six
spins, consisting of two vinyl protons, three methyl protons,
and the 13C nucleus.

IV. (XAn)Bm SYSTEMS

Several of the results obtained in Sec. III for the three-
spin system can be generalized to systems that contain a het-
eronucleus and two sets of equivalent protons, with one het-
eronuclear coupling strong compared to the other couplings.
We use the notation (XAn)Bm to denote this class of spin sys-
tems, where X represents the heteronucleus, An represents a
set of n equivalent protons strongly coupled to X, and Bm

represents a set of m equivalent protons weakly coupled to
X and An. The parentheses group together the strongly cou-
pled spins. The scalar-coupling Hamiltonian HJ has the same
form for an (XAn)Bm system as for the three-spin system of
Sec. III, with

HJ = H0 + H1
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FIG. 6. Zero-field spectrum resulting from the addition of parahydrogen to DMAD to form DMM. The signal is primarily generated by molecules that have a
single 13C nucleus in either the vinyl group or the carboxyl group of DMM. The relevant positions of the 13C nucleus are indicated by asterisks in the molecular
structure. For the vinyl isotopomer, the first-order description (dashed lines) and second-order description (solid lines) of the spectrum are shown. The transition
frequencies were calculated using the coupling constants JSA = 167.2 Hz, JSB = −2.2 Hz, and JAB = 13.0 Hz, as in Fig. 4. The small splittings of the antiphase
peaks are due to weak couplings to the methyl protons, which are not included in the three-spin model of the vinyl isotopomer. For the isotopomer with 13C in
the carboxyl group, the network of six coupled spins formed by the 13C nucleus, the vinyl protons, and the methyl protons yields a complicated splitting pattern
in the low-frequency region of the spectrum.

and

H0 = JSA S · IA,

H1 = JSB S · IB + JAB IA · IB.
(39)

In Eqs. (39), IA and IB represent the summed angular momen-
tum of the strongly coupled protons and the weakly coupled
protons, respectively.

A. Energy levels

The arguments used in Sec. III A to find the energy lev-
els of a three-spin system can be generalized to an (XAn)Bm

system. For the strongly coupled subsystem XAn governed
by H0, the eigenstates can be grouped into degenerate mani-
folds of FA, the summed angular momentum of the strongly
coupled spins.18 Basis sets that span these manifolds can be
obtained by using the Clebsch-Gordan coefficients to add the
angular momenta S and IA. Algebraic manipulations similar
to those performed in deriving Eqs. (15) and (18) show that
for each manifold, the zero-order energy is18

E(0) = JSA

2
[FA(FA + 1) − S(S + 1)

− IA(IA + 1)]. (40)

The degenerate eigenspaces of H0 consist of states
|FA, mA〉|ψ〉, where |ψ〉 is a state of the weakly coupled spins.
An (XAn)Bm system differs formally from the three-spin sys-
tem in that an eigenspace of H0 cannot in general be associ-
ated with a unique manifold of states |FA, mA〉. We wish to
establish that within each eigenspace, the operators S and IA

can be replaced by their projections onto individual manifolds
of FA, which implies that the first-order approximation to H1

has the form given by Eq. (4):

H
(1)
1 = JSB S‖ · IB + JAB I‖

A · IB. (41)

In Eq. (41), S‖ and I‖
A are defined by Eqs. (16) and (17),

respectively.
As an example, we consider an XA3 subsystem. The

three equivalent protons yield a set of three manifolds of IA,
with IA taking the values 1/2, 1/2, and 3/2. Because of the
presence of two manifolds with IA = 1/2, the manifolds of
FA obtained by adding S and IA include pairs that have the
same quantum numbers S, IA = 1/2, FA, and the same energy
E(0). However, these pairs are not coupled by the operators S
and IA, which have nonzero matrix elements only within sub-
spaces V obtained by adding S to a single manifold of IA. Each
subspace V is spanned by a set of manifolds labeled with dis-
tinct values of FA, and Eq. (40) implies that these manifolds
have distinct energies E(0). It follows that in every case where
a pair of states that belong to different manifolds of FA is cou-
pled by S or IA, the zero-order energies of the two states are
different. Within the degenerate eigenspaces of H0, the opera-
tors S and IA can thus be replaced by projections onto individ-
ual manifolds of FA. The same conclusion holds for an XAn

subsystem.
For an (XAn)Bm system, the subspaces within which H1

must be diagonalized can be visualized as containing a single
spin FA that interacts with the weakly coupled spins through
a scalar coupling FA · IB . Formally, these subspaces are the
product of a manifold of FA and the state space of the weakly
coupled spins. In a given subspace, the perturbation can be
written as

