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An operator formalism is presented which conveniently treats the interaction of a spin-l nucleus wi th 
a weak radio frequency field, The Hamiltonian in the rotating frame is X = - tow Iz - w, Ix + (1/3 )wQ 

X [3I} -1(1 + I) I, where tow is the resonance offset (tow = wo - w), WI is the intensity of the rf 
field, and wQ is the quadrupolar splitting. Nine fictitious spin - 1/2 operators, I p" where p = x ,y, z and 
i = 1,2,3, are defined where p refers to the transition between two of the levels and i the Cartesian 
component. The operators, which are the generators of the group S U(3), satisfy spin-l/2 commutation 
relations [IpJ' Ip.kl = i Ip,I' where j,k,l = 1,2,3 or cyclic permutation. Thus each p defines a three­
dimensional space termed p space. For irradiation near one of the quadrupolar satellites, for example, 
~W = wQ + 6w with 6w, w, <wQ' it is shown that the effective Hamiltonian can be written 
X::::: -6wlx,) - V'2 w, Ix", i,e" a fictitious spin-l/2 Hamiltonian in x space with effective magnetogyric ratio y 
along the 3 (resonance offset) axis and V'2 y along the I (rf field) axis, For irradiation near the center we 
can effect double quantum transitions between m = ± I, The formalism allows us to write the effective 
operators for these transitions, For example, if we take ~w = 6w again with 6w, w,<wQ we find the 
effective double quantum (DQ) Hamiltonian XlJQ::::: -2 6w I"l-(wilwQ) 1,,3' Thus the z space is referred to 
as the double quantum frame with effective magnetogyric ratio 2')' along the 1 (resonance offset) axis and 
(w,lwQ)y along the 3 (rf field) axis. The limiting expressions are compared with exact calculations for 
arbitrary ~l done by high speed computer. The theory is applied to various cases of irradiation including 
our previously reported technique of Fourier transform double quantum NMR. Various pulse sequences for 
preparing, storing, and maintaining the evolution of double quantum coherence are analyzed for single 
crystal and polycrystalline samples, Finally, the effects of rf phase on the double quantum phase are 
presented briefly, and the possibility of double quantum spin lockhg is analyzed. 

I. INTRODUCTION 

One of the most familiar and useful descriptions of 
pulsed NMR experiments is in terms of the evolution of 
a magnetization vector in the rotating frame. 1 Often, in 
such experiments, a resonant radiO frequency pulse 
brings the spin eigenfunctions into coherent superposi­
tion, creating a transverse magnetization which evolves 
in a free induction decay (Fill) yielding on Fourier trans­
formation an NMR absorption spectrum. For nonin­
teracting spin-t nuclei this description is complete, but 
may not be for spin-lor greater or for interacting 
spins. In particular, we have been interested in the 
case of spin-l such as deuterium, where it was shown 
recently 2,3 that states of the system can be created by 
double quantum transitions which cannot be described 

spin system can be defined by the spin denSity matrix p, 
which in the case of noninteracting spins has a dimen­
sion of (21 + l)X (21 + 1). From the fact that there are 
N= (21 + 1)2 -1 traceless independent Hermitian opera­
tors A", the denSity matrix can be expressed as 

by a single three-dimensional vector. Such cases are 
important and have allowed us for the first time an ap­
proach to overcoming the large deuterium quadrupolar 
broadening and obtaining high resolution solid state 
Fourier transform NMR of deuterium. 

The question which arises and is discussed in the 
present paper is whether we can provide a compact, 
convenient operator and vector picture for the descrip­
tion of this spin-l pulsed NMR. To do this we need to 
develop an operator formalism for the possible single 
quantum and double quantum transitions in the system, 
such that the density operator and Hamiltonian of the 
system are described in terms of a set of basis opera­
tors with Cartesian commutation relations. 3 This would 
be a valuable supplement to the elegant three level 
Bloch equations developed by Brewer and Hahn. 4 

To make this more clear, let us consider a system of 
noninteracting I spins in an external magnetic field. The 
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N 

p(t)=)' an(t)An+ao1, ;r 
where 1 is the unity matrix and the coefficients an(t) 
can be obtained by solving the equation of motion for 
p(t): 

a~ p(t) = - i [X, p J . 
X is the spin Hamiltonian of the system; 

X= - woI. - 2w1I" coswt, 

(1) 

(2) 

(3) 

where Wo = yHo with Ho magnetic field strength and 2wl 
the rf irradiation strength at frequency w. USing the 
high temperature approximation for the equilibrium 
form of p; 

Po = 2: + 1 (1 + ~ I.) , 
and representing the density matrix in the rotating 
frame 

p* =exp(- iwI.t)pexp(iwI.t), 

the solution of Eq. (2) is 

(4) 

(5) 

p = exp[i(~wI. + w1I,,) tJpoexp[ - i(~wI. + w1I ,,) t). (6) 

where we have dropped the asterisk on p. The most 
general form of this solution is easily obtained from 
the commutation relations between the angular momen­
tum operators I",Iy, and I., 
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Spin 1/2 Density Matrix Representation 

z 

x y 

FIG. 1. For isolated spin-! the density matrix can be written 
p=axl x 4 ayly+azlz ignoring the constant a o1 term. This is de­
picted schematically as a three-dimensional vector which is 
proportional to the magnetization. 

p= L ap(t)Ip+aol, (7) 
P=", y,. 

and is depicted schematically in Fig. 1. It is there­
fore clear that for this case the spin system is defined 
by the coefficients of only three operators I", I Y' and 
I. and that we do not need all (2/ + 1'f - 1 operators. 
This Simplification also makes it possible to represent 
the density matrix in terms of a vector in a three-di­
mentional space with coordinates, a", ay, and a ... This 
vector describes the densit~ matrix sufficiently and is 
proportional to the real magnetization vector in the ro­
tating frame. 

A 11 these basic arguments are valid in the case that 
the main Hamiltonian :Ie has only linear terms in the 
angular momentum operator. If we add any bilinear 
term to the Hamiltonian, the solution of Eq. (2) no 
longer has the simple form of Eq. (7) and the three 
angular momentum operators are not sufficient to de­
scribe p. For the particular case of I =!-, these solu­
tions are general for any interaction, because there are 
only three independent traceless Hermitian operators 
with dimension 2x 2 (Pauli matrices). However for 
I >!- there are more than three and we must use them 
to describe the spin system in operational form. For 
our case we need to add electric quadrupolar interac­
actions to the Zeeman interactions in Eq. (3) and to 
define a new basis set of operators. The number of 
operators is determined by the spin value I, and they 
can be taken in many forms. Physically, the additional 
operators correspond to the possibility of operations 
other than pure rotations on the spin system, such as 
the production of normally forbidden transitions. In 
the next section we define a convenient set of operators 
for spin systems for 1=1 and show that they have a use­
ful Cartesian representation. This particular choice 
is very helpful for the description of pure nuclear quad­
rupole resonance in solids 5 and it will be shown to be 
just as useful in the description of double quantum co­
herence and cross polarization experiments of deu­
terium NMR in solids. The main thrust of the theory 
is therefore to provide a formal basis for describing 
double quantum experiments. Other choices of operator 
basis sets are of couse possible. 5 

In Sec. III the Zeeman and the electric quadrupole 
Hamiltonian are represented in terms of these opera-

tors, and in Sec. IV the solution for the spin density 
matrix for different forms of the Hamiltonian is derived. 
The actual physical observables, the signal intensities 
and frequencies, are discussed in Sec. V, and the 
Fourier transforms of the signals observed in an NMR 
experiment are calculated. 

In Sec. VI we present the results of central interest 
based on the formalism of the previous sections. We 
consider the case of double quantum coherence and its 
detection. It is shown that in an appropriate limit the 
evolution of the system can be described in terms of 
rotations of a vector in a fictitious three-dimensional 
space, a subspace of the full set of operators intro­
duced previously. The physical Significance of this 
frame and its transformations to the observed rotating 
frame are discussed. The basic structure of Secs. 
IV - VI is therefore logically broken into the following 
steps: preparation-evolution - detection. Finally, ap­
plications of the theory to deuterium NMR in single 
crystals and polycrystalline samples are illustrated in 
Sec. VII. 

II. FICTITIOUS SPIN-% OPERATORS 

Let us now consider a system of noninteracting spins 
1=1 in an external magnetic field with a nonvanishing 
electric quadrupole interaction. As was mentioned be­
fore, the density matrix for such a system cannot be 
described by only three angular momentum operators 
and we have to define a set of eight independent trace­
less Hermitian operators. The set we select has par­
ticular commutation relations between the individual 
operators. The matrix representation of the operators 
in the basis set of the eigenfunctions of I! consists of 
the fictitious spin-half operators and to the generators 
of the group SU(31. 6 The operators in terms of the 
three linear angular momentum operators are given by 

1",2 =!-(I yI .. + 1111 y), I y,2 =!-(I.I" + 1./.), 1.,2 =1. (I "I y+ Iylx), 

1",3 =!-(I~ - I ~), I y,3 =!-(I ~ - I~), 1.,3 =!-(I;, - I ~). 

For reasons of symmetry we defined nine operators 
which are dependent through the equality 

I",3+ I y,3+ I .,3=0. 

(8) 

(9) 

The most important property of these operators is that 
I p,17 I p,2, and I p,3 behave like the Cartesian angular mo­
mentum operators I", I y, and I. for all three possible 
P's; P=x,Y,z; 

namely, 

[11>,1, 4,2]=iI P,3 

or cyclic permutation of 1,2,3, and therefore 

e-i9Ip, l I p,2 e i9Ip,l = (Ip,2 cose+ 11>,3 sine). 

(10) 

(11) 

The form of the operators and their transformations 
are summarized in Table I, and the matrix representa­
tion of these operators for I = 1 is shown in Table II. 

The two indices p, i in 1,,1 indicate that for each p we 
have a subspace i = 1,2,3 with spin-!- transformation 
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TABLE I. Fictitious spin-~ operators in terms of spin-1 
operators. 

Definitions 

Commutation relations 

[[,,1, I',i 1 =iI"k 

([,,1,1.,2 J = - ~Ir'2 
i 

[[,,2,l.,tl =-2Ir,2 

i 
[[',2,1.,2]= -2Ir,1 

Linear dependence 

i,j, k = 1,2,3 or cyclic permutation 

p,q,r=x,y,z or cyclic permutation 

Fictitious spin-~ transformations 

U;,I I',i U"I =cos9Ip.J + sin9I"k 

U;,I 1.,1 Up,l =cos9/2I.,1 + sin9/2Ir,1 

U;,I 1.,2 Up,l =cos9/2I.,2 - sin9/2Ir,2 

U;,2I.,1 Up,2 =cos9/2I.,I- sin9/2Ir,2 

U!,2I.,2 Up,2 =cos9/2I.,2 - sin9/2Ir,1 

with 

Up,l =exp(i9Ip} 

p,q, r=x,y,z or cyclic permutation 

i,j, k = 1, 2, 3 or cyclic permutation 

properties, thus the name fictitious spin-t operators. 7 

Thus each p defines a three-dimensional space which 
we term the P space. In particular, for reasons which 
will become clear, the z space is termed the double 
quantum space. In many physically realistic situations 
the spin system will evolve with no transitions between 
the p spaces and will consist of rotations in one three­
dimensional space. 

