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We study the evolution of a quantum system due to a sequence of incomplete measurements, each of which projects the state 
into an n-dimensional subspace V, of the Hilbert space of dimension n+ m. It is shown that the effect of a measurement that 
projects Vn to V~, is to parallel transport an orthonormal basis ofV n along the shortest geodesic joining Vn and V~ in the Grassmann 
manifold G~,, and transform it by a Hermitian matrix whose eigenvalues are in (0,1 ]. The effect of a dense sequence of measure- 
ments leading to a cyclic evolution of Vn is the hoionomy transformation associated with the corresponding curve in G~.,~, with 
respect to the natural U(n) connection over Gn,=. 

Panchara tnam [ 1 ] was perhaps the first to realize 
that a geometric phase is acquired during a cyclic 
evolution o f  the polarization o f  light due to a se- 
quence o f  filtering measurements due to a polarizer. 
Berry [2]  showed the existence o f  the geometric 
phase [3]  in a cyclic evolution governed by the 
Schr6dinger equation with an adiabatically varying 
Hamiltonian. It  was subsequently shown [4] that the 
restriction o f  adiabaticity is not  necessary and that 
a state acquires a geometric phase in any cyclic evo- 
lution due to the ho lonomy of  a connection [4,5] 
over the projective Hilbert space ~ ,  i.e. the set o f  
rays o f  a Hilbert space ~¢. The geometric phase was 
then further generalized to non-linear [ 6 ] and non- 
unitary [ 7 ] cyclic evolutions. Also, Panchara tnam's  
scheme for light [ 1,8] was generalized to a cyclic 
evolution in any Hilbert space due to a sequence o f  
measurements [9-11 ]. Thus it became clear that 
there is a geometric phase for any cyclic evolution, 
regardless o f  how this evolution takes place. 

Berry's work inspired the generalization o f  the adi- 
abatic geometric phase for the cyclic evolution o f  a 

degenerate eigensubspace o f  the Hamil tonian by 
Wilczek and Zee [ 12 ]. This non-Abelian geometric 
phase was generalized to non-adiabatic evolutions 
by Anandan  [13,7] who described it as due to the 
ho lonomy o f  the connection over the Grassmann 
manifold, i.e. the set o f  n-dimensional subspaces o f  
the Hilbert space, where n is the dimension o f  the 
subspace undergoing the cyclic evolution. In this pa- 
per we generalize it even further by extending it to 
a cyclic evolution resulting from a sequence o f  fil- 
tering measurements o f  commuting observables that 
do not form a complete set. The result o f  each such 
measurement  is to collapse or  project the state into 
an eigensubspace o f  this set o f  observables. We call 
such a measurement  an incomplete measurement as 
opposed to a complete measurement  which is a mea- 
surement o f  a complete set o f  commuting observa- 
bles which projects the state into a one-dimensional 
eigensubspace o f  this set. 

We shall also restrict our  treatment to the special 
class o f  filtering measurements defined as follows: 
This is a measurement  associated with an eigensub- 
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space of a set of commuting observables with pro- 
jection operator P such that if the state of the com- 
bined system just before the measurement was 
lot> IV>, where lot> and IV> were the states of the 
apparatus and the sample (the system to be ob- 
served), respectively, then the state just after the 
measurement is la>PIV> + loft> IVy>, i.e. the ap- 
paratus does not interact with the state PIV>, but 
interacts with ( 1 - P ) I v > .  So that if the state 
lot > P IV> is subsequently separated from the super- 
position, it has a well defined phase relation with the 
initial state [a> IV>. Since lot> is common to both 
states we can say that the initial and final states of 
the sample have a well defined phase relation. From 
now on, we shall consider only the states of the sam- 
ple. It is also convenient to use the Heisenberg pic- 
ture in which a state changes only when a measure- 
ment is made. We can then disregard the effect of 
dynamical evolution which gives a dynamical phase 
in the Schr6dinger picture which is treated elsewhere 
[4,10]. 

