NUCLEAR MAGNETIC RESONANCE WITH DC SQUID PREAMPLIFIERS

N.Q. Fan, Michael B. Henney, and John Clarke
Department of Physics, University of California, and
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

and

D. Newitt, Lawrence L. Wald, and Erwin L. Hahn
Department of Physics, University of California, Berkeley, California 94720

and

A. Bielecki and A. Pines
Department of Chemistry, University of California, and
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

Abstract
Sensitive radio-frequency (rf) amplifiers based on dc Superconducting Quantum Interference Devices (SQUIDs) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 ± 0.5 dB and 1.7 ± 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of "nuclear spin noise", the emission of photons by 35Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2×10^{16} nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing 35Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in 119Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10^{15} nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in 195Pt nuclei has been observed at 55 kHz in a field of 60 gauss.

Introduction

Superconducting Quantum Interference Devices (SQUIDs) have been used for two decades for the detection of magnetic resonance\(^1\text{-}^{11}\). Most\(^2\text{-}^{11}\) of this work has involved SQUIDs as magnetometers in the audio frequency range, and has been restricted to the study of magnetic resonance at low frequency\(^10\text{-}^{12}\) or to changes in the static susceptibility of a sample induced by magnetic resonance at high frequencies\(^2\text{-}^{9}\). However, the development of low noise radio-frequency (rf) amplifiers based on dc SQUIDs\(^13\) enables one to detect the magnetic resonance directly at frequencies up to about 200 MHz. Two broad classes of amplifiers have been developed, with untuned and tuned input circuits\(^1\text{-}^{11}\), both involving thin film, planar SQUIDs with spiral input coils. The SQUID is current and flux biased in the vicinity of its point of maximum gain, and the output is coupled to a room temperature rf amplifier via an appropriate impedance matching network. The SQUID is not operated in a flux-locked loop. In the untuned amplifier, one connects the signal source across a resistor and the input coil in series, thereby obtaining a broad frequency response that may extend up to 200 MHz or more. The upper frequency limit is usually determined by the parasitic capacitance. In a typical amplifier designed to optimize the noise temperature, the power gain was 16.5 ± 0.5 dB and the noise temperature, T_N, 3.8 ± 0.9 K at 100 MHz for a bath temperature T of 4.2 K. These results were in good agreement with theory: in particular, T_N scaled as e^ω, where ω is the signal frequency.

To make a tuned amplifier, one connects a capacitor C_0 in series with the input coil, L_0, chosen so that the series L_0C_0 resonant frequency corresponds to the signal frequency. At 4.2 K and 93 MHz, the measured gain and noise temperature of a particular amplifier were 18.6 ± 0.5 dB and 1.7 ± 0.5 K, again in fair agreement with theoretical predictions. Both the untuned and tuned amplifiers have the lowest noise temperatures of any available at frequencies up to a few hundred megahertz; at higher frequencies, cooled GaAs-FET amplifiers become very competitive.

We have used the SQUID-based amplifiers in a series of NMR and NQR experiments, five of which are briefly reviewed in this paper: (i) We have been able to observe "nuclear spin noise": that is, the spontaneous emission of photons from an ensemble of 35Cl nuclei in the zero polarization state\(^1\text{-}^{11}\). (ii) We describe the use of the "Q-spoiler" in conventional NQR and NMR measurements in which one applies a large rf pulse to the nuclei to make them precess. We first illustrate the use of this switch in an NQR experiment\(^5,16\). (iii) We also used the Q-spoiler in an experiment to detect the oscillating electric polarization induced by 35Cl nuclear quadrupole moments\(^7\). The sample is placed between the plates of a capacitor that is part of the tuned input circuit of the amplifier. (iv) We have extended the use of the Q-spoiler and SQUID amplifier to NMR, detecting the signal from 195Pt nuclei at 30 MHz. (v) Finally, we describe the use of a SQUID amplifier with an untuned input circuit to detect the low frequency NMR signal at 55 kHz from 195Pt nuclei in an applied field of 60 gauss.