Now, using these operators we rewrite the Hamilto­
nian and the spin density matrix of the spin system. If 
we consider a Zeeman and quadrupole Hamiltonian we 
have 

:Ie = - woI. +twQ[31 ~ - I(I + 1)) 

= - 2woI.,1 +tWQ (I",3 - I y.,3), 

where Wo = YrHo is again the external magnetic field 
strength in angular frequency units, and 

e2qQ [1 all 1) . a... 2.f.] 2~ 2/(21-0 "2(3cos u- +llsm vcos 'f' 

(12) 

is the quadrupole interaction strength truncated with re­
spect to the direction of the magnetic field (wQ «wo). 1 

In the fictitious spin-t formalism, the two terms in the 
Hamiltonian of Eq. (12) are commutative, because of 
the general rule 

[Ip,;,I.,3-lr,3]=0 p,q,r=x,Y,z i=1,2,3, (13) 

an important relationship which will be used later many 
times; it is particularly important for cross polariza­
tion experiments, in which case they form the two con­
stants of the motion. 8 At high temperatures, a possible 
representation of the density matrix in terms of the nine 
operators, 

3 

P = L L ap,;(t) Ip,l + ao1, (14) 
i=1 P=".)I,8 

is conveniently described in terms of three coordinate 
systems according to the three goups of three operators 
defined by p in Eq. (10). In Fig. 2 we demonstrate pic­
torially this representation. From the definitions of the 
operators, only the (P, 1) axes correspond to the ob­
servable angular momentum expectation values (I,,), (I y), 
and (I~>. It will be shown in the next section that we 
can connect each coordinate system to one of the three 
transitions in the three level system of spin I = 1 in 
the rotating frame. The properties of the operators 
and the Simple transformation rules in Tables I and II 
will be used in the following sections to describe the 
spin system in the most convenient way. For complete­
ness we give the expressions of Our operators in terms 
of the irreducible tensor representation components Tim 

of the angular momentum operators of first and second 
rank9

: 

f2 
1",1 = T(Tll - T1_tl, 

,f2 
I y,! = -4 (Tll + T1-1)' 

VB 1 
1",3 =T Tao+4(Taa + Ta~2)' 

1 1 
1.,1 =2"TlO , 1.,2 = -2"(T22 - Ta_2), 

1 
1.,3 = - "2 (T22 + T2_2)· 

(15) 
In the description of Our experiments of double quan­
tum NMR, the Tim are not convenient operators. We 
can see that the 1.,2 and 1.,3 operators are related to the 
double quantum transition states (6.m = 2), while I y,!> 

Iy,2 and 1",1 and I",a have matrix elements between the 
levels of the Single quantum transitions (6.m = 1). We 
can now discuss the spin Hamiltonian of a spin system 
with 1=1 in terms of the operators of Table I and we 

T ABLE II. Matrix representation of the nine operators. 

c ; 0) I."o{: 
1 0) (' ° 0) 1.,1 =! - i 0 0 0 o I .. ,3=~ 0 -1 0 

o 0 0 0 o 0 0 0 

I". oj ~ 
0 :) I", 0 I (: 

0 :) (' 0 0) 0 0 I y,3 =! 0 0 0 

0 -t 0 o 0 1 

I."o{: 
0 :) (0 ~) I",c!(: 

0 

D 0 I~,2=! : 0 1 

1 0 
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X3 

XI Y3 

YI 

Z3 

Z! °zl Z2 

FIG. 2. For isolated spin-I, this figure depicts schematically 
the representation of the density matrix based on the nine fic­
titious spin-! operators [P,i p~x.y,z and i=1,2,3, i.e., p 
=L,P,i ap,Jp,i + aol. The commas in p, i are suppressed in the 
figure for compactness. The state of the system is specified 
by the three vectors in the three p spaces, each of which cor­
responds to one two-level transition. In special cases where 
weak and selective rf irradiation is applied, the vectors may 
rotate independently in the three spaces. The z space (zl, z2, 
z3) is referred to as the double quantum space; z1 is related 
to I., the z magnetization, and z2, z3 are related to the double 
quantum coherence as explained in the text. [P,i have spin-! 
commutation relations for i ~ 1,2,3. 

shall derive the different forms of this Hamiltonian for 
different situations of frequency and intensity of radio 
frequency irradiation. 

III. HAMILTONIANS 

The purpose of this section will be to represent the 
spin Hamiltonian of a spin system with spins I = 1 in 
terms of the operators of Table I for several experi­
mentally realistic situations. In general and with the 
definitions of Eq. (12), we write the Hamiltonian 

JC= - wol. + tW'l[3I; - 1(l + 1)] - 2wI1ltcoswt (16) 

for the spin-1 nucleus with Zeeman and quadrupole cou­
pling (see Fig. 3) where we allow for a rf irradiation 
field of strength of 2WI and of frequency w. With the 
assumption that wo» w'l it is common to represent the 
spin system in the rotating frame defined by the unitary 
transformation 

U=exp(- iw1.t). 

The Hamiltonian then becomes (suppressing rapidly 
oscillating terms) 

(17) 

JC* = U+JCU= - ~wI. - w1I,,+tw'l[31: -1(1 + 1)], (18) 

where 

Wo -w =~w. 

Since we work from now on in the rotating frame, we 
suppress the asterisk. The Hamiltonian can now be 
written in terms of the operators of Table I: 

(19) 

To emphasize the use of the new operators we shall 
discuss this Hamiltonian for different values of ~w, WI, 
and w'l' We shall show that by proper rotations this 
Hamiltonian assumes a convenient form which makes it 
easier to deal with. As a rule we shall always try to 
write JC in terms of 1",3. 1 Y,3, and 1.,3. because then it 
is possible to evaluate the behavior of the spin density 
matrix as a function of time analytically. This is anal­
ogous to the case of only Zeeman interaction in which 
we rotate the Hamiltonian in the rotating frame to a 
frame so that the Hamiltonian becomes proportional to 
I .. i. e., the tilted rotating frame. 10 Here we shall 
want the vectors along p, 3 in each of the p-frames. 

~w = 0, ''''1 = 0 (at resonance, no irradiation). 
The first case under consideration corresponds to a 

situation where there is not a rf field and the rotating 
frame is taken to be at frequency 0)0' Then 

JC=+t l"''l(l",3 -Iy,3) 

= w'l I",3 - !r"''l(I Y,3 -1.,3) 

= - IJJ'l1 31,3 - t'JJ 'l (I.,3 - 1",3) . 

(20a) 

(20b) 

(20c) 

The three expressions for JC are identical and can be ob­
tained by using the definitions of Table I. The reason 
for representing JC in the three forms is that each ex­
preSSion has the form 

SPIN I = I 

Zeeman Quadrupole 

mo -I ~ , , , 

J;:a Wo 

I 
I 

I 

o~ 
I 

/ 

Wo 
WO+WQ 

+1 ~ , , , , 

FIG. 3. Energy levels for quadrupolar spin-l in high mag­
netic field. The quadrupolar interaction gives rise to two "al­
lowed" transitions at frequencies Wo ± w'l where Wo is the Lar­
mor frequency. The· double quantum transition from m = + 1 to 
m = -1 is unshifted. at woo 
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Spin I Hamiltonion Representation 

X3 Y3 

* XI X2 YI Y2 

Z3 

* ZI Z2 

Exttrz - 2t.w Ey 

y Wx wQ 

Ez 
FIG. 4. Schematic representation of the quadrupole Hamil­
tonian ~ of Eqs. (24) and (25) in the three p spaces of the fic­
titious spin-~ operators Ip,i' The three vectors representing 
:f('T correspond to the first terms in (24) and (25): a vector 
along x3 of magnitude w'1 - C,W depicts the term of the form 
(w'1 - c,w)I",3 in (25). The three vectors in Fig. 2 representing 
the density matrix will rotate each around its p3 axis with a 
frequency wP ' due to these :f('T vectors. With the definition of 
wp in Eq. (26) we obtain wx=w'1-c,w. w.=-(w'1+c,w), and 
w. = 2c,w. The bottom right of the figure depicts the energy 
scheme of :f('T corresponding to the parameters of (26). 

Je = a pl p,3 - (l!qr(lq,3 - I r,3) with p, q, r = x, y, z 

or cyclic permutation, (21) 

a sum of two commuting operators [Eq. (13)J. These 
representations make it possible to obtain simply the 
solution of the equation of motion in the rotating frame 
for different initial density matrices: 

ap/at=-i[Je,pJ 

For example, if p(O) =1", then we use (20b) to find 

pit) = 2e""iJCt 1",le+iJCt 

= 2e·1 [w'11",3·(1/3)W'1(1.,3 -1.,3 )]t 

X I eHw'1I" 3-<1/3)w'1 (1.,3./" 3)] 
~1' f 

XI ",1 e·j( woI 3)(I .,3.1 ",3)t e 1w'1 I",3 t 

= 2e-lw'1 I",3 t 1",1 e1w'1I",st 

= 2(1",1 cosw'1t + 1",2 sin,.uQl). (22) 

The last step in Eq. (22) is calculated using the first 
commutation relation in Table 1. The important prop­
erties of Eq. (20) will be used many times in calculating 
the evolution of the density matrix. The usefulness of 
these representations will become clear when we apply 
an rf field with small Wh where they maintain their 
form after a small fictitious spin-~ rotation. 

Aw"* 0, Wl = ° (off resonance, no irradiation). 
When we consider the rotating frame with respect to 

a rotation frequency different from wo, then Aw '* 0, and 
JC becomes in the rotating frame 

(23) 

To derive from this equation the general form of Eq. 
(21), we apply a transformation corresponding to a tilt 
of our coordinate system with the operator 

U",2 (h) =exp(ihl .,2)' 

The transformed (tilted Hamiltonian:!Cr can be calcu­
lated, realizing that U.,2 operating on the first term of 
Je will rotate it to 1.,3 and that it is commutative with 
the second term, 

JeT = U;2 JeU.2=2c,wl. 3 + tWA (I" 3-I.. 3). (24) " r" f .... , 

Again we can rewrite JeT according to the definitions of 
I p,3: 

JeT=(w '1 -C,W)/",3 -(tW'1+c,(.u)(I.,3 -/",3) 

= - (W'1 + c".u) 1.,3 - (i,.u'1 - C,W) (/.,3 - 1",3)' (25) 

To obtain the expressions in Eq. (25) from Eq. (24) we 
use the following formalism: The Hamiltonian for the 
three level system of spins with 1= 1 can always be 
represented, after the proper tilt, by 

JeT =(E" - E.) 1.,3 - E.(I",3 - 1.,3) =w"/.,3 -E.(/",3 - 1.,3) 

=(E ,- E,,) 1",3 - E,,(I.,3 -1.,3) =W"I",3 - E,,(/.,3 -/",3) 

= (E. - E,,) 1,,3 - E,(I.,3 - 1",3) = Wyl ,,3 - E,(I",3 - 1",3), 

(26) 
where E", Ey> E. are the energies of the eigenstates 
I x), I y), and I z) of :!Cr. The expressions of the eigen­
states of 3Cr in terms of the eigenstates of I. in this 
tilted frame are 

Ix)=-~ (I +1)-1-1»; 

Iy)=-i-(I +1)+1-1», 
..f2 

Iz)=IO). 
This can be derived from the definitions of I p,3 and 

Ip,3Ip)=~(I;-/~)lp)=0, 

Iq.3Ip)=~(I;-I;) Ip) =-~Ip), 

4,31p) =~(I;-n)lp) =~Ip)· 

(27) 

(28) 

This is depicted schematically in Fig. 4. From the 
matrix representation in Table II, we can see that the 
fact that the trace of Je is zero corresponds here to 

E"+E,+E,, =0. (29) 

A,.u =0, Wl ,*0 (irradiation at resonance). 