H
(1)
1 = (

J
‖
SB + J

‖
AB

)
FA · IB, (42)
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where

J
‖
SB = JSB

×FA(FA + 1) + S(S + 1) − IA(IA + 1)

2FA(FA + 1)
,

(43)
J

‖
AB = JAB

×FA(FA + 1) + IA(IA + 1) − S(S + 1)

2FA(FA + 1)

are couplings scaled by the projection of S and IA onto FA.
The energy levels of H

(1)
1 can be found by adding FA and IB

to obtain manifolds labeled with the quantum numbers S, IA,
FA, IB, and F. Manipulations similar to those performed in
deriving Eqs. (15) and (18) show that first-order energy cor-
rection in each of these manifolds is

�(1) = 1

2

(
J

‖
SB + J

‖
AB

)
×[F (F + 1) − FA(FA + 1) − IB(IB + 1)]. (44)

The second-order energy corrections can be evaluated using
formulas derived in the Appendix.

B. Spectrum

The description of the oscillating spin dipole given in
Sec. III B for the three-spin system applies also to the
(XAn)Bm system, with the exception of Eq. (27), which holds
only when S‖ = I‖

A or, equivalently, when S = IA. Argu-
ments similar to those presented in Sec. III B show that the
high-frequency oscillations of 〈μ(t)〉 are associated with the
motion of (I⊥

A − S⊥). The low-frequency oscillations can in
general include contributions both from (I⊥

B − F⊥
A) and from

the projections of S and IA onto FA.
In the case where the spins are prepolarized by thermal

equilibration in an applied field, the initial density matrix can
be written in the form

ρ0 = (IA,z − Sz) + 1

2
(IB,z − FA,z),

as in Eq. (29). Decomposing each spin operator as the sum of
a projection and a perpendicular component yields

ρ0 = (
I⊥
A,z − S⊥

z

) + (
I

‖
A,z − S‖

z

)
+ 1

2

(
I⊥
B,z − F⊥

A,z

) + 1

2

(
I

‖
B,z − F

‖
A,z

)
,

which differs from Eq. (30) due to the fact that Eq. (27) does
not hold. Dropping the static term (I ‖

B,z − F
‖
A,z) and taking

account of Eqs. (26a) and (26b) gives

ρ0 = 2I⊥
A,z + I⊥

B,z + (
I

‖
A,z − S‖

z

)
. (45)

On the right side of Eq. (45), the term 2I⊥
A,z is responsible for

the high-frequency dipole oscillations, while the remaining
terms can contribute to the low-frequency oscillations. The
operators I⊥

A,z and I⊥
B,z represent a set of coherences that os-

cillate during free evolution, while the operator (I ‖
A,z − S

‖
z )

in general includes both coherences and nonzero matrix ele-
ments within degenerate manifolds of F.

The selection rules,

�F = 0,±1, (46a)

�FA = ±1, (46b)

�IA = 0, (46c)

�IB = 0, (46d)

limit the transition frequencies that can appear in the high-
frequency spectrum. Equation (46a) follows from the Wigner-
Eckart theorem, since IA, z is a component of a vector operator,
while Eqs. (46c) and (46d) are due to the fact that IA, z com-
mutes with I2

A and I2
B , respectively. To derive Eq. (46b), we

consider the matrix elements of IA, z within the XAn subsys-
tem. These are confined to subspaces V obtained by adding S
to a single manifold of IA, which yields manifolds

FA = |IA − S|, . . . , |IA + S|, (47)

each with a distinct energy E(0). Because IA, z is a component
of a vector operator, its matrix elements within a subspace V

satisfy the selection rule �FA = 0, ±1. Since the manifolds
listed in (47) all have distinct values of FA, a transition within
V represented by IA, z must have �FA = ±1. The same se-
lection rule holds for the high-frequency transitions between
eigenstates obtained by adding FA and IB.

