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We use symmetry arguments and simple model systems to describe the conversion of the singlet
state of parahydrogen into an oscillating sample magnetization at zero magnetic field. During an
initial period of free evolution governed by the scalar-coupling Hamiltonian HJ, the singlet state is
converted into scalar spin order involving spins throughout the molecule. A short dc pulse along the
z axis rotates the transverse spin components of nuclear species I and S through different angles,
converting a portion of the scalar order into vector order. The development of vector order can be
described analytically by means of single-transition operators, and it is found to be maximal when
the transverse components of I are rotated by an angle of ±π /2 relative to those of S. A period of
free evolution follows the pulse, during which the vector order evolves as a set of oscillating co-
herences. The imaginary parts of the coherences represent spin order that is not directly detectable,
while the real parts can be identified with oscillations in the z component of the molecular spin
dipole. The dipole oscillations are due to a periodic exchange between Iz and Sz, which have differ-
ent gyromagnetic ratios. The frequency components of the resulting spectrum are imaginary, since
the pulse cannot directly induce magnetization in the sample; it is only during the evolution un-
der HJ that the vector order present at the end of the pulse evolves into detectable magnetization.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4805062]

I. INTRODUCTION

The use of parahydrogen to hyperpolarize nuclear-spin
samples1 has proven to be an efficient and versatile technique
in nuclear magnetic resonance (NMR). Parahydrogen can be
added chemically to a substrate molecule,2, 3 or it can be cou-
pled reversibly to a ligand within a metal complex.4, 5 Spin
order originating from parahydrogen has been exploited for a
variety of applications, including medical imaging,6 elucida-
tion of reaction mechanisms,7 generation of long-lived spin
states,8, 9 imaging of catalysis,10 and quantum computing.11

Recent experiments12, 13 have demonstrated that the sen-
sitivity of zero-field NMR spectroscopy can also be en-
hanced by parahydrogen-induced polarization (PHIP). Zero-
field NMR14–17 shows promise as a tool complementary to
conventional high-field NMR, both with regard to informa-
tion content and instrumentation. For heteronuclear spin sys-
tems in liquids, the zero-field spectrum is determined by a net-
work of scalar couplings that extends throughout the molecule
and is sensitive to microscopic degrees of freedom. This net-
work is qualitatively different at zero field than at high field,
since scalar couplings in zero-field systems are not truncated
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by the fast precession of spins at different Larmor frequen-
cies. Linewidths in the resulting spectra are narrow,14–16 due
to the elimination of inhomogeneities associated with strong
applied fields. The use of an atomic magnetometer for sig-
nal detection18–20 allows for a low-cost, portable21 spectrom-
eter that does not require cryogens. Samples can be prepo-
larized by thermal equilibration in an external magnetic field
and then shuttled into the zero-field detection region.14, 16 An
alternative to thermal prepolarization is to use a hyperpolar-
ization method; in particular, zero-field PHIP yields strong
signals without the need for isotope enrichment or sample
shuttling.12, 13

The singlet state of parahydrogen has no dipole moment,
and the spherical symmetry of this state must be broken in
order to convert the singlet into a detectable magnetization
in the sample. A variety of methods have been developed for
performing this conversion of spin order under various exper-
imental conditions, and an underlying theme of these meth-
ods is the use of a difference in Larmor frequencies to break
the spherical symmetry of the initial state. For polarization
of H nuclei, chemical-shift differences are typically used to
break the symmetry of the singlet,1–3 while schemes for po-
larizing heteronuclei exploit frequency differences associated
with distinct gyromagnetic ratios.22

In zero-field experiments that use PHIP, the spherical
symmetry is broken by means of a short dc pulse that causes
different nuclear species to precess through different angles.
The pulse follows an initial polarization period during which
parahydrogen is introduced into the sample. Free evolution

0021-9606/2013/138(23)/234201/21/$30.00 © 2013 AIP Publishing LLC138, 234201-1

http://dx.doi.org/10.1063/1.4805062
http://dx.doi.org/10.1063/1.4805062
mailto: mrkcbutler@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4805062&domain=pdf&date_stamp=2013-06-21


234201-2 Butler et al. J. Chem. Phys. 138, 234201 (2013)

under the scalar-coupling Hamiltonian causes spin order to
spread through analyte molecules during this period. The spin
evolution can begin with a hydrogenation reaction that in-
corporates parahydrogen into the molecule,12 or with the re-
versible binding of parahydrogen and the analyte molecule
to the same metal complex (nonhydrogenative PHIP, or NH-
PHIP).13 In the case where the molecule binds to a metal
complex, the polarization period is divided into subperiods
governed by distinct spin Hamiltonians, since dissociation of
the molecule from the complex changes the network of scalar
couplings, as well as causing the loss of correlations between
the spins of the analyte molecule and the spins remaining in
the complex.5 After the polarization interval, the spin state is
an average over different periods of free evolution. Since the
initial spin state and the scalar-coupling Hamiltonian HJ are
both spherically symmetric, the density matrix corresponding
to the averaged spin state is a scalar operator.

When the scalar spin order involves distinct nuclear
species I and S, its symmetry can be broken by a dc pulse.
The components of I and S transverse to the magnetic field of
the pulse precess through different angles, and a portion of the
scalar order is converted to vector order, i.e., spin order that
transforms as a vector under rotations of the full spin system.
After the pulse, the vector order evolves under HJ, yielding an
NMR signal.

This paper describes the conversion of the singlet state
of parahydrogen into an oscillating sample magnetization in a
zero-field environment. The symmetry of the initial state, the
scalar-coupling Hamiltonian, and the pulse Hamiltonian im-
pose significant constraints on the evolution; we present a de-
scription of zero-field PHIP and NH-PHIP that takes account
of these constraints and highlights aspects of the spin physics
that can be understood qualitatively. Simple model systems
are used for purposes of illustration. The main body of the
paper is divided into three sections, which separately discuss
the development of spin order during the polarization period,
the conversion of the scalar order into vector order by means
of the pulse, and the evolution of the vector order during the
detection period.

II. DEVELOPMENT OF SCALAR SPIN ORDER

We begin by considering the polarization period, in
which a singlet state involving two protons I1 and I2 devel-
ops into scalar order involving multiple spins in the molecule.
For simplicity, we neglect the effects of relaxation, and we
assume that I1 and I2 are introduced suddenly into an unpo-
larized network of coupled spins, without perturbation of the
singlet.1, 5 The initial density matrix is

ρ0 = 1

4
− I1 · I2,

where normalization has been neglected. The density matrix
representing the system at the end of the polarization period
is denoted by ρ1.

Since the experiments currently of greatest interest in-
volve rare heteronuclei at natural abundance, we assume
throughout this paper that the molecule contains protons In

and a single heteronucleus S = 1/2. For an N-spin system, the

scalar-coupling Hamiltonian is

HJ =
N−1∑
n=1

2πJSn S · In +
∑
m<n

2πJmn Im · In,

where JSn and Jmn are coupling constants that are convention-
ally expressed in Hz. (Consistent with this convention, energy
eigenvalues are expressed in Hz throughout this paper.) The
gyromagnetic ratios of the two nuclear species are denoted by
γ I and γ S. The summed angular momentum of the protons is

I =
N−1∑
n=1

In, (1)

and the total angular momentum is

F = S + I.

Section II A analyzes the evolution of the three-spin sys-
tem in the case where parahydrogen is chemically added to a
substrate molecule. An analytic expression for the density ma-
trix ρ(t) is derived, and the oscillating spin order is found to
include contributions from two-spin scalar products as well as
from the scalar triple product. Averaging over the oscillations
of ρ(t) gives a formula for ρ1. The discussion of this section
is complementary to previous analyses of formally equivalent
systems, which have obtained expressions for ρ1 without an-
alyzing the time evolution of the spin order.9, 23 In the case
where two of the three scalar couplings are truncated due to
the presence of a strong magnetic field, a detailed description
of the evolution has previously been given,24 and the discus-
sion in Sec. II A provides a similarly detailed description for
a system in which none of the scalar couplings is truncated.

While this approach can in principle be extended to larger
systems, our initial investigations showed that the descrip-
tion is significantly more complicated for the four-spin sys-
tem than for the three-spin system. For larger systems, an al-
ternative approach is needed for qualitative understanding of
the spin physics. Sections II B and II C describe the spin or-
der present in the N-spin system at the end of the polariza-
tion period, emphasizing simplifications associated with the
spherical symmetry of the initial state and the scalar-coupling
Hamiltonian HJ. Section II B shows that for zero-field exper-
iments in which parahydrogen is added chemically to a sub-
strate molecule, the development of scalar spin order can be
associated with a change of basis: the initial density matrix ρ0

has a simple structure in a basis obtained by addition of an-
gular momenta, while ρ1 has a simple structure in a basis of
energy eigenstates. Mixing of angular-momentum manifolds
for the change of basis is governed by a set of multidimen-
sional rotation matrices RF, each labeled with a distinct value
of the total angular momentum F. The details of the scalar-
coupling network affect the spin order represented by ρ1 only
through these rotation matrices. In Sec. II C, we show that for
zero-field PHIP and NH-PHIP, ρ1 can be expressed as a linear
combination of simple scalar operators. This expansion of ρ1

is used in Sec. III to analyze the development of vector order
during the pulse.

In order to avoid obscuring the qualitative content of the
analysis with abstract arguments, we focus much of the dis-
cussion in this paper on the three-spin system. The results
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FIG. 1. Addition of parahydrogen to dimethyl acetylenedicarboxylate to
form dimethyl maleate. When the reaction product contains a single 13C nu-
cleus in the vinyl group, the hyperpolarized molecule can be modeled as a
three-spin system.

obtained by considering the symmetry of this system can be
generalized to N spins using arguments outlined in the discus-
sion. For purposes of illustration, we frequently adopt the fur-
ther simplifying assumption that the coupling between spins
S and I1 is much stronger than the couplings involving I2:

|JS1| � |JS2|, |J12|. (2)

Relation (2) allows the weak couplings to be treated as a per-
turbation. In addition to serving as an example, the three-spin
system with one strong coupling is interesting because there is
a simple physical interpretation of the development of scalar
order in the system, discussed in Sec. II B 2.