'.u'1 I wQ 
I 
I 

Wo 

I 
'""1 

We now introduce the radio frequency irradiation field 
at frequency wo, 

Je= - 2w1/",l + tWQ (1", 3 - 1.,3)' (30) 

To find the tilt operator which will transform this Ham­
iltonian to the form of Eq. (26), we rewrite Je again in 
the following way: 
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Effective Single Quantum 
Rotating Frame 

X3 

8w 
XI 

Wo 

WI 

X2 

FIG. 5. When the system is irradiated near the frequency of 
the low field quadrupolar satellite Wo - wQ such that ow, w1 

«wQ, the effective Hamiltonian in a tilted frame defined in the 
text is given by JeT'" -owI",a-l2"w1I".1' Thus the Hamiltonian 
is that of a fictitious spin-t in the three-dimentional x space, 
with effective magnetogyric ratio/, along x, 3 (the effective ex­
ternal field direction) and 12/' along x, 1 (the effective applied 
rf field direction). The figure depicts this concept schematic­
ally. The term single quantum frame is used as a reminder 
that the irradiation is near one of the allowed transitions and 
involves normal single quantum effects. 

JC = - 2'''11",1 + wQI ",a - tWQ(I lI,S - I.,s)· 

We now tilt with the operator 

U",2( 8) = exp(i8I",2), 

with 
8 = tan-1(2w1/WQ)' 

(31) 

The reason for writing Eq. (31) is now clear, because 
1",2 commutes with the third term and rotates the two 
first terms: 

~ = U!,~ U",2 = + we 1".3 - tWQ(I y,S - I.,s) 

=-t(w.-wQ)I.,s+[jwQ+t(w.-wQ)](I",s- IlI,s), (32) 

with 

W.=(4~~+W~)1/2, (33) 

where we again used Eq. (26) to obtain the second ex­
pression. Clearly, in the last term of (32), w. - wQ 
can be neglected. 

For the case that WI «wQ Eq. (32) results in 

~ = - (wV'''Q)I .,S +~wo(I",s - I lI,s), 

where we used 

1.[(4 2 2 )1/2 ] 2/ 
2 WI +wo -wo ""WI wo' 

(34) 

(35) 

A similar result can be obtained by coherent averaging 
of - '''I I" by :leo when the approximation '''I «wo is valid.l1 

Aw * 0, WI * 0 (general case). 
Finally, we shall discuss the case in which all terms 

of Eq. (19) are different from zero. In this case it is 
not simple to transform JC to our desired form. How-

ever, for the most important situations where WI « Wo 

we can obtain the result with an approximation. We 
shall therefore discuss these cases separately in the 
following: 

Aw -wo, W1« '''0 (irradiation near low satellite). 

WI 

We start with an rf irradiation field about the frequen­
cy (wo - wQ)' In this case the Hamiltonian becomes, 
with A,t) =wo + Ow and ow« wQ, 

(36) 

Tilting this Hamiltonian by u.,2(h), we obtain [Table 
I and Eq. (25)] 

JC T = 2(wo + ow) I",s + %Wo(I",s - I Y,s) 

- 2Wl(~ 1",1 - ~ I y,2) 

= - owI",s - (i-wQ+ ow) (Iy,S -I.,s) -12,,\ (1",1 - I y,2)' 

(37) 

We now use the approximation '''1 «WQ to simplify the 
last term. In the last expression of Eq. (37) we realize 
that with the approximation WI «wo , the term 12'''11 lI,2 

can be neglected, yielding 

~ '" - owI",s -12'-""11",1 - {i-wo + 0'" )(Iy,s - I.,s)' (38) 

This result has the form of a Zeeman interaction in the 
fictitious x-rotating frame (x space) with an rf field of 
..f2Wl intensity and an offset frequency of 0'" as in Fig. 
5. Thus, in the physically reasonable limit WI « Wo 

we see that one satellite of the quadrupolar spectrum 
can be considered as a single spin-i Zeeman-type 
transition with modified (in fact anisotropic)")' on which 
one can perform NMR experiments. The last term of 
(38) is commutative with the rest and can in most cases 
be disregarded. 

Aw - - Wo and '''I «wo (irradiation near high satel­
lite). 

I· 
Wo 

In analogy with the former case we obtain the Hamil­
tonian in the tilted frame, defined by U.,2 (h), with A,,, 
= -'t)o +ow, 

~ '" - owl lI,S - (f'''o - ow) (I.,3 - 1",3) - 12Wl(I",1 - I lI,2), 

(39) 
and with the same arguments, ignoring 12WII",1 since 
'''I « wo, we have 

~ = - 0,,,1 lI,S + /2WI I )I,2 - (t Wo - OW) (I.,s - 1",3)' (40) 

This is depicted schematically in Fig. 6. 
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Effective Single Quantum 
Rotating Frame 

Y3 

8w 
YI Y2 

8w 

FIG. 6. The same as Fig. 5 
except that the irradiation is 
now near the frequency of the 
high field quadrupolar satel­
lite. The effective Hamil­
tonian is now .W'" - owly" 
.• -f2 w1I y ,2 and the figure 
shows the y space in which 
the evolution of the density 
matrix can be described. 

We shall now discuss the Hamiltonian in the rotating 
frame with an rf irradiation near to the center (.a.w 
= ow) frequency of the quadrupole spectrum. This of 
course is the region where we expect to induce double 
quantum transitions. We shall see how this comes 
about rigorously. We have 

(41) 

To obtain a convenient expression for Xr we perform 
the same tilt as was necessary for Eq. (32), trans­
forming to a tilted frame 

U",2( 0) = exp(i01",2), 

which results in 

JeT = - 20w(1 .. ,1 cos 0/2 + 1:1',2 sinO/2) 

ZI 

Effective Double Quantum 
Rotating Frame 

Z3 

28w 

(42) 

FIG. 7. In this case irradia­
tion is near the unshifted 
Larmor frequency such that 
again OWl. WI «wo. The ef­
fective Hamiltonian in a tilt­
ed frame defined in the text 
is :I(""-20wI~,I-(WVwo)Ie,3' 
Thus the Hamiltonian is that 
of a fictitious spin-~ in z 
space with effective magneto­
gyric ratio 2')' along z, 1 (the 
effective external field direc­
tion) and (w/ wQ)'Y along z. 3 
(the effective applied rf field 
direction). The term double 
quantum frame arises from 
the fact that the 1 .. ,1 operators 
defining the z frame have 
matrix elements between the 
m = ± 1 levels and involve 
double quantum transitions. 

TABLE III. Hamiltonian representations. 

with 

and 

with 

and 

with 

and 

b.W~wo+ow; ow, WI «"'0 

1CT = - owI.,3 - v'2 wtf.,1 - (twQ + OW)(Iy,3 -Ie,,) 

b.w = - Wo + ow; ow. "'1« Wo 

1('T = - owly,3 + -f2 WI I y,2 - (~wO - ow)(l e,3 -1.,3) 

b.w = ow; oW, WI «WO 

_ wi 2 
·:I(T - - OWle,1 -W-Ie,3 + 3WO(I.,3 -Iy,3) 

o 

With the conditions 20Wr-"1 «r-,,~ we can neglect the term 
20w sinO/2 1 :1',2 yielding 

This shows that even in the case of rf irradiation near 
to the center frequency we can talk about a fictitious 
Zeeman interaction in a fictitious z coordinate system. 
For the case that WI «r-"o we can use (35), yielding 

(44) 

This is depicted in Fig. 7 and defines the z frame, or 
double quantum frame. The effective rf irradiation field 
along the z,3 axis is r-"VWQ and the resonance offset if 
multiplied by 2, i.e., 20r-". 

The exact solution for the general caSe of W1 '* 0, .a.'u 
*- 0, and wQ '* ° must be calculated by numerical compu­
tations, and in Sec. VII we shall discuss some results 
of those calculations. The main results of this section 
are summarized in Table III. Also included in the table 
for future use are the forms of 1" and 1:1' in the tilted 
frames, 1:<1' and 1 lIT' After representing possible forms 
of the Hamiltonian in the rotating frame we now discuss 
the time behavior of the spin system under the influence 
of those Hamiltonians and attempt to obtain closed ex­
preSSions for the signal intensities measured in NMR 
experiments. 
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IV. PREPARATION OF SPIN DENSITY MATRIX 

We now calculate the evolution of the density matrix 
during pulses described by the various cases of irradia­
tion in the previous sections. If we define a reduced 
density matrix appropriate to high temperature, then in 
the rotating frame 

a~ P = - i (:!C, p] . 

From the equilibrium expression for Po it is clear that 
P in general can be written as 

(45) 

with ap,i calculated from 

p(t) = exp( - iJCt) p(O) exp(iJCl). (46) 

Our aim is now to obtain the explicit forms of the last 
equation for different Hamiltonians derived in the pre­
vious section. A variety of specifically interesting 
cases for NMR spectroscopy will be discussed. The 
initial signal intensities measured in the corresponding 
NMR experiments will be calculated. 

I Wo 

--i--
-) -'"'0 

We shall start with the case in which rf irradiation is 
applied about the resonance of the higher side peak of 
the quadrupole spectrum, and we shall take as the ini­
tial condition for Po the reduced high temperature equi­
librium expression 

Po = bI. 

with 

b=wo!kT. (47) 

We wish now to calculate (46) with 3C given in (36). As 
was shown in (36)-(38), the Hamiltonian can be rewrit­
ten in a tilted frame and the result is given in (38) and 
Table ill. We begin by taking the case that Ow = 0, 1. e., 
irradiation exactly at one satellite. In this tilted frame 
Po becomes 

POT = UZ,2 (h)POU.,2 (h) 

= - 2bIII,3 = bI",3 + b(I3/,3 - 1.,3)' (48) 

Insertion of POT and J<T from Table III assuming Ow =0, 

J<T = - -I2wI I x,l -~wo(I Y,3 - 1.,3), 

into Eq. (46) yields 

PT(t) = exp( - iJ<Tt) POT exp(iJ<Tt) 

= e U2W l
1

x,1 t bI ",3 e-iJ"2Wl1x,lt + b(Iy,3 - 1.,3), (49) 

= b(I ",3 COS..f2r"" l t + 1",2 s in.J2 WIt) + bUy ,3 - IIf,3)' (50) 

were we used the commutation relations of Table 1. It 
is clear from this result that the density matrix PT(t) 
can be described in the fictitious x-coordinate system. 