In determining the selection rules for the low-frequency
transitions, we recall that these transitions occur within de-
generate eigenspaces of H0. It follows from the discussion in
Sec. IV A that within each of these eigenspaces, the nonzero
matrix elements of IA, z, IB, z, and Sz are confined to subspaces
W obtained by adding a single manifold of FA to a single
manifold of IB. The selection rule

�FA = 0

is a consequence of this restriction. The selection rules given
by Eqs. (46a), (46c), and (46d) apply also to the low-
frequency peaks, because of properties of IB, z and Sz analo-
gous to those of IA, z.

The choice to define the axis of the initial spin polariza-
tion as the z axis yields the additional selection rule

�m = 0, (48)

where m is the z component of the total angular momentum.
As noted in Sec. III C, the symmetry of the initial state and
the scalar-coupling Hamiltonian imply that 〈μx(t)〉 = 〈μy(t)〉
= 0 during the detection period, and so the observable can
be defined as μz. Since the observable is the z component of
a vector operator, Eq. (48) follows from the Wigner-Eckart
theorem, and it applies to all transitions in the spectrum.

For the three-spin system prepolarized by thermal equili-
bration in an applied field, Eq. (31) gives a compact expres-
sion for the coherences in the initial density matrix. An analo-
gous expression can be derived for (XAn)Bm systems. Within
a subspace W obtained by adding a manifold of FA to a man-
ifold of IB, the operator (I ‖

A,z − S
‖
z ) appearing in Eq. (45) is

proportional to FA, z:(
I

‖
A,z − S‖

z

) = IA(IA + 1) − S(S + 1)

FA(FA + 1)
FA,z. (49)

Note that the quantum numbers IA and FA have well-defined
values within each subspace W . We decompose FA, z in
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Eq. (49) as the sum of F
‖
A,z and F⊥

A,z, and we drop the static

term F
‖
A,z. Substitution into Eq. (45) gives

ρ0 = 2I⊥
A,z + I⊥

B,z + IA(IA + 1) − S(S + 1)

FA(FA + 1)
F⊥

A,z (50a)

= 2I⊥
A,z +

[
1 − IA(IA + 1) − S(S + 1)

FA(FA + 1)

]
I⊥
B,z, (50b)

where the second line follows from Eq. (26b). The terms
proportional to I⊥

A,z and I⊥
B,z in Eq. (50b) represent high-

frequency and low-frequency coherences, respectively. The
coefficient of I⊥

B,z in Eq. (50b) depends on the values of IA

and FA for the states involved in a given low-frequency coher-
ence. The relative amplitudes of the peaks in the spectrum can
be evaluated using Eq. (50a) or (50b). For a given pair of en-
ergy levels, the amplitude of the corresponding peak is found
by summing the squared norms of the matrix elements of ρ0

that represent coherences between states belonging to the two
levels.

Reference 45 discusses the analysis of zero-field spec-
tra for (XAn)Bm systems and shows several experimental ex-
amples. For the present discussion, we consider the spec-
trum of labeled methyl formate (H13COOCH3) prepolarized
by thermal equilibration in an applied field. Figure 7(a) shows
an experimental spectrum acquired using previously reported
methods,15, 18 together with the first-order description (dashed
lines) and the second-order description (solid lines) of the
spectrum. The labeled carbon atom of the formyl group is
directly bonded to a single hydrogen atom; in the absence of
couplings to the methyl protons, the nuclei of these two atoms
would form a strongly coupled XA system. The single tran-
sition that can occur in such a system is shown in Fig. 7(b).
Due to the presence of weak couplings between the methyl
protons and the spins of the formyl group, methyl formate is
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FIG. 7. Zero-field spectrum and allowed transitions of labeled methyl formate (H13COOCH3) prepolarized by thermal equilibration in an applied field. The
molecule is an (XA)B3 system, where X and A correspond to the 13C nucleus and the 1H nucleus of the formyl group, respectively, and where the weakly
coupled spins represented by B3 are the 1H nuclei of the methyl group. (a) The trace shows the experimental spectrum, while the dashed lines and the solid
lines show the first-order description and second-order description of the spectrum, respectively. Amplitudes were calculated using zero-order eigenstates. For
the second-order description of the spectrum, the relative amplitudes of the peaks in the high-frequency multiplet are 1:2:2:4:3, while the relative amplitudes
of the eight peaks in the full spectrum are 20:25:27:15:30:30:60:45. The scalar couplings used for the calculations were 1JSA = 226.81 Hz, 3JSB = 4.0 Hz, and
4JAB = −0.8 Hz, chosen by finding a visual match between exact simulations and the experimental data. (b) Energy levels and allowed transition for a strongly
coupled XA system. (c) Energy levels and transitions within the subspace obtained by adding FA to IB = 3/2. (d) Energy levels and transitions within the
subspace obtained by adding FA to the two manifolds with IB = 1/2. The closely spaced energy states are degenerate. In (c) and (d), arrows showing allowed
transitions specify pairs of energy levels involved in a transition.
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TABLE II. Approximate energy levels of labeled methyl formate (H13COOCH3), an (XA)B3 system. The eigen-
states can be grouped into degenerate angular-momentum manifolds labeled with quantum numbers S, IA, FA, IB,
and F. All of the manifolds have S = IA = 1/2. The values of FA, IB, and F are shown in the table, along with
the zero-order energy E(0) and the energy corrections �(1), �(2). For energy levels with FA = 0, the first-order
correction is zero, since the projections of S and IA onto FA are zero. As shown in the Appendix, second-order
energy corrections in (XAn)Bm systems are due to couplings between states that have the same values of IA, IB,
and F but distinct zero-order energies. For the energy levels in the table that have �(2) = 0, the zero-order energy
is uniquely specified by the values of IA, IB, and F.