In the complete filtering measurement considered 
by Pancharatnam [ 1 ], the apparatus is the polarizer, 
IV> is the polarization state of the incident light and 
PI ~u> is the polarization state of the light that passes 
through the polarizer. Normalizing IV> so that 
<VIV>=I,  the inner product (PIv>,  PIV>) = 
< VI PI V> is the ratio of the intensities of the beam 
passing through the polarizer and the original beam. 

Another example of a complete filtering measure- 
ment is a Stern-Gerlach experiment in which a beam 
of spin-~ particles is split into four by an inhomo- 
geneous magnetic field and one of the beams is se- 
lected. This interaction is described by the Hamil- 
tonian -hco ( r )d . . ,  where n is a unit vector fixed with 
respect to the apparatus and d the angular momen- 
tum. Suppose that in this type of experiment the 
beam interacts instead with an inhomogeneous elec- 
tric field gradient, described by the degenerate in- 
teraction Hamiltonian 

H =  - h o g ( r ) ( d ' n )  2 . 

After the measurement the state will be in an eigen- 
state of (d.n) 2 whose eigenvalues are ~, ¼, 9 and 9. 
Hence the initial state IV> will split into two with 
each state belonging to an eigenspace spanned by two 
degenerate eigenstates of (d .n )  2. Hence the incom- 
ing beam will split into two and selecting the "de- 

generate" beam corresponding to (d.n)2 = l 4 would 
be an incomplete filtering measurement. The final 
state is then PI V> multiplied by a dynamical phase 
factor due to the interaction, where P is the projec- 
tion operator corresponding to the degenerate 
subspace. 

We shall first review the results for the geometric 
phase resulting from complete measurements for 
which P projects an arbitrary state I V> to a one-di- 
mensional subspace of ~ which is an element of ~ .  
This defines a one-to-one correspondence between 
the set of projection operators of complete measure- 
ments and # .  We shall therefore denote a point in 

by the corresponding projection operator. If 
IV'> = <vIPIv> -1/2pIv> (the normalized pro- 

jected state) and [ V> are non-orthogonal then there 
are two geodesics in ~ which join [V><VI and 
I V' > < V' I, where the geodesics are defined with re- 
spect to the Fubini-Study metric [ 5 ]. Then it can be 
shown [ 9-11 ] that [ V' > is obtained by parallel 
transporting I V> along the shortest geodesic joining 
IV> <V[ and IV'> <V' 1. If we parallel transport IV> 
along the longer geodesic then we will obtain - I V' >. 
It follows that the Pancharatnam phase difference g 
between any two non-orthogonal states l g)> and 
I~' > defined by 

eix= ( ~ l ~ )  (1) 

is 0 or x if I #' > is the parallel transport of I@> along 
the shortest or longest geodesic joining I@> < @1 and 
I@> <@' 1, respectively. Also, if we perform a se- 
quence of measurements resulting in a cyclic evo- 
lution, the final state may be obtained by parallel 
transporting the initial state along the geodesic poly- 
gon C formed by the shortest geodesics joining the 
points on # corresponding to the projection oper- 
ators of the successive measurements. Hence, the fi- 
nal and initial states would differ by a phase fl= 
fc  B=Js  G where S is a surface spanned by C, B=  
< @1 d@>, I ff> being a differentiable normalized vec- 
tor field on C and d being the exterior differential on 
# ,  and the curvature G = d B =  <d~l ^ Ida>. 

The fact that G and therefore fl are invariant under 
the gauge transformation 1@> --,e~l @>, where g is a 
real differentiable function on ~ ,  suggests that it 
should be possible to express them entirely in terms 
of ~ ,  i.e. the set of projection operators of the form 
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P= I ~ ) (  ~1. Indeed, it can be shown that the value 
of  G at Pe ~ is 

G ( P ) = t r ( P d P ^ d P ) = ( ¥ 1 d P ^ d P I ¥ )  . (2) 

Hence the operator d = d P ^  dP is an elegant expres- 
sion for the curvature entirely in terms of  the gauge 
invariant P. It is, however, not possible to express B 
in terms of  P alone because B depends on the choice 
of gauge. 