Manuscript received August 22, 1988

0018-9464/89/0300-1193$01.00 ©1989 IEEE
Nuclear Spin Noise

The 35Cl nucleus with $I=3/2$ exhibits nuclear quadrupole resonance (in zero external magnetic field) between two doubly degenerate energy levels separated by a frequency $\omega_0/2\pi = 30.6857$ MHz. The transverse relaxation time is $T_2 = 240$ μs, corresponding to a linewidth $\Delta \omega = 1/\pi T_2 = 1.3$ kHz. In the experiment, a sample of NaClO$_3$ or KClO$_3$ is placed in an inductor connected to a tuned SQUID amplifier, as indicated in Fig. 1. One can treat this situation by representing the sample as an additional resistance $R_s(\omega)$ and inductance $L_s(\omega)$ in the tuned circuit. We actually performed two different experiments using this system. In the first, the sample was in thermal equilibrium, with the population of the spin states given by the Boltzmann factor. The principal effect of the sample was to induce a spin resistance into the tuned circuit, thereby producing a dip at frequency $\omega_0/2\pi$ with a width $\Delta \omega$. This effect arises from the absorption of power from the tuned circuit by the spins.

In the second experiment, one applies an rf pulse to the sample at frequency $\omega_0/2\pi$, thereby equalizing the populations of the two levels (corresponding to an infinite spin temperature, T_s). After the pulse is turned off, the spin population relaxes very slowly, over a period of days. The spectral density of the Nyquist noise is given by

$$S_n(\omega)|_{T_s=\infty} = \frac{(2/\pi) k_B T_s}{R_s^2 + [\alpha L_s + L_p] - 1/(\omega C_p)^2}$$

In Eq. (1), $R_s(\omega) \rightarrow 0$ and $T_s \rightarrow \infty$ in such a way that $R_s(\omega)T_s$ is a constant; thus, one expects to observe a "bump" in the spectral density due to this term. This bump is shown in Fig. 2, and is in good agreement with theoretical predictions. The bump arises from the spontaneous emission of photons into the tuned circuit as the spins decay towards the equilibrium state. We note that the system has sufficient sensitivity to detect this process even though the spontaneous emission rate for one spin is extremely low, $A = 2 \times 10^{-16}$ sec$^{-1}$ (about 1 flip in 1066 centuries). Since the number of nuclei, N, is about 2×10^{21}, the total emission rate is $NA/2 = 2 \times 10^{31}$ sec$^{-1}$, corresponding to a total emissive power of 5×10^{21} W.

![Figure 1. Experimental configuration of experiment to observe nuclear spin noise. Components in dashed box are immersed in liquid 4He.](image)

![Figure 2. Results of nuclear spin noise experiment: spectral density of (a) noise current for a KClO$_3$ sample with saturated spins ($T_s = \infty$), and (b) nuclear spin noise of sample obtained from (a).](image)
The experimental configuration is shown in Fig. 5. An oriented NaClO₃ crystal is placed between the plates of a capacitor Cᵥ that forms a part of a high-Q resonant circuit coupled to a SQUID, the circuit contains a Q-spoiler. With $H_0=0$, we applied rf pulses at the NQR frequency and observed the magnetic resonance that was coupled to the amplifier via stray inductance [Fig. 6(a)]. We minimized this unwanted signal by adjusting L_c mechanically. We then set $H_0 = 8.8$ gauss, and observed the electric polarization shown in Fig. 6(b).

We have made a detailed analysis of this effect and shown that the signal provides information on the local polarizability and positions of near-neighbor atoms of the active nucleus. It is particularly sensitive to bond angles. Since the effect depends on the number of polarizable charges in the immediate neighborhood of the nuclear quadrupole moments, the signal could be used to monitor local atomic re-arrangements and fluctuations, for example, those associated with phase transitions or charge density waves.

Nuclear Electric Quadrupole Induction of Atomic Polarization

This is a new resonance response mechanism, in which precessing nuclear quadrupole moments induce electric dipole moments in neighboring atoms. This effect, which is the inverse of the Stark effect in NQR, occurs only in noncentrosymmetric crystals containing nuclear quadrupole moments. The 35Cl nuclei have both a magnetic dipole moment and an electric quadrupole moment, and the electric field gradient from the other atoms in NaClO₃ produces two, doubly degenerate levels separated by about 30 MHz. The application of a small, static magnetic field H_0 removes the degeneracies, producing 4 distinct levels. When an rf magnetic pulse is applied, the 35Cl nuclei tip and precess, producing oscillating magnetic and electric fields; the former provides the signal in the NQR experiment described in the previous section. The oscillating electric fields induce an electric polarization in neighboring atoms. For certain orientations of the single crystal, one finds a net electric polarization on summing these atomic polarizations over all the atoms in the unit cell, provided that $H_0 \neq 0$.

Figure 3. Schematic layout for SQUID-based detection of NQR.