Figure 1 shows an experimental example of a three-
spin system, obtained by adding parahydrogen to dimethyl
acetylenedicarboxylate to form dimethyl maleate (DMM).
For experiments in which 13C is present at natural abundance,
the signal is primarily generated by molecules that have a sin-
gle 13C nucleus. The isotopomer of DMM with 13C in the
vinyl group can be modeled as a three-spin system, since
the couplings between the vinyl group and the methyl pro-
tons are weak. Consistent with (2), this system has a strong
single-bond coupling JS1 ≈ 170 Hz and two weak couplings
|JS2|, |J12| � 10 Hz between nuclei separated by more than
one bond. The zero-field spectrum of hyperpolarized DMM is
presented in Sec. IV.

A. Evolution of the three-spin system

We first consider the coherent evolution of a three-
spin system obtained by adding parahydrogen to a substrate
molecule, as in Fig. 1. Experimentally, hydrogenation occurs
continuously during a polarization period in which parahy-
drogen is bubbled through the sample in the presence of a ho-
mogenous catalyst. With the effects of relaxation neglected,
the density matrix ρ1 that represents the resulting ensemble
of polarized molecules is found by taking the time average of
ρ(t), the density matrix that describes the coherent evolution
of a hydrogenated molecule.

The coherent evolution is governed by the Liouville-von
Neumann equation,

dρ

dt
= −i [HJ , ρ] , (3)

where

HJ = 2π (JS1 S · I1 + JS2 S · I2 + J12 I1 · I2) .

We define the operator

� = I1 · (I2 × S). (4)

This definition is motivated by the observation that

i� = [I1 · I2, S · I1] = [S · I1, S · I2] = [S · I2, I1 · I2] , (5)

an identity obtained by means of commutator algebra. Substi-
tuting ρ0 into the right side of Eq. (3) and using Eq. (5) to sim-
plify shows that the derivative dρ/dt is initially proportional to
�. Since the commutator of � with any scalar-product oper-
ator is itself a linear combination of scalar-product operators,
the higher-order derivatives of ρ(t) are contained in the space
spanned by the operators I1 · I2, S · I1, S · I2, and �. During
a period of coherent evolution, the density matrix can thus be
written as

ρ(t) = a(t)I1 · I2 + b(t)S · I1 + c(t)S · I2 + g(t)�, (6)

where the term proportional to the identity has been dropped.
Substitution of Eq. (6) into Eq. (3) and evaluation of the

commutators yields

dρ

dt
= g(t)

2
(αI1 · I2 + βS · I1 + γ S · I2)

−[α a(t) + β b(t) + γ c(t)]�, (7)

where

α = 2π (JS1 − JS2) ,

β = 2π (JS2 − J12) ,

γ = 2π (J12 − JS1) .

Since

dρ

dt
= d

dt
a(t) I1 · I2+ d

dt
b(t) S · I1+ d

dt
c(t) S · I2+ d

dt
g(t) �,

it follows that

d

dt
a(t) = α

2
g(t),

d

dt
b(t) = β

2
g(t),

(8)
d

dt
c(t) = γ

2
g(t),

d

dt
g(t) = −[α a(t) + β b(t) + γ c(t)].

Differentiation of the last line gives

d2

dt2
g(t) + α2 + β2 + γ 2

2
g(t) = 0. (9)

From the normalized density matrix for the three-spin
system, we obtain a(0) = −1/2 and b(0) = c(0) = g(0) = 0.
The solution to Eq. (9) determined by these initial conditions
is

g(t) = α

2ω
sin ωt, (10)

where

ω =
√

(α2 + β2 + γ 2)

2
.
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FIG. 2. Energy levels for the three-spin system. Each energy level is an angular-momentum manifold with a well-defined value of F. The degenerate states are
labeled with MF, the z component of total angular momentum. On the right side of the figure, energies are expressed in Hz. Since the initial density matrix has
no population in the manifold with F = 3/2, the evolution is restricted to the space spanned by the two manifolds with F = 1/2. The system therefore oscillates
only at frequency ω/2π , which corresponds to the energy difference between these two manifolds.

Substitution of Eq. (10) into the first three lines of Eq. (8) and
integration of the differential equations gives

a(t) = −1

2
+ α2

4ω2
(1 − cos ωt),

b(t) = αβ

4ω2
(1 − cos ωt), (11)

c(t) = αγ

4ω2
(1 − cos ωt).

An interesting feature of Eqs. (10) and (11) is that the
evolution of ρ(t) simply consists of oscillations at angular
frequency ω. To understand this result, we first note that
since HJ is invariant with respect to rotations of the full spin
system, the energy eigenstates can be grouped into degen-
erate angular-momentum manifolds. Formally, this property
of the eigenstates follows from the fact that HJ commutes
with F, the vector operator for the total angular momentum.
Figure 2 shows the energy levels of the system, which con-
sist of two manifolds with F = 1/2 and one with F = 3/2, the
values obtained by adding the angular momenta of three spins
1/2. In general, coherences at three different frequencies can
contribute to the evolution. However, ρ0 has no population in
the manifold with F = 3/2, since the system consists of a het-
eronucleus S = 1/2 and a two-spin singlet with I = 0, where I
is the proton angular momentum defined by Eq. (1). The ini-
tial angular momentum of the system is therefore F = 1/2,
and since this value is conserved during evolution governed
by HJ, coherences involving states of the F = 3/2 manifold
do not develop. The system can oscillate at only a single fre-
quency, determined by the energy difference between the two
F = 1/2 manifolds.

Another interesting property of the evolution is that

d

dt
[a(t) + b(t) + c(t)] = 0,

as can be seen from Eq. (8), in combination with the fact that
α + β + γ = 0. This restriction on the evolution is due to the
form of HJ, rather than the initial state. The sum (a + b + c)

is conserved because the operator

I1 · I2 + S · I1 + S · I2 = 1

2

(
F2 − I2

1 − I2
2 − S2

)
commutes with HJ. A similar conservation law holds for the
N-spin system: the sum of the coefficients of all scalar-product
operators is constant.

We assume that the polarization period is long compared
to the characteristic time for evolution under HJ. Since hy-
drogenation occurs continuously as parahydrogen is bubbled
through the sample, the ensemble of hydrogenated molecules
present at the end of the polarization period is represented
by the time average of ρ(t). Replacing the coefficients of
Eqs. (10) and (11) by their time-averaged components, we
obtain

ρ1 = 1

8
+

(
−1

2
+ α2

4ω2

)
I1 · I2

+ αβ

4ω2
S · I1 + αγ

4ω2
S · I2. (12)

Note that ρ1 does not include a contribution from the oper-
ator �. Appendix A shows that this is a consequence of the
different symmetries of � and ρ1 under time reversal.

In the case where the two protons have the same cou-
pling to the heteronucleus, Eq. (12) reduces to the formula for
the normalized initial density matrix ρ0. The scalar-coupling
Hamiltonian commutes with ρ0 in this case, and so the initial
singlet state does not evolve during the polarization period.
Since the pulsed magnetic field that follows the polarization
period induces a rotation of the proton spin order, the singlet
is preserved by the pulse, and there is no signal during the
ensuing detection period. This conclusion can be generalized
to the N-spin system: there is no signal if heteronuclear scalar
order does not develop during the polarization period, since
proton scalar order is preserved by the pulse. In particular,
there is no signal when all protons have the same coupling to
the heteronucleus.

Returning to the general case, we note that an alternative
description of the polarized three-spin system can be found
by expressing ρ1 in the eigenbasis of HJ. Straightforward
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FIG. 3. Simulated evolution of the scalar spin order in the isotopomer of dimethyl maleate that has 13C in the vinyl group. The molecule is modeled as a
three-spin system containing protons I1 and I2 and a 13C nucleus S. The curves represent the oscillating coefficients in the expansion of the density matrix given
by Eq. (6). In the lower-right corner of the figure, each curve is labeled with the corresponding operator from the expansion. (a) Coherent evolution starting
from the singlet state at time t = 0. (b) Averaging of the spin order during a polarization period in which hydrogenation occurs continuously as parahydrogen
is bubbled through the sample. The coupling constants used in the simulations were JS1 = 167.2 Hz, JS2 = −2.2 Hz, and J12 = 13.0 Hz, consistent with the
simulation of the experimental zero-field spectrum shown in Fig. 5.

algebraic manipulations show that ρ1 is diagonal in this ba-
sis, and the population of a state with angular momentum
F = 1/2 and energy

En = −1

4
(JS1 + JS2 + J12) ± ω

4π
(13)

is

ρnn = 1

4
∓ π (−JS1 − JS2 + 2J12)

4ω
. (14)

The development of scalar spin order in a three-spin sys-
tem is illustrated in Fig. 3, which shows how the isotopomer
of dimethyl maleate with 13C in the vinyl group evolves dur-
ing the polarization period. Oscillations in the spin order are
quickly averaged to a negligible level, and the initial spin
order (−1/2) I1 · I2 evolves into the sum of scalar products
given by Eq. (12). Although ρ(t) includes a significant con-
tribution from � during the coherent evolution, as shown in
Fig. 3(a), this contribution does not survive the averaging
process shown in Fig. 3(b). From Eq. (8), the coherent evo-
lution can be interpreted as an interconversion of � and the
scalar-product terms, roughly analogous to the exchange be-
tween potential and kinetic energy in a harmonic oscillator. A
maximal coefficient for � corresponds to fast change in the
coefficients of the scalar products, which evolve to their ex-
trema as the coefficient of � reaches zero. Formally, � oscil-
lates ±90◦ out of phase with the scalar-product terms.