Angular momenta E(0) �(1) �(2)

FA = 1, IB = 3/2, F = 5/2 JSA/4 3(JSB + JAB)/4 0
FA = 1, IB = 3/2, F = 3/2 JSA/4 −(JSB + JAB)/2 15(JSB − JAB)2/16JSA

FA = 1, IB = 3/2, F = 1/2 JSA/4 −5(JSB + JAB)/4 0
FA = 1, IB = 1/2, F = 3/2 JSA/4 (JSB + JAB)/4 0
FA = 1, IB = 1/2, F = 1/2 JSA/4 −(JSB + JAB)/2 3(JSB − JAB)2/16JSA

FA = 0, IB = 3/2, F = 3/2 −3JSA/4 0 −15(JSB − JAB)2/16JSA

FA = 0, IB = 1/2, F = 1/2 −3JSA/4 0 −3(JSB − JAB)2/16JSA

an (XA)B3 system. The energy levels and allowed transitions
are shown in Figs. 7(c) and 7(d). The zero-order eigenstates
are found by adding the angular momenta FA and IB to form
manifolds of F. Because there are three equivalent protons
in the methyl group, IB takes the values 1/2, 1/2, and 3/2.
Figure 7(c) shows the manifolds of F obtained by adding
FA to IB = 3/2, while Fig. 7(d) shows the manifolds ob-
tained by adding FA to the two manifolds with IB = 1/2.
The allowed transitions are represented by arrows, each
of which specifies a pair of energy levels involved in a
transition.

The first-order and second-order approximations to the
transition frequencies can be obtained from Table II. The for-
mulas for E(0) and �(1) given in the table were obtained from
Eqs. (40) and (44), respectively, while the second-order cor-
rections were evaluated as described in the Appendix. Exam-
ination of the table shows that the transition frequencies de-
noted by ν5 and ν6 in Fig. 7 are degenerate to first order, but
the degeneracy is lifted by second-order energy corrections.
Similarly, the degeneracy between frequencies ν1 and ν2 is
lifted by second-order corrections. These second-order split-
tings can be observed in the experimental spectrum; each is
associated with a pair of closely spaced peaks. Note that the
peaks at frequencies ν1 and ν2 are well resolved, although
they are separated by only 0.1 Hz.

V. STRONGLY COUPLED AND WEAKLY
COUPLED SUBSYSTEMS

The formal geometric description of zero-field spin mo-
tion given in Secs. III and IV is based on the use of the
projection theorem to find a truncated Hamiltonian for weak
scalar couplings. Because of the generality of the projection
theorem, a broad range of scalar-coupled networks can be de-
scribed in a similar way. As an example, we consider the case
where the spins can be divided into a strongly coupled set A
and a weakly coupled set B. The Hamiltonian H0 governs the
interactions within set A, and the perturbation H1 couples the
spins of set A to the spins of set B, as well as governing the in-
teractions within set B. Because of the spherical symmetry of
the scalar-coupling Hamiltonian, the energy eigenstates of set

A under H0 can be grouped into degenerate manifolds of FA,
the summed angular momentum of the spins in set A. For sim-
plicity, we assume that the energies of these manifolds under
H0 are widely spaced.