Figure 4. Demonstration of the effect of the Q-spoiler in a circuit with no NQR sample. Oscilloscope traces show the ring-down of tuned circuit (lower traces) following the rf pulse (upper traces), with $Q = 2,500$: (a) without Q-spoiler; (b) with Q-spoiler.

Nuclear Electric Quadrupole Induction of Atomic Polarization

This is a new resonance response mechanism, in which precessing nuclear quadrupole moments induce electric dipole moments in neighboring atoms. This effect, which is the inverse of the Stark effect in NQR, occurs only in noncentrosymmetric crystals containing nuclear quadrupole moments. The 35Cl nuclei have both a magnetic dipole moment and an electric quadrupole moment, and the electric field gradient from the other atoms in NaClO₃ produces two, doubly degenerate levels separated by about 30 MHz. The application of a small, static magnetic field H_0 removes the degeneracies, producing 4 distinct levels. When an rf magnetic pulse is applied, the 35Cl nuclei tip and precess, producing oscillating magnetic and electric fields; the former provides the signal in the NQR experiment described in the previous section. The oscillating electric fields induce an electric polarization in neighboring atoms. For certain orientations of the single crystal, one finds a net electric polarization on summing these atomic polarizations over all the atoms in the unit cell, provided that $H_0 \neq 0$.

The experimental configuration is shown in Fig. 5. An oriented NaClO₃ crystal is placed between the plates of a capacitor C_v that forms a part of a high-Q resonant circuit coupled to a SQUID, the circuit contains a Q-spoiler. With $H_0=0$, we applied rf pulses at the NQR frequency and observed the magnetic resonance that was coupled to the amplifier via stray inductance [Fig. 6(a)]. We minimized this unwanted signal by adjusting L_c mechanically. We then set $H_0 = 8.8$ gauss, and observed the electric polarization shown in Fig. 6(b).

We have made a detailed analysis of this effect and shown that the signal provides information on the local polarizability and positions of near-neighbor atoms of the active nucleus. It is particularly sensitive to bond angles. Since the effect depends on the number of polarizable charges in the immediate neighborhood of the nuclear quadrupole moments, the signal could be used to monitor local atomic re-arrangements and fluctuations, for example, those associated with phase transitions or charge density waves.

Figure 3. Schematic layout for SQUID-based detection of NQR.

Figure 4. Demonstration of the effect of the Q-spoiler in a circuit with no NQR sample. Oscilloscope traces show the ring-down of tuned circuit (lower traces) following the rf pulse (upper traces), with $Q = 2,500$: (a) without Q-spoiler; (b) with Q-spoiler.

Nuclear Electric Quadrupole Induction of Atomic Polarization

This is a new resonance response mechanism, in which precessing nuclear quadrupole moments induce electric dipole moments in neighboring atoms. This effect, which is the inverse of the Stark effect in NQR, occurs only in noncentrosymmetric crystals containing nuclear quadrupole moments. The 35Cl nuclei have both a magnetic dipole moment and an electric quadrupole moment, and the electric field gradient from the other atoms in NaClO₃ produces two, doubly degenerate levels separated by about 30 MHz. The application of a small, static magnetic field H_0 removes the degeneracies, producing 4 distinct levels. When an rf magnetic pulse is applied, the 35Cl nuclei tip and precess, producing oscillating magnetic and electric fields; the former provides the signal in the NQR experiment described in the previous section. The oscillating electric fields induce an electric polarization in neighboring atoms. For certain orientations of the single crystal, one finds a net electric polarization on summing these atomic polarizations over all the atoms in the unit cell, provided that $H_0 \neq 0$.

Figure 3. Schematic layout for SQUID-based detection of NQR.

Figure 4. Demonstration of the effect of the Q-spoiler in a circuit with no NQR sample. Oscilloscope traces show the ring-down of tuned circuit (lower traces) following the rf pulse (upper traces), with $Q = 2,500$: (a) without Q-spoiler; (b) with Q-spoiler.

Nuclear Electric Quadrupole Induction of Atomic Polarization

This is a new resonance response mechanism, in which precessing nuclear quadrupole moments induce electric dipole moments in neighboring atoms. This effect, which is the inverse of the Stark effect in NQR, occurs only in noncentrosymmetric crystals containing nuclear quadrupole moments. The 35Cl nuclei have both a magnetic dipole moment and an electric quadrupole moment, and the electric field gradient from the other atoms in NaClO₃ produces two, doubly degenerate levels separated by about 30 MHz. The application of a small, static magnetic field H_0 removes the degeneracies, producing 4 distinct levels. When an rf magnetic pulse is applied, the 35Cl nuclei tip and precess, producing oscillating magnetic and electric fields; the former provides the signal in the NQR experiment described in the previous section. The oscillating electric fields induce an electric polarization in neighboring atoms. For certain orientations of the single crystal, one finds a net electric polarization on summing these atomic polarizations over all the atoms in the unit cell, provided that $H_0 \neq 0$.