B. Structure of the scalar order

For experiments in which larger systems are polarized by
means of PHIP or NH-PHIP, the structure of the spin order
present at the end of the polarization period can be character-
ized by taking account of the constraints imposed by the sym-

metry of the initial state and the Hamiltonian. Section II B 1
discusses the structure of the spin order in a three-spin system
obtained by adding parahydrogen to a substrate molecule. We
define basis sets B1 and B2, which, respectively, yield simple
forms for the initial density matrix ρ0 and for ρ1, the density
matrix representing the system at the end of the polarization
period. The constraints imposed by symmetry can be high-
lighted by considering the transformation of ρ0 from basis
B1 to B2. Section II B 2 presents an example calculation for
the three-spin system with |JS1| � |JS2|, |J12| and discusses a
physical interpretation of the spreading of scalar order in this
system.

1. Unpolarized manifolds

Expressing ρ0 and ρ1 in appropriate basis sets shows
how the structure of the spin order changes during the po-
larization period. For a three-spin system obtained by adding
parahydrogen to a substrate molecule, we use the Clebsch-
Gordan coefficients to calculate a basis set of states |F, MF, I〉,
where MF is the z component of the total angular momen-
tum, and I is the summed angular momentum of the two pro-
tons. Addition of I1 and I2 yields singlet and triplet manifolds
of I, and addition of S to these manifolds yields the states
|F, MF, I〉. The resulting basis set, which we denote by B1,
divides the state space into the three manifolds listed on the
left side of Table I. The population of the initial singlet state
is entirely contained in the manifold with quantum numbers
(F = 1/2, I = 0); indeed, the only nonzero elements of ρ0

in this basis set are the equal populations of the two states
|1/2, ±1/2, 0〉.

We noted in Sec. II A that the energy eigenstates
of the three-spin system can be grouped into degenerate
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TABLE I. Structure of the scalar order in a three-spin system obtained by
adding parahydrogen to a substrate molecule. The initial density matrix ρ0

is diagonalized by a basis of states |F, MF, I〉, where I is the summed an-
gular momentum of the two protons. These states can be grouped into the
manifolds listed on the left side of the table. The manifold with F = 3/2 is
a degenerate energy level with spin energy E1 = (JS1 + JS2 + J12)/4. At the
end of the polarization period, the density matrix ρ1 is diagonalized by a ba-
sis of energy eigenstates |F, MF, E〉. The corresponding manifolds are listed
on the right side of the table. The energies E2 and E3 and the population a,
which can be evaluated using Eqs. (13) and (14), depend on the details of the
scalar-coupling network.

Structure of the initial scalar order Structure of the final scalar order

Manifold Population Manifold Population

F = 3/2, I = 1, E1 0 F = 3/2, I = 1, E1 0
F = 1/2, I = 1 0 F = 1/2, E2 a

F = 1/2, I = 0 1 F = 1/2, E3 1−a

angular-momentum manifolds. The system includes a unique
manifold with F = 3/2, which is necessarily a degenerate en-
ergy level. However, the manifolds with quantum numbers
(F = 1/2, I = 1) and (F = 1/2, I = 0) do not in general consist
of energy eigenstates. For a given value of MF, the Hamilto-
nian HJ “selects” linear combinations of the two states

|u〉 = |F = 1/2,MF , I = 1〉,
(15)

|v〉 = |F = 1/2,MF , I = 0〉
as eigenstates |F = 1/2, MF, E〉, where E is the spin energy.
Since HJ is a scalar operator, the Wigner-Eckart theorem im-
plies that the coefficients used for these linear combinations
are independent of the value of MF. The 2 × 2 matrix R ob-
tained by diagonalizing HJ with respect to a pair of states |u〉,
|v〉 can thus be considered to govern the mixing of the mani-
folds (F = 1/2, I) to form manifolds (F = 1/2, E). Appendix A
shows that the energy eigenstates can be chosen such that R
is an orthogonal matrix, formally associated with a rotation of
the Euclidean plane. We let B2 denote the basis of eigenstates
chosen in this way.

The density matrix ρ1 of the polarized system can be
found by transforming ρ0 from basis B1 to basis B2 and
then eliminating off-diagonal matrix elements between states
of different energy, which correspond to oscillating coher-
ences that do not survive averaging over the distribution of
evolution times. As noted in Sec. II A, the coherences
present in the three-spin system are between eigenstates with
F = 1/2. The rotation R determines the initial values of these
coherences as well as the eigenstate populations that charac-
terize the polarized system. Formally, the details of the cou-
pling network affect the spin order represented by ρ1 only
through R.

Since the initial density matrix and the Hamiltonian
HJ are both scalar operators, ρ1 is also a scalar operator,
and it follows from the Wigner-Eckart theorem that ρ1 is
proportional to the identity within each angular-momentum
manifold formed from the energy eigenstates of basis B2.
At the end of the polarization period, the density matrix
is specified by the populations of these manifolds, as il-
lustrated by the right side of Table I. Physically, the sys-

TABLE II. Approximate energy levels of the three-spin system that has
|JS1| � |JS2|, |J12|. The zero-order eigenstates can be written in the form
|F, MF, F1〉, where the angular momentum F1 is the sum of S and I1. These
eigenstates are grouped into the degenerate angular-momentum manifolds
listed on the left side of the table. The energies are given to first order in the
weak couplings.

Manifold Spin energy

F = 3/2, F1 = 1 E1 = JS1/4 + (JS2 + J12)/4
F = 1/2, F1 = 1 E2 = JS1/4 − (JS2 + J12)/2
F = 1/2, F1 = 0 E3 = −3JS1/4

tem is unpolarized within these manifolds, because of the
lack of any preferred spatial direction. As we show in
Appendix B, this result can be generalized to an N-spin sys-
tem polarized by hydrogenative PHIP or by NH-PHIP: ρ1 can
be diagonalized by an energy eigenbasis B2 that divides the
state space into degenerate manifolds of F, with ρ1 propor-
tional to the identity within each manifold. For each of the
possible values of F, the manifolds formed by the states of
basis B2 are related through a multidimensional rotation RF

to manifolds obtained by addition of angular momenta. For-
mally, the scalar spin order that develops in a system polarized
by hydrogenative PHIP is determined solely by the rotations
RF, since the net effect of the evolution during the polariza-
tion period is to average to zero the initial coherences between
states of different energy.

2. Three-spin system with one strong coupling

We illustrate the conclusions of Sec. II B 1 with calcu-
lations for the three-spin system that has |JS1| � |JS2|, |J12|.
The zero-order energy eigenstates and first-order energies are
found by diagonalizing the perturbation

H1 = 2π (JS2 S · I2 + J12 I1 · I2) (16)

within each degenerate energy level of

H0 = 2πJS1 S · I1.

The eigenstates of H0 can be grouped into degenerate mani-
folds labeled with quantum numbers (F, F1), where

F1 = S + I1.

These manifolds are obtained by first adding angular mo-
menta S and I1 to form singlet and triplet manifolds of F1,
and then adding angular momentum I2, which yields states
|F, MF, F1〉. The states are grouped into the angular-
momentum manifolds listed in Table II.

With H1 treated as a weak perturbation, couplings be-
tween states that have distinct values of F1 are neglected,
because states derived from the singlet and triplet manifolds
of F1 have different energies under H0. In particular, state
|F, MF, F1〉 would have energy16

JS1

2
[F1 (F1 + 1) − S (S + 1) − I1 (I1 + 1)]

in the absence of the perturbation. Since H1 is a scalar oper-
ator, the Wigner-Eckart theorem implies that it cannot couple
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states with different values of F. The two manifolds in Ta-
ble II that have the same value of F have different values of
F1, and it follows that each manifold (F, F1) is a zero-order
energy level of H0 + H1.15

Following the discussion given in Sec. II B 1, we define
basis sets B1 and B2, where B1 consists of states |F, MF, I〉
and B2 consists of energy eigenstates |F, MF, F1〉. Note that
these two basis sets are both obtained by adding the angular
momenta of the three spins: for B1, the heteronucleus is added
last, while for B2, the weakly coupled spin is added last. The
states of B1 are ordered first by decreasing values of MF, sec-
ond by decreasing values of F, and third by decreasing values
of I:

B1 = {|3/2, 3/2, 1〉 ,

|3/2, 1/2, 1〉 , |1/2, 1/2, 1〉 , |1/2, 1/2, 0〉 ,

|3/2,−1/2, 1〉 , |1/2,−1/2, 1〉 , |1/2,−1/2, 0〉 ,

|3/2,−3/2, 1〉}. (17)

In Eq. (17), states listed on the same line have the same value
of MF. The states of B2 are similarly ordered, but with F1

replacing I in the ordering. The 8 × 8 block-diagonal matrix
that converts coordinates in B1 to coordinates in B2 is

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1

R

1
R

1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

R =
[

−1/2
√

3/2

−√
3/2 −1/2

]
.

Since basis sets B1 and B2 were both obtained by addition of
angular momenta with the Clebsch-Gordan coefficients, the
change-of-basis matrix T does not depend on the scalar cou-
plings. Note that R is formally associated with a rotation of
the Euclidean plane.

During all stages of the experiment, the 8 × 8 density
matrix is block diagonal when expressed in basis B1 or B2. In
either basis, it has the form

ρ =

⎡
⎢⎢⎣

0
ρ(+1/2)

ρ(−1/2)

0

⎤
⎥⎥⎦, (18)

where the 3 × 3 submatrices ρ( + 1/2) and ρ( − 1/2) represent
the restriction of ρ to the eigenspaces of Fz with eigenvalues
MF = +1/2 and MF = −1/2, respectively. In basis B1, the
normalized initial density matrix ρ0 has

ρ
(+1/2)
0 = ρ

(−1/2)
0 = 1

2

⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦. (19)

On the right side of Eq. (19), the elements along the diago-
nal are populations associated with the manifolds that have

quantum numbers

(F = 3/2, I = 1) ,

(F = 1/2, I = 1) ,

(F = 1/2, I = 0) ,

where the ordering is from upper left to lower right. Transfor-
mation to the energy eigenbasis B2 gives

ρ
(+1/2)
0 = ρ

(−1/2)
0 = 1

2

⎡
⎣ 0 0 0

0 3/4 −√
3/4

0 −√
3/4 1/4

⎤
⎦, (20)

and elimination of the coherences during the polarization pe-
riod yields

ρ
(+1/2)
1 = ρ

(−1/2)
1 = 1

2

⎡
⎣ 0 0 0

0 3/4 0
0 0 1/4

⎤
⎦. (21)

From Eq. (21), the manifold (F = 1/2, F1 = 1) has 3/4
of the population, while the manifold (F = 1/2, F1 = 0) has
1/4 of the population. This distribution of population can be
rationalized by noting that for a two-spin system containing
only I1 and S, the number of independent states with F1 = 1
is three times the number of independent states with F1 = 0.
Immediately after the hydrogenation, I1 and I2 are in a sin-
glet state and S is completely unpolarized; in the absence of
any information about the relative orientation of I1 and S, we
might guess that the summed population of the states with
F1 = 1 would be three times the summed population of the
states with F1 = 0. It can be shown that this guess is correct
when I1 and I2 are described by an arbitrary two-spin state
function, with S completely unpolarized. When the protons
are initially in a singlet state, the total angular momentum is
F = 1/2, which imposes the additional constraint that the pop-
ulation of the manifold (F = 3/2, F1 = 1) is zero. The popula-
tion of the manifold (F = 1/2, F1 = 1) is therefore three times
that of the manifold (F = 1/2, F1 = 0).