We consider a weak scalar coupling between spin Ia be-
longing to A and spin Ib belonging to B:

Hab = JabIa · Ib.

The first-order approximation to the coupling is given by the
restriction of Hab to the degenerate eigenspaces of H0, which
consist of states |FA, mA〉|ψ〉, where |ψ〉 is a state function
for the spins of set B. As in Eq. (10), a matrix element of Hab

between states that belong to a degenerate eigenspace of H0

has the form

Jab 〈ψ |〈FA,mA| Ia · Ib |FA,m′
A〉|ψ ′〉

= Jab 〈FA,mA|Ia|FA,m′
A〉 · 〈ψ |Ib|ψ ′〉.

Using the projection theorem,48 we write

Jab〈FA,mA|Ia|FA,m′
A〉 = Jab〈FA,mA|I‖

a|FA,m′
A〉

= J
‖
ab〈FA,mA|FA|FA,m′

A〉,
where

I‖
a = 〈Ia · FA〉

〈FA · FA〉FA (51)

is the projection of Ia onto the manifold of states |FA, mA〉,
and where

J
‖
ab = 〈Ia · FA〉

〈FA · FA〉Jab

is the scaled coupling constant for the truncated interaction
that survives averaging by H0. To first order, the weak cou-
pling can be thus be approximated as

H
(1)
ab = J

‖
abFA · Ib. (52)

As in the geometric model of Sec. II, averaging over the fast
evolution governed by H0 projects the strongly coupled spins
onto FA.

Each degenerate eigenspace of H0 can be visualized as
containing a spin FA that interacts with the weakly coupled
spins of set B. The simplification associated with the use of
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first-order perturbation theory is to replace the set of strongly
coupled spins by a series of individual spins FA, each of which
interacts with the spins of set B in a separate subspace. Within
one of these subspaces, the coupling constant for the interac-
tion between FA and a given spin Ib of set B is

J
‖
Ab =

∑
Ia∈A

J
‖
ab.

Note that in general, the scaled couplings J
‖
ab take dis-

tinct values in distinct subspaces, as illustrated by Eqs. (43).
Diagonalizing H1 within each subspace yields zero-order
eigenstates and first-order energies. These eigenstates can be
grouped into degenerate manifolds of the total angular mo-
mentum F.

To generalize the description of the dipole oscillations
given in Sec. III B, we write the spin dipole as

μ = μA + μB,

where

μA =
∑
Ia∈A

γa¯Ia, (53a)

μB =
∑
Ib∈B

γb¯Ib, (53b)

with γ k the gyromagnetic ratio for spin Ik. If the spins in set A
all have the same gyromagnetic ratio, then μA ∝ FA does not
evolve under H0. When set A includes more than one nuclear
species, however, the fast spin motion governed by H0 in gen-
eral causes μA to evolve. Generalizing Eqs. (23a) and (23b),
we decompose the vector operator for each strongly coupled
spin as a sum of orthogonal components,

Ia = I‖
a + I⊥

a ,

where I‖
a is defined by Eq. (51). Arguments similar to those

presented in Sec. III B show that the high-frequency oscil-
lations of the molecular spin dipole are due to the motion of
the components I⊥

a , which are “perpendicular to FA.” The fast
motion of these components is modulated by the slow evolu-
tion of FA under the effective Hamiltonian H

(1)
1 , which in-

cludes truncated couplings of the form given by Eq. (52) as
well as couplings between the spins of set B. This modulation
yields multiplets in the high-frequency range of the spectrum.