Figure 3. Schematic layout for SQUID-based detection of NQR.

Figure 4. Demonstration of the effect of the Q-spoiler in a circuit with no NQR sample. Oscilloscope traces show the ring-down of tuned circuit (lower traces) following the rf pulse (upper traces), with $Q = 2,500$: (a) without Q-spoiler; (b) with Q-spoiler.
High Field NMR

The widespread application of high field NMR to the study of solids has motivated us to extend the use of the radio-frequency amplifier and Q-spoiler to the detection of high field NMR signals. The unprecedented sensitivity achieved by the SQUID amplifier should enable one to apply solid state NMR techniques to a wide range of low signal systems, for example, impurities and single-crystal surfaces. These systems have remained largely inaccessible to NMR because of a lack of sensitivity.

The sensitivity of typical high field spectrometers is limited by the Nyquist noise in the receiver coil at room temperature or by the first stage amplifier noise if the probe is cooled. Thus, a typical optimized NMR spectrometer operating at frequencies above 10 MHz has an amplifier noise temperature of 80 to 100 K. Cooled FET amplifiers have obtained noise temperatures as low as 7 K. Other important considerations include the quality factor of the tuned receiver circuit and, in pulsed NMR, the recovery time of the system after the rf pulse. Our SQUID-based amplifier used in the high field NMR probe described here has obtained an amplifier noise temperature of 3 K, a figure actually limited by the noise contribution of the second stage amplifier rather than the SQUID itself. With the aid of the Q-spoiler, the system recovers from the rf pulse in 50 μsec.

With the exception of the transmitter and receiver coils, the configuration of the NMR system (Fig. 7) is the same as that used for the detection of NQR. The solid magnet geometry requires us to use a Helmholtz pair as a transmitter and an orthogonal solenoidal receiver, instead of the series counterwound receiver coils and solenoidal transmitter shown in Fig. 3. The configuration of Fig. 7 is similar to that used by Freeman et al. to detect NMR in thin films of He3 at 2 MHz. The SQUID input coil is in series with the receiver tank circuit and two arrays of 20 Josephson junctions which act as the Q-spoiler. Since solid state NMR requires the application of high peak power rf pulses (over 1 kW is required to produce a 90° pulse using the Helmholtz-coil transmitter), the junctions are essential to avoid flux trapping in the SQUID and to enable it to return to its correct flux bias point after the pulse has been turned off. The SQUID and series junctions are enclosed in a Nb shield placed 0.15 m from the receiver coil, well outside the 30 kgauss static field. As a result of the long leads between the tank circuit and the SQUID, the isolation between the receiver and transmitter networks is limited to about 60 dB. Parasitic losses in these leads limit the Q to a maximum of 300.

We measured the system noise temperature by first calibrating the gains of the SQUID and postamplifiers, and then measuring the noise power at the output of the amplifier chain with a spectrum analyzer. The output noise consisted of a white noise background and a noise peak at the resonant frequency of the tuned circuit that comes from Nyquist noise. We estimated the noise temperature of the SQUID-postamplifier chain (with the Nyquist noise subtracted out) to be 7 K. Most of this noise was attributable to the postamplifier.

We have made preliminary tests of the spectrometer by observing the NMR signal from metal powders and thin films at 30 MHz. We choose metals because of their short relaxation times at low temperatures (typically, T1 = 50 ms). Figure 8 shows the signal from a 16 mm3 sample of copper powder. The NMR signal is large enough to produce several flux quanta in the SQUID, so that the initial output from the SQUID is approximately a Bessel function. After decaying about 3 T2, the signal amplitude enters the linear region of the flux-to-voltage transfer function and the free induction decay is undistorted. We attempted to calibrate the absolute sensitivity of the spectrometer by using a thin film of Sn. Figure 9 shows the NMR signal from a 70 mm2 x 4 μm film of Sn containing 8 x 1017 119Sn spins. Since the skin depth at 30 MHz is > 4 μm, the film should be uniformly penetrated by the rf fields. In this example, the spins were tipped by about 130° from equilibrium with a 15 μs transmitter pulse. Larger pulses produced intermittent loss of the optimum flux bias point, probably because of the rearrangement of flux in the SQUID.