The modification of the density matrix due to the spread-
ing of spin order can be visualized geometrically. For a given
value of MF, the two states |u〉, |v〉 of Eq. (15) are identified
with unit vectors in a Euclidean plane whose axes are labeled
with u and v. The initial singlet state is oriented along the v

axis. Transformation to the eigenstate basis corresponds to a
rotation of the two axes; after the rotation, the vector iden-
tified with the singlet state has projections

√
3/2 and −1/2

along the two axes, and the populations 3/4 and 1/4 are found
by squaring these two projections.

As noted in Sec. II B 1, the details of the coupling net-
work affect ρ1 only through the rotation R. In particular, if
we drop the assumption that |JS1| � |JS2|, |J12|, then the sim-
ple numerical values obtained for the matrix elements in Eqs.
(20) and (21) are replaced by formulas that depend on the de-
tails of the coupling network, but the form of the matrices is
unchanged. The system with one strong coupling is a con-
venient model system because the zero-order eigenstates do
not depend on the details of the coupling network, and the
transformation between B1 and B2 involves simple numerical
factors.
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The development of scalar order in this system has a nat-
ural physical interpretation. In order to motivate this interpre-
tation, we write the density matrix of the polarized system in
the form

ρ1 = 1

2

(
1

4
− 1

2
F1 · I2

)
. (22)

Equation (22) can be compared to a similar expression for the
normalized initial density matrix:

ρ0 = 1

2

(
1

4
− I1 · I2

)
. (23)

To understand how the polarization process converts I1 · I2

to (1/2)F1 · I2 , we first consider the limiting case where
H1 = 0. As in the vector model of the atom,25, 26 the evolution
under H0 can be visualized as precession of S and I1 about F1,
which is motionless. Averaging over the precession during the
polarization period corresponds to projecting I1 onto F1. We
denote the resulting projection by I‖

1. Formally, I‖
1 is defined

in the singlet and triplet manifolds of F1, and the projection
theorem27 shows that

I‖
1 = 1

2
F1 (24)

in each manifold. Equation (24), which is derived for the two-
spin system containing S and I1, can also be considered to
define I‖

1 on the state space of the three-spin system. It follows
from Eqs. (22) and (24) that

ρ1 = 1

2

(
1

4
− I‖

1 · I2

)
. (25)

Comparison of Eqs. (23) and (25) shows that averaging over
the distribution of evolution times simply causes I1 to be re-
placed by its average over the fast precession governed by H0.

In order to explain why ρ1 has the same form when the
perturbation H1 is nonzero, we note that the first-order ap-
proximation to H1 can be expressed in the form15

2π
(
JS2 S‖ · I2 + J12 I‖

1 · I2
)

= 2π

(
JS2 + J12

2

)
F1 · I2, (26)

where

S‖ = 1

2
F1

is the projection of S onto F1. We can interpret Eq. (26) to
mean that the weakly coupled spin does not “see” the instan-
taneous states of the strongly coupled spins. To first order, I2

is coupled instead to S‖ and I‖
1, the averages of S and I1 over

the fast evolution governed by H0. Truncation of the weak
scalar couplings by the strong scalar coupling therefore gives
an effective interaction of the form F1 · I2.15 During the polar-
ization period, averaging over the evolution governed by H0

quickly converts the initial singlet order I1 · I2 to (1/2) F1 · I2,
which does not evolve under H1, since it commutes with the
truncated scalar couplings.

The results obtained from perturbation theory can
be compared with the numerical simulation presented in
Fig. 3(b), which corresponds to a system where H0 is larger
than H1 by roughly an order of magnitude. The average over

evolution times yields spin order that has nearly equal contri-
butions from I1 · I2 and S · I2 and can thus be approximated
as having the form F1 · I2. Because the first-order description
is not exact for this system, the simulation also shows a con-
tribution from the term S · I1, which does not appear in Eq.
(22).

C. Complexity of the scalar order

In this section, we characterize the complexity of the
scalar order by counting the parameters needed to specify ρ1

in basis sets B1 and B2. In Sec. II B, these basis sets are defined
for a three-spin system obtained by adding parahydrogen to
a substrate molecule. Appendix B generalizes the definitions
to an N-spin system polarized by PHIP or NH-PHIP. Basis
B1 is formed by addition of angular momenta, with the het-
eronucleus added last, while B2 is an energy eigenbasis that
diagonalizes ρ1 and divides the state space into degenerate
angular-momentum manifolds. We show in this section that
ρ1 can be expressed as a linear combination of scalar opera-
tors that have a simple form in basis B1. The resulting expan-
sion of ρ1 is used in Sec. III to analyze the development of
vector order during the pulse.

For a three-spin system polarized by hydrogenative PHIP,
ρ1 can by specified in the energy eigenbasis B2 by a single
parameter, as shown on the right side of Table I. A single pa-
rameter is sufficient because the population of the manifold
with F = 3/2 is zero, and because the populations of the two
manifolds with F = 1/2 sum to 1. For a three-spin system
polarized by NH-PHIP, two parameters are needed to specify
ρ1 in basis B2, since the constraint on the population of the
manifold with F = 3/2 is absent.

A system of N spins 1/2 contains

q(N,F ) = N ! (1 + 2F )

(N/2 − F )! (N/2 + F + 1)!
(27)

manifolds of total angular momentum F.28 For an N-spin sys-
tem polarized by PHIP or NH-PHIP, the sum

Q =
N/2∑

F=(N mod 2)/2

q(N,F )

gives a simple estimate of the number of parameters needed
to specify ρ1 in basis B2. This estimate neglects certain con-
straints on the density matrix, such as the requirement that the
populations sum to 1, but these constraints do not dramatically
simplify the formal structure of ρ1 in systems containing sev-
eral spins or more. As examples to characterize complexity,
we note that a five-spin system has Q = 10 while a ten-spin
system has Q = 252.

An alternative to using the energy eigenbasis to charac-
terize the complexity of the density matrix is to expand ρ1 as
a linear combination of predetermined scalar operators whose
definition does not depend on the Hamiltonian. An exam-
ple of such an expansion is given by Eq. (12), which uses
a linear combination of scalar-product operators to describe
the scalar order of the three-spin system polarized by hydro-
genative PHIP. In generalizing to larger spin systems polar-
ized by PHIP or NH-PHIP, we use the constraints imposed by
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symmetry to enumerate a set of orthogonal operators that can
make a nonzero contribution to ρ1. As shown in Appendix A
and Appendix B, respectively, ρ1 is invariant under time re-
versal as well as under rotations of the full spin system. An
expansion of ρ1 can be obtained by taking account of the
constraints associated with invariance under these transforma-
tions.

For purposes of illustration, we first consider a three-spin
system polarized by NH-PHIP. The Wigner-Eckart theorem
implies that a Hermitian scalar operator A expressed in the
basis B1 of Eq. (17) is block diagonal and has the form

A =

⎡
⎢⎢⎣

a1

A(+1/2)

A(−1/2)

a1

⎤
⎥⎥⎦, (28)

where

A(+1/2) = A(−1/2) =
⎡
⎣a1 0 0

0 a2 a4 + ia5

0 a4 − ia5 a3

⎤
⎦, (29)

and where the coefficients an are real. As in Eq. (18), the su-
perscripts ( + 1/2) and ( − 1/2) denote the restriction of the
operator to the eigenspaces of Fz with eigenvalues MF = +1/2
and MF = −1/2, respectively. Each of the diagonal elements
a1, a2, and a3 is associated with the states |F, MF〉 of a sin-
gle manifold, while the off-diagonal matrix elements a4 ± ia5

are between states that have the same values of F and MF but
belong to different manifolds. Equations (28) and (29) im-
plicitly express A as a linear combination of scalar operators,
each obtained by setting a single coefficient an to 1, with the
remaining matrix elements set to zero.

Appendix A shows that since ρ1 is invariant under ro-
tations and time reversal, its matrix elements are real in
a basis obtained by addition of angular momenta with the
Clebsch-Gordan coefficients. In particular, the matrix ele-
ments of ρ1 are real when it is expressed in basis B1. Iden-
tifying the operator A in Eqs. (28) and (29) with ρ1, we
conclude that the coefficient a5 is zero. Four nonzero coeffi-
cients appear in the expansion of ρ1 implicitly given by these
equations.