The last term of PT(t) is not significant for the present 
experiments because it will not result in an NMR sig­
nal. It is crucial of course in many double resonance 
experiments and constitutes the quadrupolar reservoir. 
With the result of Eq. (50) we can calculate the signals 
measured in an NMR experiment, after a pulse in the 
x direction of duration t, i. e., (I x(t» and (I y(t », the 
expectation values of I" and III in the rotating frame: 

S,,(t) = y (I ,,(t» = yTr [P(t )I,,] = yTr (PT(t) I lOT], 

Sy(t) = y (IlI(t» = y Tr rp(t) Iy] = yTr [PT(t) I lIT], (51) 

where we used the fact that the trace is independent of 
the representation of the operators. In our case from 
Table III, 

IXT =2U!,2(h) 1",1 U.,2(tll)=v'2(I",I- I y,2), 

IlIT =2UZ,2(t7T)L",1 u.,2(h) =-12(/31,1 +1",2), (52) 

and with Eq. (50) we get the expected result for irradia­
tion in the x direction: 

S,,(t) =0, 

SlI(t)=v'2 bysinv'2w l tTr (l;,2)= 2~ Sosin~lt, (53) 

with 
2-1 

So=4Nby 21+1 =iNyb, 

and N is the number of spins in the sample. We want 
to emphasize here that the effective rotation frequency, 
due to an irradiation field in the rotating frame, of '''1 
=yJ<;, on one satellite is {2Wl ={2y3C 1 • This is repre­
sentative of an effective magnetogyric ratio -I2y.lb The 
truncation of J<T, by ignoring the term with 131,2, is the 
reason for the fact that the solution of Eq. (53) is not 
affected by the off resonance satellite of the quadrupolar 
spectrum at 2("0' 

The result for irradiation at t:.w = - ("0 can be obtained 
in the same way. Starting from Eq. (40) for J<T and 
calculating the values of S" and SlI gives results analogous 
to Eq. (53). To complete the description of the NMR 
Signal after a single pulse on one of the satellites of the 
quadrupole spectrum, we now take into account also 
Or"" * O. The Hamiltonian effective for this transition is 
[Eq. (38) and Table III] 

(54) 

where we took Ow = t:.fJ) - wQ and the effective initial con­
dition for P in this frame from Eq. (48) is 

Po = blx,3' (55) 

The Signal intensities are proportional to the expecta­
tion values of I x,l and 1",2: 

S,,(t) =-I2yTr [PT(t) [",tl 
1 

= 2 v'2 So sin<p cos<P(1 - cosw.t), 

SlI(t) =-12 yTr [PT(t) 1",2] 

1 
= - 2 -12 ~ cos<p sinw.t , 

where 

(56) 
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Double Quantum Coherence 
In Rototing Frame 

Z3 

p 

ZI Z2 

FIG. 8. Preparation of double quantum coherence. The situa­
tion is that of Fig. 7 with ow = 0, i. e., irradiation at resonance 
with wl « wo' The effective Hamiltonian is then :lC'" - (wl!wo)Ir .3 

and its effect on a density matrix starting as p=az,1 I r •1 (L e. , 
thermal equilibrium) is shown. The vector p nutates as a 
fictitious spin-! about z, 3 at angular frequency w¥/ wo' This 
is analogous to the nutation about x at WI for real spin-~. In 
this case the double quantum coherence corresponds to the 
preparation of a component along z, 2. 

and 

This result is in full analogy to a regular Zeeman Ham­
iltonian as is discussed in Sec. I. The analogous opera­
tors for spin-t are Ix, I~, and Ilf for Ix,it I x,2, and I x,3' 
respectively. 

I· ·1 

The discussion of rf irradiation at the center frequency 
of the spectrum is interesting from the point of view of 
double quantum effects in our three level system. In 
this section we shall discuss the creation of coherence 
of the double quantum tranSition. In this case, accord­
ing to Table III, the Hamiltonian in the frame tilted by 
U x,2(e) with e=tan=1(2w/wo) and 4I5w1«1"'~ is 

JeT = - 215,,,,1 1f,1 - H(w~ + 41",~)1/2 - ''''0 ]l.,3 + two (Ix, 3 - Iy,s), 

(57) 

To evaluate Eq. (46) for this case we transform Po in 
Eq. (47) according to UX,2(e): 

POT =2bexp(- ilJl x,2) 1.,1 exp(ielx,2) 

= 2b (I •• 1 cose/2 + I ~,2 sine/2). (58) 

We calculate Pr(t) by inserting Eqs. (57) and (58) in Eq. (46) with 151'" = 0 (i. e., we assume we - w'" »l5w): 

PT(t) =exp( - iJeTt) POTexp( + iJe T t) 

= 2b ei(1/2) (W.-WO)/If,3 t I e-H1 / 2 )( W.-WO) Ilf,st cos e/2 + 2b e+i (1/2)( W'+WO)/y,3 t 1 e-i (1/2) ("Ir +wO)1 ~,3t sine/2 
.,1 y.2 

where we recall [Eq. (33)] that 

we = (4w~ +~)1/2 • 

The calculated behavior of PT(t) becomes for ''''1 «''''0 
[Eq. (35)] 

( 

,,,,2 1",2 ) 
PT(t)"'2b Incos..!:l.t-I. 2 sin.:.::J t . 

, Wo ' ''''0 
(60) 

The second term in Eq. (60) represents the coher­
ence oj the dauble quantum transition, because it has 
matrix elements between the I + 1) and 1-1) eigenstates 
oj I. and it behaves as the coherent superposition oj 
these states. For the case ''''1 «''''0 we can again talk 
effectively about a fictitious Zeeman-type Hamiltonian 
on the transition I + 1)-1 -1). The preparation of the 
density matrix in this case is depicted schematically 
in Fig. 8 for I5w = O. We refer to such a pulse with 
W1 «wo and 4I5w("'1 «w ~ as a double quantum pulse. The 
effective Hamiltonian in this case is obtained from (35) 
and (57): 

(61) 

The effective magnetogyric ratio is (W/I",O) y and the off 
resonance term is 2 times the offset frequency. The 
rotation frequency of Spins around I If,S is wU wo and was 
already observed by Hatanaka et al. 3 

The observables S", and Sy subsequent to preparation 
by a double quantum pulse can be calculated from Eqs. 
(51) and (59): 

I",T = 2 U!,2( e) 1",1 U ",2( e) = 2(1",1 cos e - 1",,3 sine), 

I ~,T = 2 UJ,2( e) I y,1 U",,2( e) = 2(I y,1 cost e - IIf,2 sinte), (62) 

and become 

S",=yTr[PT(t)I.,r]=O, 

Sy = y Tr [PT(t) I yT ] 

=hSosine[si~ (,'''. -wo)t+si~ (w.+''''o)t] (63) 

'" 0 since ''''1 « '''''0 giving sine", O. 

Thus, after such a pulse there is essentially no observ­
able Signal, i. e., the double quantum coherent state 
does not evolve with an observable signal. Since IIf,2 
and Ilf,s are related to the coherence of ± 1 tranSitions, 
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we define the double quantum coherence in the case that 
I",! is prepared: 

Q(t) = 2y Tr [p(t) I ",a] = 2yTr [Pr(t) I ~,2r], (64) 

or similarily with 1.,3 or a combination of 1",2 and 1",3' 
Q(t), as mentioned above, is not an observable in an 
NMR experiment. It can be calculated in our case using 

I",aT = U:,2( 0) I .. , a Ux,a( 0) = 1",2 cosi e+ 1:.>,1 sini e, (65) 

giving 

Q(t) = - So [cosa i e sini (r.l!. - wo) t 

(66) 

The coherence Q(t) is maximum in the case of ''-'I «(J)o 
for 

(67) 

Thus the i1T condition for a double quantum pulse with 
WI «Wo is given by (wUwo)t=i1T. This is a i1T double 
quantum pulse. 

The preparation of the density matrix in the rotating 
frame for the general case during rf irradiation with 
o(JJ "* 0 is complicated and is best calculated with the help 
of a high speed computer. In the next section, we shall 
discuss the evolution of the spin system without rf ir­
radiation after the density matrix has been prepared in 
nonequilibrium form. The signal intensities measured 
after rf pulses will be discussed and the Fourier trans­
forms of different FID Signals will be given. 

V. EVOLUTION AND SIGNALS 

In this section we give the equations for the density 
matrix of the spin system in terms of our nine opera­
tors for the case that no rf irradiation is applied to the 
system. We assume the system to be in a nonequilib­
rium state after some preparation and ask how it evolves 
with time. This corresponds to the behavior of the spin 
system after an excitation pulse. We ignore for sim­
plicity all relaxation effects. 

The evolution of the spin denSity matrix under the 
influence of the main Hamiltonian without rf irradia­
tion, 

is calculated by inserting this Hamiltonian in the solu­
tion for p(t) in Eq. (46). The signal intensities are 
then proportional to the expectation values of I" and I y' 
We shall therefore first derive the time behavior of an 
arbitrary p(O) due to Je and shall show which of the co­
efficients of p(O), 

(68) 

are subsequently detectable. A straightforward calcu­
lation gives for the coefficients ap,i(t), with the as­
sumption that ap,3(0)=0, p=x, y, z, 

ax, 1 (t) =i [ax, 1 (0) + ay,a(O)] cos(Wo - /1,,-,) t - i [a",z(O) + ay,l (O)J sin(,,-,o - fl.w) t 

- Hay" (0) - ax,a(O)] sin( - rJJo - /11») t -Hay,!(O) - ax,l (O)J cost - ''''0 - /1,..,) t, 

a",a(l) =t[ax,a(O) + ay,l (0)] cos (1.l!0 - fl.,,,) t + Ha", 1 (0) + ay,z(O)] sin(IJJo - fl.'JJ) t 

- i [a y, 1 (0) - ax,a(O)] cost - Wo - /11») t +i [ay,!(O) - a",l(O)] sin( - rJJo - /1W) t, 

ay,l(t) =i[ay,I(O) -a .. ,a(O)] cos(-'J)o -/11,,) t-i [ay,a(O) -ax,l(O)]sin(-I,-,o- fl.1,,)t 

+i[a", 1 (0) + ay,a(O)J sin(IJJo - /1W) t + Ha",a (0) - ay,l (0)] cos(wo - /1t,,) t, 

a",a(t) =i [ay,a(O) - ax, 1 (0)] cost - '''0 - fl.w)t +i [aY,l (0) - a",a(O)] sin( - '''0 - /11,,) t 

+i[a",l (0) +ay,a(O)J cos(,,,o - /1(..,) t -i [ax,a(O) +aY,l (0)] sin(ltl0 - fl.'tl) t, 

a",I(t) =a",1(0), 

a.,a(t) = a",2(0) cos2/1("t, 

a",3(t) = - a .. ,a(O) sin2/1wt, 

aX,3(t) = - ay,3(t) = O. 

For the special case that aw = 0, we get 

a", 1 (t) = ax,l (0) coswot - a",!(O) sinwot, 

a",2(t) = a", 1 (0) sinwot +a",z(O) coswot, 

ay,1 (t) =ay,l (0) coswot + aY,2(0) sinwot, 

aY,2(t) = - a",l(O) sinwot + ay,z(O) coswot. (70) 

with 

and 

(69) 

(72) 

These expressions are calculated by the following pro­
cedure: 

JeT = U:,2(t1T)Je U",2(i1T). (73) 

The result for the FID Signal can now be calculated: 

(71) S" = yTr Cp(t) I xJ = a", l(t )1P(t), 
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XI 

ZI 

Density Matrix Evolution, 6w = 0 

X3 

Z3 

P (I) 
z 

Y3 

YI 

Z2 

Y2 

FIG. 9. Schematic description of the evolution of the spin 
density matrix under the influence of the quadrupolar Hamil­
tonian :K'Q = ~wQ(Ix,3 -Iy,3) on resonance, 0. e. , 6W = 0). The 
density matrix can be expanded as p= Px+ Py+ p., where Pp 
=Liap,iIp,i' The figure demonstrates that in the case that all 
ap ,3(0) =0, Px rotates in the 1-2 plane in x space at frequency 
wQ , Py in y space, and p. stays constant in z space. 