From these measurements, we estimate the minimum number of 119Sn nuclei observable (signal-to-noise of unity) from a single free precession decay following a 90° pulse to be about Nmin ~ 1018 in a 25 kHz bandwidth. This corresponds to ~1018 nuclear Bohr magnetons. For comparison, we can estimate Nmin theoretically by calculating the signal power, Pd, and the noise power, P0, and setting Pd = P0. The signal power is

\[P_d = \frac{V_c^2}{R_1} = \frac{2\pi M_0^2 Q}{V_c} \sin^2 \theta \exp(-2\theta/T_2). \]

Here, M0 is the total equilibrium nuclear magnetization, Vc is the
enhance the signal by increasing the Q of the tank circuit and the detection increasing the isolation of the transmitter and receiver circuit so that magnetic fields. We expect to make several improvements to ourthese improvement.s, we hope to detect \(10^{16}\) nuclear Bohr system by a factor of 4 by replacing the second stage amplifier by a magnetons in a single observation. One remaining problem is the fact that one loses the signal enhancement factor Q. However, this difficulty by means of a cryostat that will allow us to maintain the sample at any temperature between 4 K and 300 K where \(T_1\) has a reasonable value, while keeping the SQUID-based receiver at 4.2 K.

As shown in Fig. 10, the magnetic field and transmitter and receiving coils are in the standard configuration of a low field NMR spectrometer. We describe a Fourier transform spectrometer for low field pulsed NMR based on a dc SQUID, and the successful observation of the NMR signal from \(^{195}\)Pt at 4.2 K. This pulsed NMR system is able to detect signals at frequencies up to 250 kHz, and enables one to observe an NMR signal from a solid with a resonant frequency that can be as low as 30 kHz at 4.2 K. This observation has previously been very difficult because the NMR signal is proportional to \(Q_{s}^2 T_2^2 T_1^2\): Thus, for solids with low values of \(T_2 (< 1\) ms) and \(\omega_{0}/2\pi\) (=30 kHz) at a relatively high temperature \(T\) (4.2 K), the NMR signal is extremely small. However, our low field NMR observation indicates that our system has sufficient sensitivity and bandwidth to perform zero field NMR.

In conclusion, we have developed a SQUID-based system for the detection of weak NMR signals obtained from samples in high magnetic fields. We expect to make several improvements to our spectrometer. We should be able to reduce the noise power in the system by a factor of 4 by replacing the second stage amplifier with a cooled FET and reducing the bath temperature to 1 K. We can enhance the signal by increasing the Q of the tank circuit and increasing the isolation of the transmitter and receiver circuit so that we can employ a 90° tipping angle. We also plan to increase the signal by operating the spectrometer at higher frequencies. With these improvements, we hope to detect \(10^{16}\) nuclear Bohr magnetons in a single observation. One remaining problem is the fact that many materials have long relaxation times \((T_1)\), at 4 K so that one has to wait an inordinately long time between pulses. We hope to overcome this difficulty by means of a cryostat that will allow us to maintain the sample at any temperature between 4 K and 300 K where \(T_1\) has a reasonable value, while keeping the SQUID-based receiver at 4.2 K.
this loss is more than offset by the fact that the sensitivity is not limited by the thermal noise generated in the input circuit, so that one can take advantage of the low effective noise temperature of the SQUID (< 4.2 K) achievable at these low frequencies.

The sample is packed in a 5 mm diameter NMR tube, which can be lowered into the pick-up coils from the top of the cryostat. This feature greatly facilitates the changing of samples. To detect the NMR signal, we apply an rf pulse at the Larmor frequency to the transmitter coil, thus inducing a magnetization M precessing about the static field B_0. The y-component of this magnetization produces an oscillating magnetic field $B_y = 4eM_y$ that in turn induces an oscillating flux in the pick-up coil. This signal is coupled into the flux-locked SQUID via the superconducting transformer. The signal from the feedback circuit is filtered, amplified, and transmitted to the digital oscilloscope for time-domain analysis and the spectrum analyzer for frequency-domain analysis. The entire system is computer controlled.