In generalizing these arguments to the N-spin system, we
use an arbitrary quantum number X to distinguish the angular-
momentum manifolds formed by the states of basis B1. We
divide the state space into subspaces VF , each spanned by the
set of states |F, MF, X〉 that are labeled with a particular value
of F. Equivalently, VF can be defined as the eigenspace of F2

with eigenvalue F(F + 1). Since ρ1 is a scalar operator, it has
nonzero matrix elements only between states labeled with the
same value of F. It therefore suffices to specify the restriction
of ρ1 to each of the subspaces VF . We consider an arbitrary
VF , and for each manifold Xn contained in it, we define the
operator An to be zero outside of the manifold and equal to
the identity within it. For each pair of distinct manifolds Xj, Xk

belonging to VF , we define the operator A′
jk to have nonzero

matrix elements

〈F,MF ,Xj |A′
jk|F,MF ,Xk〉

= 〈F,MF ,Xk|A′
jk|F,MF ,Xj 〉 = 1, (30)

where MF ranges from −F to +F. All matrix elements of A′
jk

other than those specified by Eq. (30) are zero. Note that the
operators An are a generalization of the operators obtained by
setting a1, a2, or a3 to 1 in the three-spin example, with the re-
maining coefficients set to zero. The operators A′

jk are a gen-
eralization of the three-spin operator that has a single nonzero
coefficient a4 = 1.

Since ρ1 is invariant under rotations and time reversal,
its matrix elements in basis B1 are real. The Wigner-Eckart
theorem therefore implies that the restriction of ρ1 to VF is a
linear combination of the orthogonal scalar operators An and
A′

jk . The number of coefficients needed for this linear combi-
nation is

p(N,F ) = q(N,F ) +
(

q(N,F )

2

)
,

where q(N, F) is given by Eq. (27). The full expansion for ρ1

is obtained by adding together the linear combinations cor-
responding to the subspaces VF . The number of coefficients
appearing in the full expansion is

P =
N/2∑

F=(N mod 2)/2

p(N,F ).

By way of illustration, we return to the three-spin sys-
tem polarized by NH-PHIP. For this system, F can take the
values 1/2 and 3/2. Since p(3, 1/2) = 3 and p(3, 3/2) = 1,
a total of P = 4 coefficients appear in the expansion of
ρ1, as we found above. The expansion has P = 26 and
P = 8524 coefficients for a five-spin system and a ten-spin
system, respectively.

III. CONVERSION TO VECTOR ORDER

In describing the conversion of the scalar order to vector
order by means of a dc pulse, we begin by considering a two-
spin system. The coherent evolution of this system involves
only two of the energy eigenstates, and so the system can be
modeled as a fictitious spin 1/2 or pseudospin. We let x̃, ỹ,
z̃ denote the axes of the pseudospin. The scalar order present
just before the pulse corresponds to polarization of the pseu-
dospin along the z̃ axis, and the pulse induces a π /2 flip to
−ỹ, which represents undetectable vector order. The pseu-
dospin precesses in its transverse plane during the detection
period, and its x̃ component represents a signal in the form of
oscillating magnetization. This model of the two-spin system
is presented in Sec III A, and the model is generalized in Sec.
III B to describe the evolution of the N-spin system during the
pulse. The state space is decomposed into one-dimensional
and two-dimensional subspaces that are not coupled by the
pulse. In each two-dimensional space, a pseudospin precesses
about an effective field in the x̃z̃ plane, with all pseudospins
precessing at the same frequency, determined by the strength
of the dc field and the difference between the gyromagnetic
ratios γ I and γ S. Optimal conversion of scalar order to vec-
tor order corresponds to a ±π /2 rotation of the pseudospins,
which yields a maximal component along ±ỹ for pseudospins
polarized along ±z̃ before the pulse. Physically, the conver-
sion is performed by rotating the transverse spin components
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of the protons through an angle of ±π /2 with respect to the
transverse components of the heteronucleus, where the trans-
verse plane is defined by choosing the laboratory-frame z axis
to be colinear with the pulsed field.

The pseudospin model exploits the fact that the pulsed
field induces a uniform rotation of all protons, and qualitative
analysis of the N-spin system using this model requires a ba-
sis set of states with a well-defined value of the proton angular
momentum I. We develop the pseudospin model using the ba-
sis set B1, which is obtained by addition of angular momenta,
with the heteronucleus added last.

For the hydrogenation experiment, the development of
scalar spin order during the polarization period is associated
with a change from basis B1 to the energy eigenbasis B2, fol-
lowed by the elimination of off-diagonal terms; qualitative
analysis of the pulse is facilitated by transforming the result-
ing density matrix ρ1 back to basis B1. As illustrated by cal-
culations presented in Sec. III B, the density matrix that rep-
resents the spin system at the end of the pulse, denoted by
ρ2, must then be transformed to the energy eigenbasis for the
analysis of the spectrum. The change of basis between B1 and
B2, characterized by multidimensional rotations RF that mix
angular-momentum manifolds, therefore plays a central role
in determining the phases and amplitudes of the peaks in the
zero-field spectrum.

A. Two-spin system

Single-transition operators29 have been used for the anal-
ysis of high-field PHIP experiments,24, 30 and they can also be
used to describe the conversion of scalar order to vector or-
der in zero-field experiments. Single-transition operators are
defined by treating a pair of energy eigenstates involved in
a transition as a virtual two-state system.29 For the two-spin
system governed by the Hamiltonian HJ = 2πJSI S · I , the
states |F, MF〉 are energy eigenstates. The single-transition
operators for the pair of states |1, 0〉 and |0, 0〉 are zero-
quantum operators that can be expressed in the form

Zx = 1

2
(Iz − Sz) ,

Zy = SyIx − SxIy, (31)

Zz = SxIx + SyIy.

The term “zero-quantum” is inherited from high-field NMR,
where the dominant term in the spin Hamiltonian is the inter-
action with the static field applied along the z axis. In the con-
text of high-field NMR, a zero-quantum transition involves
two states having the same z component of total angular
momentum.

The operators defined by Eq. (31) satisfy the commu-
tation relations for angular momentum. As we show below,
a simple description of the zero-field experiment can be ob-
tained by treating

(
Zx,Zy,Zz

)
as a pseudospin that precesses

about different axes during the pulse and the detection period.
We assume that the scalar order is represented by a term

in the density matrix proportional to S · I, and we simplify no-
tation by neglecting the proportionality constant and writing

ρ1 = S · I = Zz + SzIz. (32)

The Hamiltonian for the pulse applied along the laboratory-
frame z axis is

Hdc = −Bz (γI Iz + γSSz) , (33)

where the notation has been chosen to highlight the fact that
a dc pulse rather than a conventional rf pulse is applied. The
pulse has been assumed to be sufficiently short that the evolu-
tion associated with the scalar coupling can be neglected. We
write the pulse Hamiltonian in the form

Hdc = −Bz

2
(γI + γS) (Iz + Sz)

−Bz

2
(γI − γS) (Iz − Sz) (34)

and note that the operator (Iz + Sz) in the first line of
Eq. (34) does not contribute to the evolution of the density
matrix, since it commutes with ρ1 as well as with (Iz − Sz).
Dropping the term proportional to (Iz + Sz) and defining

ω1 = −Bz (γI − γS) (35)

gives

Hdc = ω1

2
(Iz − Sz) (36a)

= ω1Zx. (36b)

A further simplification is possible because the operator
SzIz of Eq. (32) commutes with Hdc as well as with HJ, which
governs the detection period that follows the pulse. Since it
commutes with both of these Hamiltonians, the term SzIz does
not evolve coherently during the experiment or contribute to
the signal. We can therefore replace Eq. (32) by

ρ1 = Zz. (37)

Equations (36b) and (37) present a simple picture of the
evolution during the pulse: a pseudospin initially polarized
along the z̃ axis precesses about a static field colinear with
the x̃ axis. After the pseudospin has precessed for time t, the
density matrix is

ρ(t) = Zz cos (ω1t) − Zy sin (ω1t) .

Figure 4(b) depicts this evolution. As shown in the figure, a
pulse that rotates the pseudospin through an angle of π /2 con-
verts the density matrix ρ1 to

ρ2 = −Zy. (38)

This rotation corresponds to a pulse satisfying ω1τ = π /2,
where τ is the pulse length.

To visualize the evolution that occurs during the ensuing
detection period, we write the scalar-coupling Hamiltonian as

HJ = 2πJSI Zz + 2πJSI SzIz. (39)

In Eq. (39), the operators SzIz and Zz commute, and since SzIz

also commutes with ρ2, we can make the simplification

HJ = 2πJSI Zz. (40)

Equations (38) and (40) show that the evolution during the
detection period can be visualized as precession about the z̃
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FIG. 4. Depiction of the evolution occurring in a two-spin system during the pulse and the detection period. Expressing the density matrix ρ and the Hamilto-
nians HJ and Hdc in terms of the Cartesian components of a pseudospin yields a simple model of the evolution. The axes of the pseudospin are distinguished
from the laboratory-frame axes by the labels x̃, ỹ, and z̃. (a) Just before the pulse, the pseudospin that represents the polarized system is colinear with HJ. (b)
The pulse Hamiltonian is perpendicular to HJ, and the pulse rotates the pseudospin through an angle of π /2. (c) Free evolution during the detection period
corresponds to precession of the pseudospin about HJ. This precession is associated with a periodic exchange between Iz and Sz, which produces an oscillating
magnetization in the sample, since the spins have different gyromagnetic ratios.

axis, starting from a state polarized along −ỹ. With relaxation
neglected, the density matrix is

ρ(t) = −Zy cos (ωt) + Zx sin (ωt) (41)

during the detection period, where ω = 2πJSI, and where
t = 0 is chosen to correspond to the end of the pulse.
Figure 4(c) depicts this evolution.

Physically, the pulse causes the transverse components
of I and S to precess at different frequencies. As a result, the
angle between the transverse components of the two nuclei
changes at frequency ω1 during the pulse. A π /2 pulse thus
converts SxIx + SyIy into SxIy − SyIx. Although this spin order
is not directly detectable, it evolves under the scalar-coupling
Hamiltonian to have the form ± (Iz − Sz)/2, which represents
sample magnetization, since the gyromagnetic ratios of the
two spins are different. Continuing evolution causes a peri-
odic exchange between Iz and Sz, with ±(SxIy − SyIx) func-
tioning as an intermediate state in the exchange. This periodic
exchange produces an oscillating magnetization in the sam-
ple, represented in Eq. (41) by the term

Zx sin (ωt) = 1

2
(Iz − Sz) sin (ωt) .