Consider now the cyclic evolution of an n-dimen- 
sional subspace of the (n + m)-dimensional ~ .  Let 
G,.m be the Grassmann manifold consisting of  all the 
n-dimensional subspaces of  ~ .  We call a set of  n or- 

t h o n o r m a l  vectors {l~u~), i=  1, 2 ..... n} an n-frame. 
An n-frame spans a subspace V~eG~,m with the as- 
sociated projection operator 

P= ~ I~ut>(~,l • 
i = 1  

Physically, n-~P may also be regarded as a thermal 
density matrix. Clearly, P is independent of  the cho- 
sen orthonormal basis { I ¥~> } of V~ and is therefore 
invariant under the unitary group U (n) of  transfor- 
mations between the orthonormal bases of  V~. 
Therefore G~,m can be identified with the set of  pro- 
jection operators P uniquely associated with the sub- 
spaces Vn. Also, the set of  bases of  Jr,  or (n + m)- 
frames, can be identified with the group U (n + m),  
and V~ with the equivalence class of  (n + m )-frames 
each consisting of n vectors in V, and m vectors in 
the orthogonal complement Vm of  V~ in Jr. There- 
fore we can also make the identification 
G~,m=U(n+m)/U(n)xU(m) .  Also, the Stiefel 
manifold S~,m, defined to be the set of  n-frames, has 
the identification Sn.m = U (n + m ) / U  (m).  It follows 
that we may also write G n , m = S U ( n + m ) /  
S (U(n )  × U ( m ) )  and S~,m=SU(n+m)/SU(m). 

We therefore have the following tower of  bundles: 
U ( n + m )  is a U(m)-principal fiber bundle over S~,m 
with projection map • (say), while S~,m is a U(n ) -  
principal fiber bundle over Gn,~, with projection map 
/-/. Also, U ( n+  m) may be regarded as a principal 
fiber bundle over G.,m with U (n) × U (m)  as the 
structure group and projection map X=//O. There is 
a natural connection in the bundle S~.m over G~,m 
whose connection one-form with respect to a field of  
n-frames { I ~i ) } on G~.,,, is B o= i (  ~i [ d ~  ) .  The or- 
thonorrnality of  { I ~ ) } implies that B# is a Hermi- 

tian matrix, i.e. it is in the Lie algebra of U(n) ,  It 
was shown [ 7,12,13 ] that this connection gives the 
non-Abelian geometric phase in the cyclic evolution 
ofa  subspace that is given by a closed curve C in Gn,m. 

The curvature or Yang-Mills field of this connec- 
tion with respect to the given n-frame field on Gn,m 
or gauge is Gij=dB~j+B~k ̂  Bkj, using the summation 
convention. Under a unitary gauge transformation 
I~;) - - ,Unl~;) ,  B--*U+BUn+iU+dUn and G--, 
U + G[ln. Also, a straightforward computation shows 
that 

Gu( P ) = < C/~ I dP A dPI ~uj > , (3) 

where there is a wedge product as well as operator 
multiplication between the two dP's, which gener- 
alizes (2).  Hence, again, we have an elegant cur- 
vature opera tord= dP ^ dP in this non-Abelian case. 
Gu(P) are the coefficients of  d in the arbitrary basis 
{ I ¥1 ) } of  the subspace V~ corresponding to the pro- 
jection operator P. 

We shall now define metrics on the above three 
bundles as follows: A tangent vector X of U (n + m ) 
may be represented by an (n + m) × (n + m) Her- 
mitian matrix. A metric h is defined by the condition 
h(X,Y) =tr(XY), where Xand Yare tangent vectors 
at any point in U(n  + m). This metric is real and 
positive definite. When restricted to the SU (n + m ) 
subgroup of  U (n + m ), h is the Cartan-KiUing met- 
ric up to a constant factor. Let g be the metric in S~,m 
such that • is a Riemannian submersion, i.e. dO is 
an isometry when restricted to the orthogonal com- 
plement of  the kernel of  dO. Also, let f b e  a metric 
in G~,m such that/- / is  a Riemannian submersion. In 
the special case of  n = 1, Gl,m is the m-dimensional 
complex projective space and f i s  the Fubini-Study 
metric. The horizontal spaces of  the connection de- 
fined above in the bundle S~.m are orthogonal to the 
fibers of  S~,,,, with respect to the metric g, which may 
be regarded as an alternative definition of this con- 
nection. But we also have natural connections in 
U (n + m) regarded as bundles over S~,m or G.,m de- 
fined by horizontal spaces that are orthogonal to the 
corresponding fibers with respect to the metric h. 