Low-frequency peaks are due to the motion of FA and the
spins in set B. To demonstrate this, we note that the transitions
associated with these peaks occur within subspaces W that are
degenerate under H0. Within a given subspace W , each oper-
ator Ia that represents a strongly coupled spin is proportional
to FA. From Eq. (53a), it follows that μA ∝ FA within W , and
we write

μ = γA¯FA +
∑
Ib∈B

γb¯Ib,

where γ A is an effective gyromagnetic ratio associated with
the subspace W . For homonuclear spin systems, the gyro-
magnetic ratios for the weakly coupled spins are all equal to
γ A, and μ ∝ F does not evolve under H

(1)
1 . For spin systems

containing more than one nuclear species, the slow evolution

of FA and the weakly coupled spins in general yields low-
frequency dipole oscillations. Equations (24) and (25) can be
generalized by projecting FA and Ib onto the degenerate man-
ifolds of F within W . The low-frequency spectrum of 〈μ(t)〉
can then be identified with the motion of the components F⊥

A ,
I⊥
b that are “perpendicular to F,” as in the geometric model.

VI. CONCLUSION

We have used the projection theorem to give a geometric
description of zero-field spin systems with truncated scalar
couplings. As in the vector model of the atom,46, 47 spins are
visualized as classical vectors that precess under the scalar-
coupling Hamiltonian. For a three-spin system containing a
single strong coupling between S and IA, the strong coupling
causes the two spins to precess about their summed angular
momentum FA. In the absence of additional couplings, FA is
motionless. If S and IA are weakly coupled to a third spin IB ,
it does not “see” the instantaneous states of the two strongly
coupled spins; rather it effectively interacts with the projec-
tions of S and IA onto FA. These projections represent an av-
erage over the fast evolution. The truncated weak interactions
cause FA and IB to precess slowly about F, the total angular
momentum.

If the gyromagnetic ratios of S and IA are different, their
fast precession about FA causes oscillations in the molecular
spin dipole, detectable as a high-frequency peak in the zero-
field spectrum. The modulation of this fast motion by the slow
evolution of FA splits the peak into a doublet. The precession
of FA and IB about F yields a single low-frequency peak.

This geometric description can be generalized to a range
of zero-field spin systems, including (XAn)Bm systems, which
contain a heteronucleus and two sets of equivalent protons,
with one set of protons strongly coupled to the heteronucleus.
For spin systems that consist of a strongly coupled heteronu-
clear subsystem A and a weakly coupled subsystem B, the
zero-field spectrum contains high-frequency peaks associated
with the motion of the strongly coupled spins Ia . These peaks
are split into multiplets because the motion of the spins Ia is
modulated by the slow evolution of FA, the summed angular
momentum of the spins in A. This slow evolution is due to
truncated weak couplings that act between FA and the spins
Ib belonging to subsystem B. Since the effective gyromag-
netic ratio for FA is different than the gyromagnetic ratios of
the weakly coupled spins Ib, the motion of FA and the spins
Ib yields low-frequency multiplets.

The experimental spectra presented here show significant
second-order shifts in organic molecules for which H0 rep-
resents a single-bond heteronuclear coupling and H1 repre-
sents couplings that act through two or more bonds. In par-
ticular, the spectrum of singly labeled methyl formate shows
that a pair of transitions which are degenerate to first order
can be separated by second-order energy shifts, yielding a
pair of closely spaced peaks in the spectrum. First-order and
second-order energy shifts for (XAn)Bm systems can be ob-
tained from analytic formulas, which facilitates peak assign-
ment and precise determination of the couplings.
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APPENDIX: SECOND-ORDER ENERGY
CORRECTIONS

As illustrated by Figs. 6 and 7, first-order approximations
to the transition frequencies in organic molecules are inad-
equate for reproducing experimental spectra. For (XAn)Bm

systems, introduced in Sec. IV, analytic formulas for the
second-order energy corrections �(2) can be derived. As we
show below, �(2) can be evaluated by using the Wigner
6j-symbols to express the zero-order eigenstates in basis
sets where the operators representing the weak scalar cou-
plings are diagonal. In particular, the second-order corrections
shown in Tables I and II were obtained in this way.

The discussion in Sec. IV shows that zero-order eigen-
states are found by first adding S and IA to obtain manifolds
of FA, and then adding FA and IB to obtain degenerate mani-
folds of F. Adding the angular momenta in this order yields a
basis set in which the operator S · IA is diagonal; indeed, al-
gebraic manipulations similar to those performed in deriving
Eqs. (15) and (18) show that

〈S · IA〉 = 1

2
[FA(FA + 1) − S(S + 1) − IA(IA + 1)].