Density Matrix Evolution, tJ.w .. O 

---+--~--~~----+--+--X2 

XI 

FIG. 10. Same as Fig. 9 for the case that ~w" O. In this 
case the x and y frames are coupled together. The figure 
shows the evolution of the x and y components of the density 
matrix P.(O) =a.,II.,1 +as,2Is,2 and py(O) =a"II,,1 +a,,21,,2 under 
the influence of the quadrupole and resonance offset Hamil­
tonians. 

6w=O 

--~-----4--~--~--YI 

XI 

, 

XI 

"­, 
\ 

FIG. 11. The observables in 
an nmr experiment are (Ix, 1> 
and <;'y,I>' The evolution of 
the coefficients of these com­
ponents of the density matrix, 
ax, I and ay,l under the influ­
ence of the quadrupolar Ham­
iltonian for 6W 00 0 and the 
quadrupolar plus resonance 
offset Hamiltonians for ~W 
.. 0, are shown for the case 
that the initial density matrix 
is given by a y,IIy,1 4 ay,2IY,2' 

(74) 

where I/J(t) is a decaying function with a decay time T2 
and I/J(O) = t yN = So. The coherence of the double quantum 
transition is defined as 

Q(t) = a.,2(t) I/J(t). (75) 

A schematic representation of the results of Eqs. (69) 
and (70) is shown in Figs. 9 and 10. The x- and y-com­
ponents of the ap vectors are defined by the coefficients 
of 

(76) 

respectively, i. e., ap is the vector defined by the com­
ponents ap,l' The time evolution of the z vector defined 
by the coefficients of 

P.(t) = L a.(t)I.,i (77) 
i 

is also shown. From the results of Eqs. (69)-(75) and 
of Fig. 9, we see that in the case of ~(JJ = 0 the signal 
is linearly polarized. This is also demonstrated in 
Fig. 11 for the case Po = a ll,lI y, 1 +ay,2IlI,2' We find in 
this case for the detected Signals 

~=O, 

Sy = (ay,l coswot + all,2 sinr.t1Qt) 1/I(t) 

= yaycos(wot - cf» I/J(t), (78) 

where a y=(a,.,l +ay,z)1/2 and cf> =tan·1(ay,/aY.2)' 

The results for t:J..w * 0 with the same initial condition 
is given by 
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TABLE IV. Effect of rf irradiation on spin-~ operators. 

exp(- i3Ct)Ip •i exp(i3Ct) = r; (p, i; q, N •. J 
•• J 

(x, 1; x. 1) = cos'e COSWe t ; sin'e 

(x, 1; x, 2) ~ cose sin",. t 

(x, 1;x,3) =cose sine(coswe t-1) 

(x, 2; x, 1) ~ - cose sin",. t 

(x,2;x,2) -coswet 

(x, 2; x. 3) ~ - sine sinwpt 

(y.1;y, 1) -cos'e/2eosl(we ! wolt j sin'e/2cos~(we - wo}t 

(y, 1; y, 2)0 - co~"e/2 sinHwe + wo)t + sin2e/2 sin~(we - wo)t 

(y, 1; z, 1) - - eose/2 sine/2[sin!(we + wo}t + sinHwe - wo}t] 

(y, 1; z, 2) - cose/2 sine/2 [cos!(we + wo}t - cos~(we - wo)t] 

(y, 2; y, 1) = cos'e/ 2 sin~(we + wo)t - sin'e/2 sin~(we - wo)t 

(y, 2; y. 2) = cos'e/2 cos!(we + wo}t + sin'e/2 cos~(we - wo)t 

(y, 2; z, 1) - eose/2 sine/2lcosHwe + wo)t - COs!(we - wolt] 

(y, 2; z, 2) = cose/2 sine/2 [sin~ (we j wO}t + sin~(we - wo)tl 

(Z, 1,y, 1) ~cose/2 sine/2(sinMwe + wQ)t + sin!(we -wO)t] 

(z, 1, y, 2) ,- cose/2 sine/2 [COs!(we + wO}t - COs!(we - wO)t] 

(z, 1; Z ,J) "sin:!e/2 cos~(we + wO)t + cos2e/2 cos!(we - wO)t 

(z, 1; z, 2)- sin'e/2 sin!(we + wO)t - cos'e/2 sin!(w. - wO)t 

(Z, 2; y, 1) = cose/2 sine/2 [cos!(we + wQ}t - COs!(we - wO)t] 

(z, 2;y, 2) = - cosO/2 sine/2( sin!(we + wO)t+ sin!(we - wO)t] 

(z, 2; z, 1) = - sin2e/2 sin!(we + wO}t + cos20/2 sin!(we - wO)t 

(z, 2; z, 2) = sin'e/2 cos!(we + wO)t + cos2e/2 cos~(we - wO}t 

with 

and 

We = (4wi + w~) 112 

0= tan-1(2wl/ WO) 

(79) 

For completeness we give in Table N the results of 
p(O) after a resonant (Aw = 0) pulse of t seconds and of 
WI strength in the x direction for different initial densi­
ty matrices just before the pulse. 

The evolution of a.,2(t) and a.,3(t) in Eqs. (69) is 
particularly interesting. Although they are not directly 
detectable as mentioned previously, the time depen­
dence does not contain wo, i. e., they do not exhibit 
any quadrupolar interaction. Thus if their decay could 
be monitored, they would yield a high resolution NMR 
spectrum. This indeed is the basis for the approach 
we have termed Fourier tran!iform double quantum NMR. 

To observe a pure double 9.uantum decay, the system 
must be prepared so that 

After time t the double quantum coherence which has 
evolved only with 2A,.&) must be detected by an addition­
al pulse or set of pulses. In the next section this is 
discussed in detail both for the ideal double quantum 
case 'vI «'vo and for the more practical case of gen­
eral Wi' 

VI. DOUBLE QUANTUM COHERENCE 

In this section, examples of different pulse sequences 
will be discussed. We shall be interested in the effi­
ciency of formation of 1 ~,2, double quantum coherence, 
and its detection by pulses since it is not directly de­
tectable as an NMR signal. First the effect of a single 
pulse on the spin system will be described and the 
phySical observables will be derived. In all the ex­
amples discussed below, we take Aw =0 during the 
pulses, i. e., we assume Wi» A,.&) and wi/wo» Aw. 
When there is no rf irradiation we take account of Aw. 

A. One pulse (Fig. 12) 

Applying a short rf pulse on our system results in a 
new density matrix after this pulse given in Table N. 
These results are Simplified in Table V for the special 
cases of very strong ('VI» 'vo) and very weak ('VI «'.&)0) 
irradiation. In the former case we expect pure rota­
tions, i. e., normal Single quantum behavior, and in the 
second one expect double quantum effects. The re­
sults of this table are calculated from Eq. (46) with X 
as given in Table III: 

'.&)1 «,.vQ: X'" - ('V Vrv 0 )I .,3 + t'vo(I ",3 - 1 y,3), 

and 

(80) 

From the results of Table V we can answer the question 
of which pulse we need to apply in order to obtain a 
detectable signal or to create double quantum coherence. 
From the discussion of the previous section we know 
that the only coefficients of p(t) which give rise to de­
tectable signals during evolution are a",h a", 2, ay,h 
and ay,2' These coefficients can be created for ex­
ample from 1.,1 and 1.,2 by '.&)1 »''''0' while for ''''1 «wo 

the double quantum coherence coefficient a.,2 is ob­
tained. For comparison between the exact solutions 
of Table N and the approximated solutions of Table V 
we have plotted in Figs. 13 and 14 the coefficients of 
1",2 and 1 y,1 as functions of the length of an x pulse with 
VI = 20 kHz and vQ = 60 kHz for Pi = 1.,1' For pure double 

p. p(t) 
I~ 

FIG. 12. Single rf pulse of 
duration T operates on the 
density matrix Pi and trans­
forms it to P which evolves 
as p(t). T in this figure cor­
responds to t in Table IV. 
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TABLE V. Form of density matrix after strong (single quantum) and weak (double 
quantum) pulse on different initial density matrices. 

Single quantum 
WI »wo. Cl.W 0 

Double quantum 
WI «wo, Cl.W"'O 

Pi p Pulse x Pulse 

I p ,1 I p ,1 

I p,2 Ip ,2 COS2(0I' -Ip,:; sin2w 1, 

I p" I p" coS2wlt + Ip,e sin2w 1f 

1.,1 1.,1 COSw[t -Ir ,[ sinwl' 

1.,2 1.,2 cosw[t + I r •2 sinw[t 

I •• , - ~(IP.:: cos2w 1t + I p•t sin2w 1t) + ~(I •• 3 -IT) 

I r •1 COS:.J 1t' 1 •• 1 sin:.J1t 

I r •2 cosw1f -1 •• 2 sinwlt 

1.,1 cos(w1! wo)l -1.,2 sin(wl! wo)f 

[.,2 cos(wl! wo)f + [.,1 sin(wl! u)o)t 

-1(Ip.:; cos2w1f ! I p•2 sin2w 1,) -~(I.,3 -Ir ,,) 

p.q.Y x.y.Z or y,z.x p,q,r~x,y,z 

quantum behavior ("'1 «())o, we expect from Table V a ll ,2 

= - sin(w~ho) t. 

The results of the coefficient of 111 ,1 (Fig. 15) and 1.,2 
(Fig. 16) are shown as functions of Vo for a fixed pulse 
time T = 56 fJ.sec and T = 28fJ.sec, respectively. This is 
to indicate the degree to which we can create double 
quantum coherence, 1 •• 2 over a continuous range oj I))Q' 

The approximated results are in reasonable agreement 
with the exact calculations for ''''0> 2. 5 WI' 

To illustrate the case where ''''1 is larger than ("'0' 
we take VI = 60 kHz and Vo = 20 kHz. The approximated 
results and the exact calculation are compared in Fig. 
17 for the coefficient of I Y,I as functions of the pulse 
length, with Pi = 1.,1' We see that for long pulses the 

0.4r-----r-----r-----r-----r-----,----, 

0.2 

-0.2 

°Z,2 -0.4 

-0.6 

-0.8 

Va = 60 KHz 

VI = 20 KHz 

D.v = 0 

- I .OL-----L-----=L,-----=~=..__!~--__::L,_-__:::.' o 
T (/Lsec) 

FIG. 13. Theoretical calculation of the effect of a single pulse 
with 1'1 = 20 kHz at resonance to the density matrix Po =1,,1' 
The solid line is the exact (computer generated) value of the 
double quantum coherence coefficient a •• 2 as a function of the 
pulse length. The dashed line shows behavior expected for 
pure double quantum transitions, i. e., a •• 2 = - sin(wl! wo)T. 
The discrepancy arises from the fact that w1/ Wo is not zero, 
i. e., single quantum transitions are also induced. 

approximated solution is out of phase with the exact 
calculation. This comes from the fact that even in this 
case (VI>VO) some all ,2 is formed. In Fig. 18 we show 
the 1.,2 coefficient as a function of Vo for a constant 
pulse length of 16fJ.sec. We see that at Vo =20 the coef­
ficient of 1.,2 is a.,2 = 0.84. In Fig. 19 we also show 
an experimental result on a single crystal of deuterated 
oxalic acid dihydrate. In this experiment the value of 
a .. ,1 after a single pulse probes how much 111 ,1 is left. 
The a,, 1 value is detected by a second pulse, which is 
applied at time T2 following the first pulse. The sig­
nal after this second pulse is then proportional to all,l 

and is plotted as a function of the length of the first 
pulse. The experimental values are compared with 
the calculated a.,1 values for the experimental param­
eters VI = 26 kHz and Vo = 16 kHz from Eq. (69). 