The use of a short dc pulse to convert scalar order to vec-
tor order for detection in a zero-field environment can be dis-
tinguished from the ALTADENA experiment, where the sam-
ple is transported adiabatically to high field before detection.3

Adiabatic transport from zero field to a strong magnetic field
directed along the z axis transforms the density matrix ρ1 of
Eq. (32) to

ρhigh = SzIz ∓ 1

2
(Iz − Sz) . (42)

In Eq. (42), the minus sign corresponds to the case where JSI

and (γ I − γ S) have the same sign, while the plus sign corre-
sponds to the opposite case.3 The term (Iz − Sz)/2 in Eq. (42)
represents sample magnetization. An oscillating signal can
be generated by applying an rf pulse to either nucleus or to
both nuclei. Note that when S represents a 13C nucleus cou-
pled to 1H through a single bond, adiabatic transport from
zero field to Earth’s field (∼50 μT) yields the density ma-
trix ρhigh to a good approximation, since the difference be-
tween the Larmor frequencies of 1H and 13C in Earth’s field

(∼1.5 kHz) is roughly an order of magnitude larger than char-
acteristic single-bond couplings between 1H and 13C.

B. N-spin system

1. Pseudospin model

In analyzing the evolution that occurs during the dc pulse
in the zero-field experiment, we view the system of N spins
1/2 as a collection of two-spin systems, each containing S as
well as a single spin I that corresponds to one of the man-
ifolds of proton angular momentum. The evolution of these
two-spin systems during the pulse can be described using a
generalization of the two-spin model presented in Sec. III A.

The arguments used to derive Eq. (36a) show that the
pulse Hamiltonian can be written in the form

Hdc = ω1

2
(Iz − Sz) , (43)

where ω1 is given by Eq. (35), and where the spin component
Iz is summed over the protons. Equation (43) implies that the
transverse components of I and S precess in opposite direc-
tions during the pulse, each at frequency ω1/2, which causes
the angle between the transverse components to be modulated
at frequency ω1.

We consider first the three-spin system with one strong
coupling, which is discussed in detail in Sec. II B 2. In basis
B1, given by Eq. (17), the 8 × 8 pulse Hamiltonian is block
diagonal and can be written as

Hdc =

⎡
⎢⎢⎣

ω1/4
H

(+1/2)
dc

H
(−1/2)
dc

−ω1/4

⎤
⎥⎥⎦, (44)

where the 3 × 3 submatrices H
(+1/2)
dc and H

(−1/2)
dc represent the

restriction of Hdc to the eigenspaces of Fz with eigenvalues
MF = +1/2 and MF = −1/2, respectively:

H
(±1/2)
dc = ω1

2

⎡
⎢⎣

±1/6 2
√

2/3 0

2
√

2/3 ±5/6 0

0 0 ∓1/2

⎤
⎥⎦. (45)
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Two symmetries of the pulse Hamiltonian are responsible for
its block-diagonal form in this basis. First, Hdc is the z compo-
nent of a vector operator, and so the Wigner-Eckart theorem
implies that when expressed in a basis of states |F, MF〉, it can
have nonzero matrix elements only between states that have
the same value of MF. Second, Hdc induces a uniform rotation
of the protons, and so it does not couple states derived from
different manifolds of the proton angular momentum I. As a
result of these two symmetries, the only nonzero off-diagonal
elements of Hdc are between pairs of states,

|F = 3/2,MF , I = 1〉 ,

|F = 1/2,MF , I = 1〉 ,

where MF is +1/2 or −1/2.
For the N-spin system, the same two symmetries simplify

the matrix for Hdc in basis B1, which is obtained by adding
the angular momentum S = 1/2 to manifolds of the proton
angular momentum I. In general, adding S to a manifold of I
yields two manifolds X1 and X2. The pulse Hamiltonian cou-
ples states belonging to X1 and X2, since they are derived from
the same manifold of I, but X1 and X2 are not coupled by the
pulse to any of the other manifolds associated with basis B1.
From the Wigner-Eckart theorem, states coupled by Hdc have
the same value of MF and can thus be represented as pairs

|a〉 = |F = (I + 1/2) ,MF , I 〉 ,
(46)

|b〉 = |F = (I − 1/2) ,MF , I 〉 .

It follows that the states of B1 can be ordered such that Hdc is
a block-diagonal matrix with 1 × 1 and 2 × 2 blocks along
the diagonal, as in Eqs. (44) and (45).

Single-transition operators can be used to describe the
pulse evolution in the space spanned by a pair of states |a〉,
|b〉. In Eq. (45), for example, the 2 × 2 block in H

(+1/2)
dc can

be written as

ω1

(
1

4
+ 2

√
2

3
Zx − 1

3
Zz

)
,

where

Zx = 1

2

[
0 1
1 0

]
,

Zz = 1

2

[
1 0
0 −1

]

are single-transition operators that can be identified with com-
ponents of a pseudospin. More generally, the restriction of
Hdc to the space spanned by states |a〉 and |b〉 of Eq. (46) is

Hdc = ω1

[
MF

2
+

√
(2I + 1)2 − 4M2

F

2I + 1
Zx

− 2MF

2I + 1
Zz

]
. (47)

Equation (47) shows that the evolution during the pulse can be
visualized as precession of pseudospins at frequency ω1, since
the coefficients of Zx and Zz define a unit vector. Note that

Eq. (36b), which holds for the two-spin system, is a special
case of Eq. (47).

For a description of the physical evolution occurring in
these two-dimensional subspaces, we first note that the states
|a〉 and |b〉 of Eq. (46) are linear combinations of product
states |I, MI〉|S, MS〉, where MI and MS are eigenvalues of Iz

and Sz, respectively. In particular, |a〉 and |b〉 are linear com-
binations of the states

|c〉 = |I, MI = MF − 1/2 〉 |S, MS = 1/2 〉 ,

|d〉 = |I, MI = MF + 1/2 〉 |S, MS = −1/2 〉 .

Precession of I and S in opposite directions causes |c〉 and
|d〉 to accumulate phase at frequencies ω1(MF − 1)/2 and
ω1(MF + 1)/2, respectively. Changes in the relative phase of
|c〉 and |d〉 correspond to transitions between |a〉 and |b〉. In
Eq. (47), the Zx component of the pulse Hamiltonian charac-
terizes the rate at which these transitions occur. A complete
description of the pulse evolution must also take account of
the fact that the relative phase of |a〉 and |b〉 is modulated
by the precession of I and S, as well as the fact that phase
differences develop between states belonging to different sub-
spaces. Modulation of the relative phase of |a〉 and |b〉 is asso-
ciated with the Zz component of the pulse Hamiltonian, while
the term proportional to the identity in Eq. (47) contributes to
phase differences between subspaces.

2. Evolution of the density matrix

The pseudospin model simplifies the description of the
pulse evolution by exploiting the fact that the Hdc induces a
uniform rotation of the protons, and analysis based on this
model requires a switch from the energy eigenbasis to a basis
in which I is a good quantum number. We illustrate the signif-
icance of this change of basis with calculations performed for
the three-spin system that has one strong coupling. In particu-
lar, we evaluate the coherences excited by a π /2 pulse, that is,
a pulse satisfying ω1τ = π /2, where ω1 is given by Eq. (35)
and τ is the pulse length.

In the energy eigenbasis B2, defined in the paragraph con-
taining Eq. (17), the density matrix ρ1 representing the scalar
order of the polarized system is specified by Eq. (21):

ρ
(+1/2)
1 = ρ

(−1/2)
1 = 1

2

⎡
⎣ 0 0 0

0 3/4 0
0 0 1/4

⎤
⎦.

In order to describe the pulse evolution using the pseudospin
model, we transform ρ1 to basis B1, which gives

ρ
(+1/2)
1 = ρ

(−1/2)
1 = 1

2

⎡
⎢⎣

0 0 0

0 3/8 −√
3/8

0 −√
3/8 5/8

⎤
⎥⎦. (48)

Equation (48) can be compared with the form of the pulse
Hamiltonian in basis B1, given by Eqs. (44) and (45). On the
right side of Eq. (48), the element in position (2, 2) is associ-
ated with a pseudospin that is aligned with the negative z̃ axis.
The pseudospin precesses about an effective field during the
pulse. The matrix element in position (3, 3) does not change
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during the pulse. The off-diagonal elements of ρ
(±1/2)
1 are as-

sociated with operators |φ〉〈ψ | for which the bra and the ket
“evolve in different spaces.” To follow the evolution of the el-
ement in position (2, 3), for instance, we must consider a ket
|φ〉 that precesses as a pseudospin during the pulse and a bra
〈ψ | that simply accumulates phase.

To see why the transformation from basis B2 to basis B1 is
needed for analysis of the pulse, consider the matrix obtained
by expressing H

(±1/2)
dc in basis B2:

H
(±1/2)
dc = ω1

2

⎡
⎢⎣

±1/6 −√
2/3 −√

2/3

−√
2/3 ∓1/6 ±1/

√
3

−√
2/3 ±1/

√
3 ±1/2

⎤
⎥⎦. (49)

Qualitative analysis of the evolution associated with Eq. (49)
is not straightforward, and for larger spin systems, the prob-
lem of understanding the pulse evolution in the energy eigen-
basis becomes intractable.

Evaluating the evolution of the density matrix in basis B1,
we find that a π /2 pulse yields

ρ
(±1/2)
2 = 1

2

⎡
⎢⎢⎣

1
6

±1−3i

12
√

2
±1+i

4
√

6
±1+3i

12
√

2
5

24
−1±2i

8
√

3
±1−i

4
√

6
−1∓2i

8
√

3
5
8

⎤
⎥⎥⎦,

where ρ2 is the density matrix that represents the system at
the end of the pulse. To find the coherences excited by the
pulse, we transform ρ2 to the energy eigenbasis B2:

ρ
(±1/2)
2 = 1

2

⎡
⎢⎢⎣

1
6

±1+3i

12
√

2
∓1+i

4
√

6
±1−3i

12
√

2
7

12
−1±i

4
√

3
∓1−i

4
√

6
−1∓i

4
√

3
1
4

⎤
⎥⎥⎦. (50)

The off-diagonal terms in Eq. (50) represent coherences that
oscillate during the detection period.