Adding S, IA, and IB in a different order yields a basis set in
which a different scalar coupling is diagonal. If S and IB are
added first, for example, we obtain manifolds labeled with
FB, the summed angular momentum of S and IB. The operator
S · IB is diagonal in the resulting basis set, with

〈S · IB〉 = 1

2
[FB(FB + 1) − S(S + 1) − IB(IB + 1)].

Similarly, if IA and IB are added first, the resulting basis states
are eigenstates of the operator IA · IB .

The 6j symbols can be used to perform the transforma-
tion between basis sets obtained by adding the three angular
momenta in a different order. Consider a subspace X obtained
by adding single manifolds of S, IA, and IB. Regardless of the
order in which the angular momenta are added, the resulting
states can be labeled with the quantum numbers S, IA, IB, F,
and m, the z component of the total angular momentum. If S
and IA are added first, the states can also be labeled with quan-
tum number FA, while if S and IB are added first, the states
can be labeled with FB. Since the values of S, IA, and IB are
the same for all states in X, we simplify notation by dropping
these quantum numbers, so that states labeled with FA and FB

are denoted by |FA, F, m〉 and |FB, F, m〉, respectively. The

sets {|FA, F, m〉} and {|FB, F, m〉} each form a basis set for
X, and the transformation between these bases is given by49

〈FB, F ′,m′ | FA, F,m〉 = δF,F ′ δm,m′ (−1)S+IA+IB+F

×
√

(2FA + 1)(2FB + 1)

×
{

S IB FB

F IA FA

}
, (A1)

where the quantity delimited by curly brackets is a 6j symbol.
To evaluate the second-order energy corrections, we note

first the H1 has nonzero matrix elements only within the sub-
spaces X defined in the previous paragraph. Since it is a scalar
operator, the Wigner-Eckart theorem implies that it introduces
couplings only between states labeled with the same values of
F and m. In taking account of the matrix elements of H1 that
were neglected in the first-order approximation to the ener-
gies, we can thus limit our consideration to subspaces Y, each
spanned by a set of states |FA, F, m〉 that have the same val-
ues of F and m but distinct values of FA. From Eq. (40), the
zero-order energies of these states are distinct, and so pertur-
bation theory for nondegenerate states can be used to evaluate
energy corrections.

We let |φp〉 denote a given state |FA, F, m〉, and we eval-
uate the sum

�(2)
p =

∑
q �=p

|〈φp|H1|φq〉|2
E

(0)
p − E

(0)
q

, (A2)

where the sum is over the states φq = |F ′
A, F,m〉 that belong

to the same subspace Y as φp. We write the matrix element
〈φp|H1|φq〉 in the form

JSB〈φp|S · IB |φq〉 + JAB〈φp|IA · IB |φq〉,
and we consider first the term 〈φp|S · IB |φq〉. Equation (A1)
can be used to express |φp〉 and |φq〉 in the basis set where the
operator S · IB is diagonal, which gives

〈φp|S · IB |φq〉=
|S+IB |∑

FB=|S−IB |

(
FB + 1

2

) √
(2FA + 1)(2F ′

A + 1)

×
{

S IB FB

F IA FA

}{
S IB FB

F IA F ′
A

}

× [FB(FB + 1) − S(S + 1) − IB(IB + 1)].

(A3)

Similarly, we find that

〈φp|IA · IB |φq〉=
|IA+IB |∑

IAB=|IA−IB |

(
IAB + 1

2

)

×
√

(2FA + 1)(2F ′
A + 1)

×
{

IA IB IAB

F S FA

}{
IA IB IAB

F S F ′
A

}

× [IAB(IAB + 1)−IA(IA+1)−IB (IB +1)],

(A4)
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where

IAB = IA + IB.

Using Eqs. (A3) and (A4) to evaluate the matrix elements
〈φp|H1|φq〉 appearing in Eq. (A2) yields analytic expressions
for the second-order energy corrections, and simplification of
these expressions yields the formulas given in Tables I and II.

Since the subspaces Y can be labeled with the quantum
numbers IA, IB, and F, second-order shifts are due to couplings
between states that have the same values of these quantum
numbers but distinct zero-order energies. When the values
of IA, IB, and F uniquely specify E(0), the second-order shift
is zero for the corresponding energy level, as illustrated in
Tables I and II.
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