In Table VI we summarize the effects of pulses of 
particular length corresponding to a 90° rotation for 

1.0.----,------,,------,---,.---,-----, 

0.8 

0.6 

-0.2 

/1
0 

= 60 KHz 

VI = 20 KHz 

D./I = 0 

-0.40~--1~0---2~0---3~0---4JO--~570--~60· 

T (/Lsec) 

FIG. 14. The same parameters as Fig. 13 except that the 
observable y signal, ay,l' is presented, solid line (exact calcu­
lations). For pure double quantum transitions we should have 
a y,l = 0 as indicated by the dashed line. 
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I.D,.------.----r--r---,---,--, 

0..8 

0..6 

0..4 

0.2 

°Z,I 0. 

-0..2 

-0..4 

VI = 20. KHz 

Pulse Length T = 56 fLsec 
I1v = 0. 

90. 120. 

FIG. 15. Theoretical calculation of the remaining z magnetiza­
tion a.,1 for an rf pulse of intensity v1 =20 kHz and duration 56 
/-Lsec applied to the equilibrium density matrix 1.,1 as a func­
tion of quadrupole splitting vQ = wQ/27r. The solid line is an 
exact calculation and the dashed line indicates the expected be­
havior for pure double quantum behavior a.,1 =cos(wl!woh. 
For large Wo the agreement becomes better as w1/ wQ gets 
smaller, while for small Wo the double quantum expression is 
of course not valid. 

the single quantum case '-"1» '''0 where the effective 
rotary frequencies are WI or 2'-"1 and for the double 
quantum case '''I «wo where the effective frequency 
is wUwQ. 

1.0. 

0..8 

0..6 

0..4 

0..2 

°Z,2 0. 

-0..2 

-0..4 

-0..6 

-0..8 

-1.0 
-GO -3D 

VI = 20. KHz 
Time = 28 fLsec 
I1v = 0. 

0. 3D 60. 
va (KHz) 

90. 120. 

FIG. 16. Preparation of double quantum coherence with a sin­
gle pulse. An rf pulse of intensity v1 = 20 kHz and duration 28 
J.lsec is applied to Po =1.,1 and the calculated values of a.,2 are 
shown as a function of wQ • The solid line is an exact calcula­
tion showing the distortion in preparation of double quantum 
coherence when we have a range of Wo values as in a polycrys­
talline sample. The dashed line is that expected for pure dou­
ble quantum behavior a.,2 = - sin(wl! wQ}t which becomes more 
valid for small wl/ wQ• 

va"2DKHz, VI =60. KHz,l1v=D 

1.0 ) I' (\ (\ 
J \ \ I \ 

0..8 I \ I \ \ I \ 
0..6 \ I \ 

\ I \ 
0..4 \ J \ 

\ I \ 
0..2 \ I 

°Y,I I 
0. 

\ 
I 

-0..2 \ 

\ 
-0..4 \ 

\ 
-0..6 

-0..8 

-1.0.0. 
60 

T (fLsec) 

FIG. 17. Effect of intense rf pulse on the density matrix 1.,1. 
The coefficient of the observable signal is plotted from an ex­
act calculation (solid line) and for pure single quantum behav­
ior sinw1t (dashed line). 

B. Two pulses (Fig. 20) 

In this paragraph we shall discuss the effects of 
three different two-pulse sequences which then will be 
used later for the detection of double quantum coher­
ence in single crystals and powders. 

1. Two weak pulses 

The application of two x pulses of equal length and 
strength Fig. 20(a) is used for the storage of a.,2' What 
we mean by this is that after a Single weak pulse (Table 
V) on P, == 1.,1 the density matrix contains a coefficient 
a.,2 * O. This coefficient of 1.,2 after the pulse can then 

1.0. 

0..8 

0..6 

0..4 

0..2 

°Z.2 0. 

-0..2 

-0..4 

-0..6 

-0..8 

-1.0. 
-20. -10. 0. 10. 

VI = 60. KHz 

Time = 16 fLsec 
I1v = 0. 

20. 3D 
Va (KHz) 

40. 

FIG. 18. Calculation of double quantum coherence for intense 
pulse of duration 16 /-Lsec operating on 1.,1' This shows that 
even for large v1 we can create double quantum coherence for 
particular wQ's. 
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'" c 
OJ 

C 

" c 0 
C> 

§ -0.2 

N -0.4 
o 

-0.6 

-0.8 

Rotary Decay 

-I.OL-__ -L ____ L-__ -L ____ L-__ -L __ ~~~_L __ ~ 

o 20 40 60 80 100 120 140 160 
t (/Lsec) 

FIG. 19. Rotary free induction decay for pulse of intensity 
vI = 26 MHz followed by intense pulse to monitor remaining 
a.,I' The solid line is calculated from Eq. (69) and the circles 
are experimental points from a single crystal of deuterated 
oxalic acid dihydrate. 

evolve for a time T after which it can be brought back 
to a coefficient of 1.,1 by an additional weak pulse. It 
will be shown later that this can be of importance for 
the detection of the time behavior of a.,2, the coher­
ence. With the assumptions WI «wo and AW« (J)o the 
results for the density matrix in this case are 

TABLE VI. Effective !7r pulses. 

wI »wo 
wI «wQ 
-w-2--

Pi wit Pj Pi ~t Pj WQ 

x Pulse x Pulse 

Ix,l Ix,l I.,I 71'/2 -I.,2 

I x ,2 71'/4 -Ix •3 I.,2 71'/2 I.,1 

I x,3 71'/4 I.,2 I.,3 I.,3 

Iy,l 71'/2 -I.,I 

I y,2 71'/2 I.,2 

I y,3 71'/2 -I.,3 

I.,I 71'/2 Iy,l 

I.,2 71'/2 -Iy,2 

I.,3 71'/2 -Iy,3 

Y Pulse y Pulse 

I.,I 71'/2 I.,I I.,I 71'/2 +I.,2 

I x ,2 71'/2 -I.,2 I.,2 71'/2 -I.,I 

I.,3 71'/2 -I.,3 I',3 I'. 3 

Iy,l Iy,l 

I y,2 71'/4 -Iy,3 

Iy,3 71'/4 I y,2 

1.,1 71'/2 -Ix.I 

I.,2 71'/2 I.,2 

I., 3 71'/2 -I.,3 

t I tP2 
P ~I I+----+i 

~. 
r ,@- (0) 

___ ;"'I<-t p I -+;"'I<-t p2 

r , X 
X 0 (b) 

y 

-->1 I<- t p2 

~==~r==~X~ ____ _ (c) 

FIG. 20. Various pulse sequences used for preparation and 
detection of double quantum coherence. Pulse sequence (a) 
has two weak pulses. The first is to transfer a.,1 to a.,2' 
which then evolves during T. The second transfers a.,2 back 
to az,l' where it can then be detected by strong pulses yielding 
a signal proportional to the double quantum coherence a.,2(T). 
The pulses in (b) are stronger. yielding a mixture of double 
and single quantum effects. They are used to detect the 
amount of az,l for example prepared by (a) by producing a spin 
echo at time 2T proportional to a.,1 before the pulses. This 
also overcomes the problem of detector recovery time. In (c) 
we see the simplest pulse sequence for monitoring the evolu­
tion of double quantum coherence. The signal after the second 
strong pulse is proportional to a •• 2(T) as explained in the text. 

W
2 w 2 

p(tp)"" I. 1 cos :::::.l. tp - 1. 2 sin -1 tp, 
, WQ ' ~Q 

w2 

p(fp+T)"" I. 1 cos~ tp 
, WQ 

where 

2 

- sin~tp(I. 2 COS2AWT - 1'3 sin2Awt), 
W

Q 
t t 

W
2 

- I" 2 cos :::::.l. tp sin 
, WQ 

~ 
:::::L tp (1 + COS2Awt) 
wQ 

2 

- I If 3 sin ~ tp sin2A'J)T, 
, wQ 

(81) 

From this result we see that in the ideal case with (wU 
wo) tp =i7T, i. e., two 90 0 double quantum pulses: 

p(2tp + T) '" - COS2AWTI.,l - sin2AwTI.,3, (82) 

and that the coefficient of the final density matrix re­
flects the evolution of 1.,2 between the pulses. When we 
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FIG. 21. Distortion in preparation and storage in az ,! of dou­
ble quantum coherence by two weak pulse sequence [or range 
of wQ values. The first pulse transforms a.,! to a.,2 with an 
efficiency dependent on wQ. The second pulse stores a.,2 at 
time T back to a.,1 (for subsequent detection) with the same ef­
ficiency. Thus the overall double quantum transfer function 
for this pulse sequence is proportional to a~." where a .,1 is 
calculated from one pulse as in Fig. 16. The solid line is an 
exact calculation and the dashed one is calculated for pure dou­
ble quantum behavior a~,2 = sin"(wf/ wQ)f. 

have a distribution of wQ, e. g., in a powder, then of 
course we cannot satisfy the 90° double quantum pulse 
condition for all '""Q' To see the distortion effects, the 
square of the exact coefficient of a.,2 after the first 
pulse, which reflects the manner in which 1.,2 is cre­
ated and "stored" as 1.,1, is shown with sin2 (,.tJV wQ ) tp, 
for v1 -= 20 kHz and tp = 28 /lsec, as functions of vQ (Fig. 
21). The advantage of storing the a.,2 as a.,l with the 
second pulse is discussed in the next paragraph. 

2. Two strong pulses 

We go now over to the case in which we apply two 
strong rf irradiation pulses [Fig. 20(b)] on the spin 
system with a time delay of T. This sequency is im­
portant for polycrystalline samples in which a range 
of wQ values are present. In that case this pulse se­
quence is used to obta.in an echo signal since the am­
plitude of the signal following one pulse is obscured by 
dead time. If we consider an initial state Pi =1.,1, then 
we obtain for the w Q and Aw« w1 the following values: 
For 

aY.l(tPl) = 1, and ay,l(2T) =cos2 AwT, 

and for 

(83) 

ay,l(fp1 )=1, andao<,l(2T)=tsin2AwT, (84) 

where we write p(2T) for P(fp1 +T+fp2 +T) and where '''1,1' 
is a pulse in the P direction. All other coefficients of 
p(2T) are dependent on wQ and will average away for 
polycrystalline samples. From these results we see 
that the spin echo in a sample with a distribution of wQ 
is still dependent on A,"" while the wQ dependence es­
sentially disappears. This effect will be discussed 
again in the next paragraph. In Fig. 22 an example of 

a two strong pulse sequence is shown with V1 = 60 kHz 
and tp1 = tp2 = 4 /lsec. The exactly calculated coefficient 
of I y,l after 2T is plotted for different vQ values. The 
echo thus gives a good measure of a.,l before the two 
pulses. 