Consider now two successive incomplete mea- 
surements into subspaces v~ and V~, with associated 
projection operators P and P'. Let { I ff~ > } and 
{ I ~  > } be two arbitrary orthonormal bases of  Vn and 
V~, respectively. Then ~u = ( ~ I P'PI ~ ) is an n × n 
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matrix which maps V, into V~,. We shall say that V, 
and V~ are anti-orthogonal if the matrix Z is non- 
singular, i.e. no vector in Vn is orthogonal to every 
vector of  V" or vice versa. We now make the polar 
decomposition of 2~ according to Z =  NU, where/V is 
a non-negative matrix (i.e. a Hermitian matrix with 
non-negative eigenvalues) and 0 is a unitary matrix. 
Here, .~= (Z+Z) i /2  is unique, a n d 0  is unique if and 
only i fZ  is non-singular. Hence, ifVn andV~ are anti- 
orthogonal, as we shall assume from now onwards, 
the uniquely defined 0 is a generalization of the 
Pancharatnam phase factor ( I ). 

Suppose we now change the bases according to 
] @i ) = Ul i j  l ~btj ) and 1@; > = U2ij l ~j ). Then Z trans- 
forms to Z=U2ZU~-=NU, where N=U2NU~ is 
non-negative and U= U20U/- is unitary. For a given 
basis in V, (U~=I) ,  there is a unique basis in 
V~ ( U2 = 0 ÷ ) for which U = L  Similarly, for a given 
basis in V~ (U2=I ) ,  there is a unique basis in V, 
( Ul = 0)  for which U=L Given such a pair of  bases, 
for which our non-Abelian generalization of the Pan- 
charatnam phase is the identity, we shall say that the 
two bases are parallel. This defines a distant paral- 
lelism on G . . . .  On choosing/]2 so that N is diagonal 
and Ut =U2 0, the corresponding parallel bases are 
such that Z = N =  diag ( cos 0t, cos 02,..., cos On ), 0~e [ 0, 
n /2] .  This is like the Abelian case in that each 
I¢, i>=el~i> is projected to e ' lq/i>=cos0glq/~> 
during the second measurement. But the non-Abe- 
lian nature of incomplete measurements manifests 
itself when we have a cyclic evolution of a subspace. 
If  we then choose the bases in the subspaces defined 
by the incomplete measurements such that Z for any 
two successive subspaces is non-negative, the initial 
and final bases which project to the same PEG.,,,  are 
related by a non-trivial unitary transformation, in 
general. 

We now show that two parallel bases in subspaces 
corresponding to P, P '  eG.,m are related by parallel 
transport along the shortest geodesic C joining P and 
P ' ,  the geodesic being defined with respect to the 
metric f on G,,,,. To prove this it is convenient to 
horizontally lift C to a curve F in U (n + m ) regarded 
as a principal fiber bundle over G . . . .  Then F is a 
geodesic with respect to the metric h and it projects 
to a horizontal geodesic ~, in S.,m regarded as a prin- 
cipal fiber bundle over G,,m- Also, 7 projects to C. 
Now choose an orthonormal basis of ~ to consist of  

n vectors in the subspace V. corresponding to P and 
m vectors in the orthogonal complement Vm of V.. 
This basis may be regarded as a point in the fiber in 
U (n + m ) over P, which we take to be an end point 
ofF.  In this basis, F(t)  is the curve exp(i tH) where 
the Hermitian matrix H has the form 

.:(o o) 
where A is an n X m matrix. This is because the ac- 
tion along the fibers is generated by matrices of  the 
form 

where B and C are arbitrary Hermitian matrices of  
order n and m respectively, and we must have 
h ( J, H)=t r ( JH)=0 ,  since F ( t ) is horizontal. 