3. Development of vector order

The pulse Hamiltonian is the z component of a vector
operator, and spin order of the form T k

0 can therefore develop
within the molecule during the pulse, where

T k
−k, T

k
−k+1, . . . , T k

k

denote the components of an arbitrary spherical tensor oper-
ator of rank k. Since detectable spin order takes the form of
magnetization, which transforms as a vector under rotations,
we are concerned with the development of vector order, de-
fined formally as spin order represented by a spherical tensor
operator of rank k = 1.

We first show that the pulse causes vector order of the
form T 1

0 to develop in the three-spin system that has one
strong coupling. We let V represent the z component of
an arbitrary Hermitian vector operator for this system. The
Wigner-Eckart theorem implies that when V is expressed in

basis B1 or B2, it is block diagonal and has the form

V =

⎡
⎢⎢⎣

3
2c1

V (+1/2)

V (−1/2)

− 3
2c1

⎤
⎥⎥⎦, (51)

where

V (±1/2) =

⎡
⎢⎢⎣

± 1
2c1 d1 d2

d∗
1 ± 1

2c2 ±d3

d∗
2 ±d∗

3 ± 1
2c3

⎤
⎥⎥⎦, (52)

with cn real and dn complex. Note that setting each cn to 1 and
each dn to zero gives V = Fz.

Just as Eqs. (28) and (29) implicitly express an arbitrary
Hermitian scalar operator A as a linear combination of scalar
operators, Eqs. (51) and (52) implicitly express V as a linear
combination of operators that transform as the z component
of a vector. By projecting ρ2 onto the space spanned by these
operators, we can eliminate terms from the density matrix that
do not represent vector order. Performing this projection for
the density matrix of Eq. (50), we obtain an expression for the
vector order present at the end of the pulse:

ρ
(±1/2)
2 = i

2

⎡
⎢⎢⎣

0 1
4
√

2
1

4
√

6

− 1
4
√

2
0 ± 1

4
√

3

− 1
4
√

6
∓ 1

4
√

3
0

⎤
⎥⎥⎦. (53)

In Sec. IV, we show that this vector order gives rise to oscil-
lating magnetization during the period of free evolution that
follows the pulse.

More generally, the development of vector order during
the pulse can be described analytically. Consider as an exam-
ple the general three-spin system polarized by NH-PHIP. The
discussion in Sec. II C shows that when expressed in basis B1,
the density matrix ρ1 has the form

ρ1 =

⎡
⎢⎢⎣

a1

ρ
(+1/2)
1

ρ
(−1/2)
1

a1

⎤
⎥⎥⎦, (54)

where

ρ
(+1/2)
1 = ρ

(−1/2)
1 =

⎡
⎣a1 0 0

0 a2 a4

0 a4 a3

⎤
⎦, (55)

with an real. To describe the development of vector order dur-
ing the pulse, we start from an initial state that has a single
nonzero coefficient an = 1 in Eqs. (54) and (55). We solve
the equation of motion analytically, retaining only the terms
that correspond to vector order, as determined by Eqs. (51)
and (52). Letting Vn represent the vector order that develops
from the initial state which has an = 1, we find that each Vn

evolves sinusoidally at frequency ω1 during the pulse, achiev-
ing its maximum magnitude at times t for which

ω1t = ±π

2
,±3π

2
, . . . . (56)
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In particular,

Vn =

⎡
⎢⎢⎣

0
V

(+1/2)
n

V
(−1/2)
n

0

⎤
⎥⎥⎦,

where

V
(±1/2)

1 = i sin (ω1t)

⎡
⎢⎢⎣

0
√

2
3 0

−
√

2
3 0 0

0 0 0

⎤
⎥⎥⎦, (57a)

V
(±1/2)

2 = i sin (ω1t)

⎡
⎢⎢⎣

0 −
√

2
3 0

√
2

3 0 0

0 0 0

⎤
⎥⎥⎦, (57b)

V
(±1/2)

3 = 0, (57c)

V
(±1/2)

4 = i sin (ω1t)

⎡
⎢⎢⎣

0 0 −
√

2
3

0 0 ∓ 2
3√

2
3 ± 2

3 0

⎤
⎥⎥⎦. (57d)

Note that the vector order of Eqs. (57a) and (57b) cor-
responds to polarization of pseudospins along ±ỹ, which
evolves from scalar order represented by pseudospins aligned
with ±z̃. A similar result was obtained in Sec. III A for the
two-spin system. For Eq. (57d), the initial scalar order is not
contained within the 2 × 2 spaces where the pseudospins are
defined, and the development of vector order involves a bra
and a ket that “evolve in different spaces.”

The approach used to derive Eqs. (57a) through (57d) can
be generalized to the N-spin system. In basis B1, the density
matrix ρ1 can be expanded as a linear combination of scalar
operators An, A′

jk , as discussed in Sec. II C. Since Hdc has
only 1 × 1 and 2 × 2 blocks along the diagonal, with the 2 × 2
blocks given by Eq. (47), the evolution during the pulse can
be evaluated analytically when the initial state is An or A′

jk .
The evolution is confined to low-dimensional spaces, within
which the structure of the relevant vector order can be explic-
itly described, as in Eqs. (51) and (52). The vector order that
develops from An or A′

jk is found to be a matrix of imagi-
nary numbers proportional to sin (ω1t), as in Eqs. (57a), (57b)
and (57d). For an initial state An, the scalar order present at the
beginning of the pulse is represented by pseudospins aligned
with ±z̃, and the vector order that develops during the pulse
corresponds to polarization along ±ỹ.

As shown in Appendix A, the states of the energy eigen-
basis B2 can be chosen as real linear combinations of the
states in basis B1. Transforming the terms in the density ma-
trix that represent vector order from basis B1 to basis B2 there-
fore yields a matrix of imaginary numbers proportional to
sin (ω1t). It follows that for the N-spin system, the vector order
introduced by the pulse consists of a set of imaginary-valued
coherences, as in Eq. (53). A pulse that rotates the transverse
components of I through an angle of ±π /2 relative to those

of S is optimal for excitation of these coherences. Consistent
with this theoretical result, a pulse length τ satisfying ω1τ =
π /2 was found to give optimal signal intensity in zero-field
experiments where pyridine-15N was polarized by means of
NH-PHIP.31

IV. EVOLUTION OF THE VECTOR ORDER

During the period of free evolution that follows the pulse,
the vector order evolves as a set of oscillating coherences.
Since the Hamiltonian HJ is a scalar operator, the symmetry
of the spin order under rotations does not change during the
evolution. Formally, the vector order present at the end of the
pulse consists of tensor operators of form T 1

0 , as noted in Sec.
III B 3, and this form is preserved during the evolution.

The zero-field spectrum is obtained by detecting the sam-
ple magnetization during the evolution period and then taking
the Fourier transform. Since magnetization along x or y would
be associated with spin order of the form T 1

±1, which is not
present, magnetization can only develop along the z axis. We
therefore define the observable as

μz = γI¯Iz + γS¯Sz,

the z component of the molecular spin dipole.
Like the pulse Hamiltonian Hdc, the operator μz can be

decomposed as a linear combination of the operators (Iz − Sz)
and (Iz + Sz). Since HJ commutes with the total angular mo-
mentum, the term proportional to (Iz + Sz) does not contribute
to the oscillating signal. Dropping this term gives

μz = ¯
2

(γI − γS) (Iz − Sz) . (58)

In showing how the evolution under HJ causes oscilla-
tions in 〈μz〉, we consider a pair of angular-momentum man-
ifolds that have distinct spin energies and are coupled by the
operator μz. Since Hdc ∝ μz , the pulse induces transitions
between the two manifolds and causes coherences to develop.
We consider the case where these coherences represent vector
order. Immediately after the pulse, the coherences have imag-
inary values, as noted in Sec. III B 3, and they evolve to have
real values after a time period t = π /4ω, where ω is the oscil-
lation frequency determined by the energy difference between
the manifolds. Appendix A shows that the matrix elements of
μz can be assumed real in the energy eigenbasis; in particu-
lar, the matrix elements of μz that couple the two manifolds
represent the z component of a real vector operator. Since the
coherences present at time t = π /4ω also represent the z com-
ponent of a real vector operator, the Wigner-Eckart theorem
implies that these coherences are related by a proportional-
ity constant to the matrix elements of μz that couple the two
manifolds. If we neglect the proportionality constant, the real
parts of the oscillating coherences can then be identified with
matrix elements of μz, while the imaginary parts must corre-
spond to undetectable vector order. The oscillating real parts
thus represent a contribution to 〈μz(t)〉, and this contribution
appears in the spectrum as a peak at frequency ω.

Physically, the evolution of the vector order induces a pe-
riodic exchange between Iz and Sz, with undetectable spin or-
der functioning as an intermediate state during the exchange.
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Since the gyromagnetic ratios for I and S are different, the ex-
change between Iz and Sz produces an oscillating magnetiza-
tion, which constitutes the NMR signal. In general, each pair
of manifolds that can be coupled by a vector operator yields a
spectral peak, which gives the selection rule �F = 0, ±1.

We use the two-spin system introduced in Sec. III A to
illustrate these conclusions. At the end of the pulse, the vector
order has the form

SxIy − SyIx = 1

2

[
0 i

−i 0

]
, (59)

where the right side of Eq. (59) is obtained by expressing the
operator in the two-dimensional space spanned by the energy
eigenstates |F = 1, MF = 0〉 and |F = 0, MF = 0〉. Note that
the undetectable order represented by Eq. (59) is the imagi-
nary part of a coherence. The real part is

1

2
(Iz − Sz) = 1

2

[
0 1
1 0

]
, (60)

which is proportional to the observable μz of Eq. (58). As
the coherence evolves under HJ, it alternates between real and
imaginary values, which corresponds to conversion of the spin
order between the forms represented by Eqs. (59) and (60).
Oscillations in the real part of the coherence yield a signal.