3. One weak pulse and one strong pulse 

The final two pulse sequence consists of one weak 
pulse followed after T seconds by a strong pulse, Fig. 
20(c). The reason for applying this sequence is to de­
tect in the simplest way the coherence behavior during 
the delay time T. If the first pulse is selected to be a 
double quantum 90° pulse, (wV'tJo) tp1 =h, then the 
density matrix for Pi =1.,1 is given after this pulse by 

P(lpl)=-I.,2' 

The evolution of p(T) during the time T between the 
pulses is given by 

P(tp1 + T) = - 1.,2 cos2A'vT + 1.,3 sin2A,.tJT, 

and the strong second detection pulse results in 

P(tp1 +T+tp2 ) 

(85) 

(86) 

=+/y,zcos2Ar.tJt+t[lx,3 - (Iy,3 -1.,3)]sin2A'''T, (87) 

where we took W1tp2 =t1T with r.tJl» 'vQ' This results in a 
signal intenSity, according to Eqs. (79), 

So< = So COS2Ar"T sin'vot sinArvt, 

(88) 

The behavior of this pulse sequence is depicted sche­
matically in Fig. 23 for l y,l' The Signal thus begins 
with zero intensity, but the average intensity during 
evolution after the second pulse is proportional to the 
double quantum free induction decay. A convenient way 
to detect the double quantum decay is to Fourier trans­
form So< + iSy and plot the intensity of the transform ver­
sus T for the quadrupolar frequency of interest. A sec­
ond Fourier transformation then yields the double quan-

o 
Y,I 

0.8 

0.6 

lIv=O 

Pulse Sequence, 

KHz X "R 
4 

fLsec 

60n 

KHZ, y ,'-___ / 

30 4 
fLsec fLsec 

0.4~---;;;---:---:l:---:l:----.l-_..J 
-20 a 10 20 30 40 

v
Q 

(KHz) 

FIG. 22. Efficiency of detecting a.,1 (created perhaps after 
two weak pulses) by two strong pulse sequence. The distortion 
induced by this sequence in detecting double quantum coher­
ence will also contribute to the final line shape. The value of 
ay,l' the detected Signal at the arrow (near the echo maximum), 
is plotted as a function of Vo and shows very little distortion 
even for wQ = ~w1' 
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T 

, 
X \ 

\ 

FIG. 23. Evolution and detection of double quantum coherence 
by simple two pulse sequence. The expressions on the figure 
are written for the ideal case of a pure double quantum rr/2 
pulse (wI «wo) followed by a normal single quantum rr/2 pulse 
(wI» wo) starting with a density matrix Po =1.. Fourier trans­
formation of the signal yields a dispersionlike line with inten­
sity proportional to (1.,2(T) = COS2IiwT. 

tum spectrum. This is a special case of two-dimen­
sional spectroscopy. 12 If there is a distribution of IJJO 
as in a powder, the double quantum i1T condition cannot 
be met everywhere yielding characteristic line shapes.!3 
This is discussed in the next section. 

VII. EXAMPLES 

In this last section we shall discuss some possible 
pulse sequences for the detection of the chemical shifts 
of spins with 1 = 1. The idea of detecting the coherence 
of the double quantum transition has been shown to be 
useful for the determination of chemical shifts values in 
single crystals and polycrystalline samples. The quad-

rupolar broadening is eliminated in the double quantum 
transition and the dipolar coupling can be eliminated by 
diluting the deuterium in a protonated host and spin de­
coupling the protons. 

A. Single crystals 

The fact that there are a finite number of discrete IDO 
values present in a measurement on a oriented single 
crystal makes it possible to detect the chemical shift 
value (j of a particular nucleus by a two pulse sequence 
as discussed at the end of the last section. In the ideal 
case in which we can apply pulses with either 'Dl « IDO 
or IDl» 'DO the pulse lengths are determined by the con­
ditions in the previous section. However, in practice 
it is not always possible to obtain these ideal pulses and 
we have to deal explicitly with the actual parameters 
(WI' tp ) of the pulses and the exact solutions for the 
density matrix and signal intensities. If we conSider a 
deuterium nucleus in a crystal with a single well de­
fined value Wo and we assume that the rf irradiation 
strength WI always satisfies 'Dl» Ow + (j'DO, where OW 

is the offset frequency of irradiation and (j is the un­
known chemical shift (in ppm), we can derive the ex­
pliCit expressions for the spin density matrix. The 
basic idea for the detection of (j is to apply two pulses; 
the first pulse to create the coherent state 1.,2 and the 
second to monitor it in the form of a Signal. Consider 
as an example Fig. 20(c) using the simplest pulse se­
quence. The density matrix after the first pulse, ap­
plied to a spin system in thermal equilibrium, with in­
tensity '''1 and length tp,l is given by (not assuming WI 

« wo) 

p(tp1 ) = 2b{[cos2 8/2 cosi('JJ. - wo) tp1 + sin2 8/2 cosH". + wo) tp1 ]I ',1 

- (cos2 8/2 sini(I...,. -wo)tp1 - sin2 8/2 sinh,...,. +1""0) tpd 1.,2 

+ !-sin 8 [sini(,...,. + wo) tp1 + sini (ID, - wo) tpd 1 y,l + i sin8 (cosi(''''', + 'DO) tp1 - cosi (I...,. - '''0) tpd 1 y,2} , (89) 

with 

w~ =41""~ +,...,~ and 8=tan-1(2'Dtf,...,0). 

The optimal preparation pulse makes the coefficient of 
1",2 one, i. e., a",2 = 1. We require, therefore, that t.he 
1 1 and 1 2 coefficients are zero, so as to make the Slg-

)" )I, 

nal intensities after this pulse zero. This condition 
becomes from (89) 

i. e., 

tpi = 21Tk/ID. k = 1, 2, ... 

For this condition, Eq. (89) becomes 

p(tp1 ) = 2b [cos!- (,''. - '.0)0) tp1 1.,1 

(90) 

(91) 

-Si~('D.-I""O)tp1I.,2]' (92) 

In the ideal case we make the coefficient of 1.,2 equal to 
one in (92) by 

Together with the definition of 'D. and Eq. (91) we ob­
tain 

2m-1 
tp1 =---1T, 

'JJQ 
(93) 

k,m=1,2, .•• , k2:m. 

(94) 
In Fi g. 24 the values for tp1 and WI are plotted as func­
tions of Wo for m = k -= 1 and m = k = 5. From such graphs 
we can determine appropriate WI and t;s for the ex­
perimental 1""0' After this preparation pulse we let 
p(tp1 )=2bl.,2 evolve over a period of T and apply the 
second pulse when 

p(T) = 2bI.,2 cOS2(0'D +m...,o) T 

-2bl.,3 sin2(0ID+(jwo)T. (95) 

If we measure the signal intenSity, Sy, t:.t seconds after 
the second pulse and we take t:.t« 1/01..." then any strong 
pulse gives an intenSity proportional to a.,2(T) 
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FIG. 24. Allowed values of tJ>1 and VI as a function of Vo to 
produce pure 90° double quantum pulse from exact calculations. 
The integers k and m are defined in Eqs. (91)-(94) in the text. 

=2bcos2(o,.., +ar"'o)r. The signal intensity after a sec­
ond pulse in the x direction is seen from Table IV to 
be proportional to 

(96) 

and the proportionality factor is a function of the pulse 
length and height and of the value of ''''0' In the ideal 
case of an infinitely strong x pulse we obtain for the Sy, 
t seconds after the pulse, 

Sy(t) = So cos2(ow + a'.., 0) T sinr"'ot cos(o,.I! + a'.., 0) t. (97) 

The double quantum decay can thus be plotted as a func­
tion of T. The result aft~r an arbitrary pulse can be 
written as 

Sy(t) = Soaycos2(Or.., + ar..,o) T sin(wot + ¢), 

where 

ay = (ay, 1 (0) + ay,2(0»1/2, 

¢ =tan-1[ay,1(0)/ay,2(0)] , 

(98) 

(99) 

and ay,l(O) and ay,2(0) are the initial coefficients of l y,l 
and 1 y,2 just after the second pulse. To demonstrate the 
dependence of ay and ¢ on the parameters of the second 
pulse and on the value of ''''0 we show in Fig. 25 the ex­
act calculated aY,l(O) and aY ,2(0) values of the density 
matrix after a pulse of length tp = 3 jJ.sec and of height 
Vl = 60 kHz applied on p(T) = 1.,2' It is clear that this 
projection of the density matrix on the y-coordinate 
system is strongly dependent on Wo and that the ay and 
¢ values in Eq. (98) are different for different rJJQ val­
ues. 

1. Second order quadrupole shift 

Before discussing some aspects of the double quantum 
coherence measurements on polycrystalline samples, 

we shall make some comments on the higher order cor­
rections which we must consider in doing chemical shift 
measurements. 

The quadrupole Hamiltonian as it was defined in Eq. 
(12) is only taken to first order with respect to the ex­
ternal magnetic field -wol.. There are, however, mea­
surable second order effects, which will shift the mea­
sured Wo values by an amount 

W~2> = ('JJV12 r"'0)i'(sin2 2 e+ sin4 e) (100) 

with the definition of Eq. (12) and the assumption of a 
symmetric quadrupole tensor. A straightforward cal­
culation shows that this correction adds up to the Ham­
iltonian in the rotating frame as 

JC = - 2(Or.., + a,.uo) 1.,1 + 2r..,g> 1.,1 + ~rJJo(I :<,3 - 1 y,3)' 

This result shows us that this second order correction 
is indistinguishable from the chemical shift tensor and 
that it must be calculated and subtracted from the mea­
sured value ar..,o + ,..,~2>. In a magnetic field of - 4. 5 T 
the correction can introduce a shift in a of the order of 
1 ppm for ''''0 -100 kHz. We now go over to discuss 
some aspects of measurements on polycrystalline sam­
ples. 

B. Polycrystalline samples 

In this paragraph we discuss the measurements of 
the chemical shielding tensor in polycrystalline sam­
ples. The distribution of Wo values in a powder sam­
ple complicates the detection of the chemical shift pat­
tern as depicted schematically in Fig. 26. In particu­
lar, as was discussed in the former sections, the prep­
aration of the double quantum coherence and its detec­
tion is strongly dependent on the quadrupolar frequen­
cy wo' The simplest pulse sequence for the detection 
of awo is the two pulse sequence shown in Fig. 20(c). 
After the first pulse we obtain a value of the coefficient 
of 1.,2 which will now be Wo dependent, a.,2(wO)' In 

One Pulse on p = IZ2 
1 

v, = 60 KHz 

t P = 3 J.Lsec 

°y2 

-1 °y1 
1 

0 

120 

90 

60 -60 

30 -;:;- -30 

FIG. 25. Application of single pulse of intenSity VI = 60 kHz 
and duration 3 J.Lsec applied to ~T) =/.,2' Shown are the values 
of ay,1 and a y ,2 on the circular arc as a function of vo. This 
demonstrates the distortion in amplitude ay and phase dJ from 
Eqs. (98) and (99) in detecting the double quantum coherence 
with sequence 20(c). 
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/Wo\ 
/ \ 

/ \ 
/ \ 

/ \ 
I \ 

/ \ 
/ \ 

/ \ 

Wo 

FIG. 26. Schematic representation of powder pattern for deu­
terium with axially symmetric electric field gradient and 
chemical shift terms. We wish to determine the chemical 
shift anisotropy which is broadened tremendously by the quad­
rupolar splittings. 

the ideal case we would like to obtain a.,a(wo):::: 1, but 
this is not possible practically over the whole (.t!Q range. 
We therefore apply a first pulse which will make a.,z(wQ) 
maximum over the range of (.t!o , s. The optimization can 
be determined by a high speed computer calculation and 
these procedures will not be discussed here. In Fig. 
16 an a.,2(wO) plot is shown for the case of one pulse 
with a maximum value of 1'0 = 120 kHz. Except for the 
values of I'g near I'Q = 0, the a.,a('.t!Q) values are larger 
than 0.6, if we take Pj(I.t!Q)=f.,l' To obtain the effi­
ciency of the detection of the double quantum coherence 
Q(T,Wg ), we calculate the observable aY,l(WO) after the 
second x pulse originating from a.,a(WQ) just before this 
pulse. The product of a.,a(I.t!Q) after the first pulse and 
this ay,2('.t!0) will yield the efficiency of the measurement 
of double quantum coherence for the different I.t! 0 values. 
We shall call this product the double quantum transfer 
junction. Again, in the ideal case this transfer func­
tion would be one over the whole 1.t!0 range. In Fig. 
27(a) we show a transfer function of a two pulse se­
quence calculated for ay,l just after the second pulse. 
This illustrates the type of distortion which will be ob­
tained in the Fourier transform double quantum spec­
trum as a function of 1.t!0' We shall of course have for 
every function a value of zero for 1.t!0 = O. Knowing the 
transfer function we are able to predict the high resolu­
tion spectrum for an experiment where the total signal 

Sy= f dWOaY,l((.t!O) 
all "'0 

is measured just after the second pulse as a function 
of the time between the pulses, T. We need, however, 
to know the relative orientations of the electric quad­
rupole tensor and the chemical shielding tensor. 