The most crucial elements in the system are the SQUID and the fast recovery feedback electronics, which is based on an earlier design. The SQUID is modulated with a 500 kHz square wave, and the voltage across the SQUID is amplified and lock-in detected. The output from the lock-in detector is integrated and fed back to a coil coupled to the SQUID to obtain a flux-locked loop. This circuit can track signals at frequencies up to 250 kHz. To make the system suitable for pulsed NMR, we have incorporated a reset and a set-zero circuit, as shown in Fig. 10. After the rf pulse in the transmitter coil is turned off, the integrator is enabled by the reset circuit. To prevent the generation of a large voltage step across the feedback resistor, R_f, the set-zero circuit holds this voltage at zero until the feedback circuit has stabilized. Both the reset and the set-zero circuit are controlled by the computer, with appropriate time delays provided by a timing circuit (not shown in the figure). The computer is connected to the circuit via an optical coupler to eliminate noise from the computer.

The thin film dc SQUID is coupled to a 20-turn input coil with a self-inductance $L_i = 120 \, \text{nH}$ via a mutual inductance $M_{ij} = 6 \, \text{nH}$. Each of the two saddle-shaped pickup coils has an area of about 50 mm2 and 2 turns. The measured flux transfer coefficient from input coil to the SQUID is about 0.06. The system flux noise referred to the SQUID is $6\mu\Phi_0/\sqrt{Hz}$ for the present SQUID. We note that the noise immediately after the rf pulse has been turned off is no higher, indicating the blocking components in the transmitter line are adequate. The recovery time of the system is less than 40 μs.

In our preliminary experiments, we used 195Pt powder. The platinum nucleus has spin 1/2 and a gyromagnetic ratio $\gamma = 0.92 \, \text{kHz/gauss}$. Compared with other solids at 4.2 K, it has a relatively long T_1 (11 ms), because of spin exchange, and a short T_2 (10 ms), because of free electron assisted relaxation. The sample is in powder form to allow the rf field to penetrate uniformly.

We carried out the NMR experiments with several values of the static field, ranging from 30 gauss to 200 gauss. Every 0.5 sec, an rf pulse is applied to initiate a free induction decay (FID). The free induction signal is averaged to enhance the signal-to-noise ratio. Typically, the rf pulse applied to the sample is about 2 gauss peak-to-peak, and 0.4 ms long. Experimental results with a static field of about 60 gauss are shown in Fig. 11. Figure 11(a) is the real time trace of the average of 256 FID signals, while fig. 11(b) is the Fourier transform of the average of 40 FID signals. The measured resonant frequency is $54.75 \, \text{kHz}$.

In conclusion, we have observed the NMR signal from 195Pt at low fields with our Fourier transform pulsed NMR spectrometer based on a SQUID preamplifier. After further refinement and calibration of the system, we intend to use it to study zero field NMR, which is the main goal of this work. We note, however, that the results on 195Pt may have immediate application to thermometry in the millikelvin temperature range, since this technique combines the advantages of the traditional pulsed NMR thermometry with the low noise presently offered by SQUIDs in cw-NMR thermometry.

![Figure 11. Observation of low field NMR: (a) The free induction decay of 195Pt powder at 60 gauss. The amplitude is the flux signal in the SQUID. (b) The Fourier transform of the free induction decay.](image)

Concluding Remarks

We have presented a series of experiments illustrating the application of dc SQUID amplifiers to magnetic resonance experiments. Two of the experiments, the observation of nuclear spin noise and the nuclear electric quadrupole induction of atomic polarization, are novel manifestations of NQR made possible by the high sensitivity of the amplifier coupled with the very high Q input circuit and, in the second case, the Q-spoiler. The experiments on the detection of NQR and NMR are conventional in concept, but offer higher sensitivity than is possible with room temperature electronics. It is the combination of the low-noise amplifier and high Q circuit together with the Q-spoiler that enables us to obtain the high sensitivity in the NQR experiment. The Q-spoiler is essential to reduce the ring-down time of the tuned circuit to an acceptable level and has allowed high Q (≥ 1000) circuits to be applied to the detection of pulsed magnetic resonance signals from typical solids. We have not yet been able to achieve high values of Q in the high field NMR experiment, and its sensitivity has suffered accordingly.

Finally, we described a preliminary experiment in which we observe NMR in 195Pt at 55 K. In this experiment, the input circuit is untuned, so that thermal noise in the input circuit does not limit the sensitivity. This experiment implies that one should be able to make a direct detection of the zero field NMR signal from amorphous and polycrystalline materials.

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC07-76ST00098 and by the National Science Foundation contract No. DMR-8613765.
References