Since y(t)  is horizontal if we change the chosen n- 
frame in V. and the m-frame in Vm then H trans- 
forms to W H W  +, where 

U(m) ' 

U(,) being an n×n unitary matrix. Therefore, A 
transforms to U(n~AU~(m). This change of bases 
moves F(t) and ~,(t) vertically in the bundles 
U (n + m ) and Sn.m respectively, but does not change 
C. Clearly, these bases can be chosen so that the 
transformed A has a real number xi as the (i, i) th 
coefficient, 1 <i~<min{m, n}, and all other coeffi- 
cients are zero. Then the ith column ofexp( i tH) ,  for 
1 6i<~n, has cosOi as the ith element and i sin 0,- as 
the ( n + i ) t h  element with all other elements zero, 
where 0,-= txi. Our matrix 

Zij= ( ~u~ [ gj > = (~ug l e x p ( - i t H )  I ~ > 

=diag(cos 01 ..... c9s On). 

For the shortest geodesic joining the two extremities 
of  C, 0 ~< 0i ~< n /2  for all i from 0 to n. Therefore Z is 
non-negative in this case. If  the basis in Vn is changed 
then Z undergoes a unitarity similarity transforma- 
tion and so remains non-negative. 

Now the basis states 19'~> =exp(i tH)[~t i>,  i=  1, 
2 ... . .  n are obtained from I~/i> by parallel trans- 
porting along the shortest geodesic C using the above 
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connection in the bundle Sn, m. Since Z is then pos- 
itive we have shown that distant parallelism defined 
above is the same as parallel transporting along the 
shortest geodesic. Also, since in the preferred basis 
in which Z is diagonal, each I q/~) will be projected 
to cos 0i I ~'i) when the measurement  is made. There- 
fore cos20, • physically represents the reduction o f  in- 
tensity o f  a beam, initially in the state I¥ i ) ,  during 
the measurement.  Since the projection operator is 
linear, a linear combinat ion Y~,~ a~[~/~ ) goes over 
to YY i= i ai cos 0~ I ¢'i ) .  

Hence if  we have a sequence o f  projections that 
give a cyclic evolution o f  an n-dimensional subspace, 
then the distant parallelism introduced here enables 
us to construct a sequence o f  n-frames from a given 
initial n-frame. The final n-frame will then be related 
to the initial frame, which is also a basis o f  the initial 
subspace Vn by a unitary transformation. It follows 
from the theorem proved above that this transfor- 
mation is the ho lonomy transformation due to par- 
allel transport around the geodesic polygon formed 
by joining successive points in G . . . .  defined by the 
measurements,  by the shortest geodesics. Also, the 
result o f  this sequence o f  measurements  on an ar- 
bitrary state in Vn, with respect to any or thonormal  
basis o f  Vn, is to multiply by a sequence o f  positive 
matrices and the unitary matrix o f  the above holo- 
nomy transformation. But the determination o f  the 
positive matrices requires knowledge of  each projec- 
tion. This is unlike the Abelian case [9,10] where 
the acquired phase is determined entirely by the ho- 
lonomy transformation. 

However, if  a dense sequence o f  measurements are 
made on the system so that the final subspace is the 
same as the initial subspace Vn, then the effect on an 
arbitrary state o f  Vn is just the non-Abelian holo- 

nomy transformation ment ioned above. This is be- 
cause, in the above analysis, cos 0~ is 1 if  0 ( 0  2) is 
neglected and therefore the positive matrices tend to 
the unit matrix in the limit o f  dense measurements. 
Thus in this limiting case the effect o f  the measure- 
ments is a unitary transformation which is purely 
geometrical. 

Recent magnetic resonance experiments on quad- 
rupolar systems that observe Abelian and non-Abe- 
lian holonomy [ 14 ] can be extended to the incom- 
plete measurements studied in this Letter and the 
predicted results can thus be experimentally verified. 

We thank P. basing for a stimulating discussion and 
R. Montgomery for his comments on this manuscript. 
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