Before we show an actual calculation of a high resolu­
tion double quantum chemical shift powder spectrum, 
we realize that in practice Sy cannot be obtained just 
after the second pulse due to detector recovery time. 

In Fig. 27(b) we show again the transfer function for 
the same conditions as in Fig. 27(a), if we wait 30 iJ,sec 
to detect S~ after the second pulse due to receiver dead 
time. Due to the '.t!g dependence of a y,l after the pulse 
we do not obtain a useful transfer function and we are 
forced to use other pulse sequences. A good example 
for detection of the double quantum decay is the pulse 
sequence of Fig. 20(a). With this sequence we store 
the a.,a(IUo) coefficients in the coefficients of f.,1' This 
was discussed in the last section and a calculated 
a.,l('.t!O) after the second pulse is shown in Fig. 21. If 
we wait now more than T2 seconds and we apply a third 
pulse the signal Sy will be proportional to the coherence 
a.,2 before the second pulse, i. e., will map out the 
double quantum decay. In Fig. 28(a) the transfer func­
tion for this kind of experiment is shown. Again opti­
mization techniques must be used to obtain the best 
maximum transfer function; comparing Fig. 27(a) and 
Fig. 28(a), we see that the first result is somewhat 
favorable over the second, although we realize that the 
rf irradiation strength is not much larger than wQ and 
that therefore ay,l is generated instead of ay,z, To 
overcome the problem of not being able to measure S~ 
just after the strong pulse, we combine the pulse se­
quences of Fig. 20(a) with 20(b). In combining these 
two sequences we obtain an echo signal after the fourth 
pulse which has an amplitude almost equal to the value 
of Sy just after the third pulse. The corresponding 

(0) iLJl KHz 
c 1.0 34 

~ 0.8 
KHz ,/ 

c 

" 15 4 
"- 0.6 !,sec }Lsec 

'" in 0.4 c 
0 

0.2 ,:: 
a 

1.0 ~ 34 KHz 30 
KHz I'sec. / 

15 4 
0.8 I'sec I'sec 

c 0.6 
g 

0.4 11 
=> 0.2 "-
:;; a 
] 
0 -0.2 .= 

-0.4 

-0.6 

-0.8 

-1.0 

-60 -30 o 30 60 90 120 
va (KHz) 

FIG. 27. Double quantum transfer function, L e., detected 
signal a"l at position of arrow for two pulse sequence. The 
first weak pulse prepares the double quantum coherence and 
the second stronger one monitors the decay. The line shape 
shows the type of distortion across the vo values for realistic 
and optimal values of the parameters. In (a) the signal inten­
sity is calculated immediately after the pulse. Since this 
practically is impossible, (b) shows the effect of detecting 
after 30 /lsec. The distortion would make this essentially use­
less for application to a powder. This can be alleviated using 
an echo. 
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(a) 

1.0 ruhl° KHz 
34 

KHz X X T X 
2 ,/ 

15 15 4 

0.8 
fLsec fLsec fLsec 

c 
0 
't; 0.2 
c 
::l 0 u. 

.2! 
II> 
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I-
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FIG. 2~. Dctected signal a.,l at position of arrow for three 
and four pulse sequences. (a) Shows the detection of double 
quantu m coherence prepared and stored by two weak pulses. 
In (b) the practically more useful case of a spin echo is shown. 
This shows that an appreciable amount of double quantum co­
herence is prepared and detected over the whole vQ range. 

transfer function for this four pulse sequence is shown 
in Fig. 28(b) and can be compared with the results of 
Fig. 29(a). These results are indeed very good if we 
realize that the irradiation strength was much smaller 
than the extreme wQ values. 

To calculate the expected polycrystalline chemical 
shift line shape from the double quantum decay for the 
pulse sequence of Fig. 28(b) we assume as a simple 
example that the electric field gradient tensor and the 
chemical shift tensor are axially symmetric with their 
symmetry axes parallel. The result is shown in Fig. 
29(a) and is compared with the real line shape function 
that we should have measured if there were no quad­
rupole interaction in the powder sample. In Fig. 29(b) 
we show a similar result for the two pulse sequence. 
These theoretical results show that it is indeed pos­
sible to detect high resolution double quantum spectra 
from polycrystalline samples and that by choosing the 
proper pulse sequences all information about the chemi­
cal shielding can be obtained. In practice the results 
of Figs. 28 and 29 will be broadened and part of the 
complicated line shape will not be observable. It is 
also clear that for other relative orientations of the 
quadrupole and the shielding tensor the distortion of the 
double quantum spectrum will be different, so that from 
the line shape we can say something about the relative 
orientations of the electric field gradient and shielding 
tensors. Experimental results on polycrystalline sam­
ples will be shown in a separate paper. 13 

C. Double quantum phase shift and spin locking 

We saw in Sec. III that irradiating the spin-1 system 
near Wo with a field - W1I", such that '.1,)1 « WQ was ef-

fectively equivalent to irradiating it in the double quan­
tum frame with - (wVWQ)I.,3' In fact, the effective 
double quantum operator from Eq. (44) can be written 

(101) 

ignoring the commutative quadrupole term. The effec­
tive rf field is along the z,3 axis in this frame. We 
now enquire about the effect of the rf phase on the di­
rection of ,vV'.I,)Q in the double quantum frame. To do 
this we assume that an rf field is applied with arbitrary 
phase 1>, i. e., the rotating frame Hamiltonian has the 
form 

(102) 

Applying the same transformation as in Eq. (42) and 
assuming again 'v1 «wQ we find to a good approxima­
tion the effective double quantum Hamiltonian 

JC DQ '" - 2A:<>I.,1 - (r.l,)VwQ ) (I., 3 cos21> +1.,2 sin21», (103) 

where again the commutative term tWQ(I %,3 - I y,3) has 
been dropped. Thus an r:f phase shift of 1> corresponds 
to a shift of 21> in the double quantum frame. For ex­
ample, a phase shift of 90 0 causes the effective trans­
verse double quantum field to reverse sign. A phase 
shift of 45 0 would be used to effect double quantum spin 
locking. This would be done by applying a 90 0 double 
quantum pulse ('vU'.I,)Q)t=h transforming the denSity 
matrix from 1.,1 to 1.,2 and then phase shifting by 45" 
inducing spin locking of the density matrix by the opera­
tor (rvUwQ)I.,2' The phase effects are summarized 
schematically in Fig. 30. 
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.~ 

~ 4 d KHz 

34 
KHz ,/ 

15 4 
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(b) 

o -60 -30 60 90 120 

FIG. 29. Calculated Fourier transform double quantum spec­
tra for polycrystalline deuterium sample with axially symmet­
ric electric field gradient and chemical shift tensors having 
their symmetry axes parallel. The spectrum is obtained by 
multiplying the ideal chemical shift powder pattern (top solid 
line) by the functions for the corresponding pulse sequences in 
Figs. 28(b) and 27(a). 
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rf Irradiation 

Rotating Frame Double Quantum Frame 

~Pk 
X Y Z2 Z3 

Z 

~ 
X Y 

/t~~ 1 "f'"' 
~ ~ 

X Y Z2 Z3 

FIG. 30. Effect of rf phase on the double quantum phase. A 
phase shift of '" for wI in the rotating frame corresponds to a 
2 '" shift for the effective field wi! wQ in the double quantum 
frame. The absolute phases in each frame are arbitrary and 
were taken only for convenience of presentation. 

Both phase reversal and spin locking experiments 
have been performed successfully and the results are 
presented elsewhere. 14 

ACKNOWLEDGMENTS 

We are indebted to T. W. Shattuck and J. Murdoch 
for assistance with the calculations and to Professor 

E. L. Hahn and Professor R. A. Harris for some most 
interesting and valuable discussions. 

*Support of this work by the U. S. Energy Research and De­
velopment Administration, the National Science Foundation, 
and the Petroleum Research Fund administered by the Amer­
ican Chemical Society is gratefully acknowledged. 

tpresent address: Division of Isotope Research, Weizmann 
Institute of Science, Rehovot, Israel. 

Alfred P. Sloan Foundation Fellow and Camille and Henry 
Dreyfus Teacher Scholar. 

l(a) C. P. i:llichter, Principles of Magnetic Resonance (Harper 
and How, New York, 1963); (b) A. Abragam, Principl('s of 

Nuclear Magnrtism (Oxford U. 1'., Oxford, 1961). 
2/\. Pines, D .. J. Ruben, S. Vega, and M. Mehring, Phys. 

Rev. Lett. 36, 110 (1976); S. Vega, T. W. Shattuck, and A. 
Pines, Phys. Hev. Lett. 37, 43 (1976). 

·'II. Hatanaka, T. Terao, and T. Hashi, J. Phys. Soc. Jpn. 
39, H:l5 (1975); T. Hatanaka and T. Hashi, J. Phys. Soc . 
. Jpn. 39, 11:39 (1975). 

'n. G. Brewer and E. L. Hahn, Phys. Hev. A 11, 1641 (1975). 

5S • Vega, J. Chern. Phys. 63, 3769 (1975); S. Vega (to be 
published) • 

I'W. H. Frazer, Elementary Particles (Prentice Hall, l'<ew 
.Jc:rsey, 1966): T. W. Shattuck, Ph. D. thesis, Berkeley, 
1976. This also describes the application of double quantum 
concepts and experimental techniques to high resolution deu­
terium nmr in solids and double quantum cross polarization. 
A similar definition of SU(3) operators in the basis of It is 
also possible. 

'In. P. Feynman, F. L. Vernon, and H. W. Hellwarth, J. 
Appl. Phys. 28, 49 (1957). 

I'W. de Boer, Phys. Hev. B 12, 828 (1975). 
9B . C. Sanctuary, J. Chern. Phys. 64, 4352 (1976); E. Ari­

mondo and G. Moruzzi, J. Phys. B 9, 723 (1976). 
IliA. G. Hedfield, Phys. Hev. 98, 1787 (1955); W. -K. Hhim, 

A. Pines, and J. S. Waugh, Phys. Rev. B 3, 684 (1974). 
llJ. S. Waugh (private communication). 
I:W. P. Aue, E. Bartholdi, and R. n. Ernst, J. Chern. Phys. 

64, 2229 (1976). 
11S. Vega, D. E. Wemmer, and A. Pines (to be published). 

14S. Vega and A. Pines, Proc. 19th Ampere Congress, Heidel­
berg, 395 (1976). 

J. Chem. Phys., Vol. 66, No. 12, 15 June 1977 