For the three-spin system that has one strong coupling,
the spin order present at the end of the polarization period is
given by Eq. (22) as

−1

4
(S + I1) · I2,

where the term proportional to the identity has been dropped.
Since the pulse induces a uniform rotation of the two protons,
the term I1 · I2 does not evolve during the pulse, remaining
instead in the form of undetectable scalar order. The relevant
scalar order of the polarized system is thus

ρ1 = −1

4
S · I2.

A π /2 pulse converts ρ1 to

−1

4
(SzI2z + SxI2y − SyI2x).

Arguments similar to those used to derive Eq. (53) from
Eq. (50) show that SzI2z does not contribute to the vector order
present at the end of the pulse, which is given by

ρ2 = −1

4
(SxI2y − SyI2x).

This vector order is associated with a set of imaginary-valued
coherences between states belonging to different manifolds,
as shown by Eq. (53), which expresses ρ2 in the energy eigen-
basis B2. During the detection period, the real parts of the co-
herences represent oscillations in 〈μz(t)〉.

To find the spectrum of 〈μz(t)〉 for this system, we first
note that the coherences responsible for dipole oscillations are
represented by the evolving density matrix

ρ(t) = exp(−itHJ ) ρ2 exp(itHJ ),

where time t = 0 has been chosen to correspond to the begin-
ning of the detection period. In basis B2, this density matrix

takes the form

ρ =

⎡
⎢⎢⎣

0
ρ(+1/2)

ρ(−1/2)

0

⎤
⎥⎥⎦,

where

ρ(±1/2) = i

2

⎡
⎢⎢⎣

0 1
4
√

2
e−iω12t 1

4
√

6
e−iω13t

− 1
4
√

2
eiω12t 0 ± 1

4
√

3
e−iω23t

− 1
4
√

6
eiω13t ∓ 1

4
√

3
eiω23t 0

⎤
⎥⎥⎦.

The transition frequencies ωjk can be evaluated using Table II:

ω12/2π = 3

4
(JS2 + J12) ,

ω13/2π = JS1 + 1

4
(JS2 + J12) , (61)

ω23/2π = JS1 − 1

2
(JS2 + J12) .

Expressing μz in basis B2 and setting to zero its diagonal ele-
ments, which do not contribute to the signal, we obtain

μ(±1/2)
z = ¯

2
(γI − γS)

⎡
⎢⎢⎢⎣

0 −
√

2
3 −

√
2
3

−
√

2
3 0 ± 1√

3

−
√

2
3 ± 1√

3
0

⎤
⎥⎥⎥⎦.

The oscillating spin dipole is given by

〈μz(t)〉 = Tr {μzρ(t)} ,

which evaluates to

〈μz(t)〉 = − ¯
12

(γI − γS)

×[sin(ω12t) + sin(ω13t) − sin(ω23t)]. (62)

Taking the Fourier transform of this signal yields an
imaginary spectrum, which is a general feature of signals
enhanced by PHIP or NH-PHIP at zero magnetic field. The
scalar order represented by ρ1 has no dipole moment, and
〈μz〉 does not evolve during the pulse, since μz commutes
with the pulse Hamiltonian. It is only during the evolution un-
der HJ that a dipole moment develops. Since the vector order
present at the beginning of the detection period corresponds to
a set of imaginary-valued coherences, each oscillating compo-
nent of 〈μz(t)〉 is equal to zero at time t = 0, which implies an
imaginary spectrum. In Appendix A, we show that the same
conclusion can be established using symmetry arguments.

The signal given by Eq. (62) has a spectrum with equal-
amplitude peaks at the three transition frequencies of the sys-
tem, including an antiphase doublet at ∼JS1. This doublet
can be seen in Fig. 5, which shows experimental and sim-
ulated spectra for hyperpolarized dimethyl maleate obtained
by adding parahydrogen to dimethyl acetylenedicarboxylate,
a reaction shown in Fig. 1. The methods used for the experi-
ment and for the simulations have been described in Ref. 12.
With 13C at natural abundance, the reaction yields a mixture
of isotopomers that correspond to different positions of the
13C nucleus. As noted in the introduction to Sec. II, the
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FIG. 5. Zero-field spectrum resulting from the addition of parahydrogen to dimethyl acetylenedicarboxylate to form dimethyl maleate. Below the experimental
spectrum are simulations for the two isotopomers that contribute to the signal. The spectra have been phased so that the low-frequency peaks appear above
the horizontal axis. For the vinyl isotopomer, the spectrum has the form predicted by Eq. (62), which was derived by modeling the isotopomer as a three-spin
system. In particular, there are peaks of equal integrated area at the frequencies ωjk/2π , including a pair of antiphase peaks at ∼ JS1. The small splittings of the
antiphase peaks are due to weak couplings to the methyl protons, which are not included in the three-spin model. The coupling constants used in the simulation
of the vinyl isotopomer were 1JS1 = 167.2 Hz, 2JS2 = −2.2 Hz, 3J12 = 13.0 Hz, 4JS3 = −0.45 Hz, 5J13 = 0.15 Hz, and 6J23 = 0 Hz. For the carboxyl
isotopomer, the coupling constants were 2JS1 = 2.7 Hz, 3JS2 = 13.2 Hz, 3J12 = 11.9 Hz, 3JS3 = 4.1 Hz, 5J13 = 0.15 Hz, and 6J23 = 0 Hz. In the notation for
the coupling constants, the vinyl protons are numbered 1 and 2, the protons in the methyl group are indicated by the subscript 3, and the superscript shows the
number of bonds between nuclei. The couplings were adjusted to yield a visual match to the experimental spectrum.

isotopomer with 13C in the vinyl group can be modeled as
a three-spin system. The simulated spectrum for this iso-
topomer, shown directly below the experimental spectrum,
has the form specified by Eq. (62), with three peaks of equal
integrated area at the frequencies ωjk/2π . The small splittings
in the spectrum are due to weak couplings to the methyl pro-
tons, which are not included in the three-spin model.

The bottom trace in Fig. 5 shows the simulated spectrum
for the isotopomer that has 13C in the carboxyl group. The
network of six coupled spins formed by the 13C nucleus, the
vinyl protons, and the methyl protons yields a complicated
splitting pattern in the low-frequency region of the spectrum.
The isotopomer with 13C in the methyl group is not expected
to make a significant contribution to the signal, since the het-
eronucleus is isolated from the spins of the initial singlet state.
The simulation of the experiment therefore corresponds to the
sum of the lower two traces.

The theoretical signal enhancement associated with zero-
field PHIP can be characterized by comparing Eq. (62) to the
signal that would be obtained by prepolarizing the spin system
in an external field and then shuttling it into the zero-field
detection region. For this experimental scheme, the alignment
of the magnetization is preserved by a guiding field as the

sample is moved to the detection region; when the sample
is in place, the guiding field is turned off suddenly to allow
for detection in a zero-field environment.14, 16 In the simplest
acquisition protocol, 〈μz(t)〉 is detected during a period of free
evolution that begins immediately after the guiding field along
z is turned off. Thermal equilibration in a field of magnitude
Ba at temperature T gives the initial density matrix,

ρth = 1

8

(
1 + Ba

kBT
μz

)
,

where the high-temperature approximation has been used.
Evaluating the trace

〈μz(t)〉 = Tr {μz exp(−itHJ ) ρth exp(itHJ )}
for the three-spin system that has one strong coupling, we
obtain

〈μz(t)〉 = Ba¯
2(γI − γS)2

72kBT

× [2 cos(ω12t) + 6 cos(ω13t) + 3 cos(ω23t)], (63)

where the static term has been dropped. In Eq. (63), the peak
at frequency ω13 has the largest amplitude. The amplitude of
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the corresponding peak in Eq. (62) is larger by a factor of

kBT

Ba¯ (γI − γS)
,

which evaluates to ∼ 105 in the case where Ba = 2T and
T = 300K, with γ I and γ S the gyromagnetic ratio of the 1H
nucleus and the 13C nucleus, respectively.

V. CONCLUSION

Although detection of zero-field NMR by means of field-
cycling was initially demonstrated decades ago,17 the po-
tential of zero-field NMR has remained largely unexplored.
The strong signals available from PHIP and NH-PHIP show
promise for enabling applications of zero-field NMR and fa-
cilitating its development, particularly in combination with
multiple-pulse sequences32 and multidimensional methods,
which play a central role in many high-field applications.

Zero-field experiments that use PHIP or NH-PHIP be-
gin with a polarization period in which the singlet state of
parahydrogen evolves into scalar spin order involving spins
throughout the molecule. With the effects of relaxation ne-
glected, the density matrix ρ1 that describes this spin order
is invariant under rotations, time translation, and time rever-
sal, and it can be diagonalized by an energy eigenbasis that
divides the state space into degenerate angular-momentum
manifolds. Within each of these manifolds, the spin system
is unpolarized, because of the lack of any preferred spatial
direction. For experiments in which parahydrogen is added
chemically to a molecule, the development of scalar order
during the polarization period is determined by a set of multi-
dimensional rotations that mix manifolds obtained by addition
of angular momenta to yield degenerate manifolds of energy
eigenstates. These rotations can be visualized as occurring in
a space where the manifolds obtained by addition of angular
momenta are identified with orthogonal axes.

A short pulse along z breaks the scalar symmetry of the
spin order by rotating the transverse components of I and S
through different angles. The conversion of scalar order to
vector order is maximal when a ±π /2 pulse is applied, i.e.,
when the transverse components of I are rotated by an angle
of ±π /2 relative to those of S. The development of vector or-
der during the pulse can be described analytically by means
of single-transition operators. The state space is divided into
one-dimensional and two-dimensional subspaces that are not
coupled by the pulse, and within each two-dimensional space,
the evolution can be visualized as the precession of a pseu-
dospin about an effective field. The pseudospins precess at
frequency ω1 = −Bz(γ I − γ S), the same frequency at which
the angle between the transverse components of I and S is
modulated in the laboratory frame during the pulse. With the
pseudospin axes denoted by x̃, ỹ, and z̃, polarization along ±z̃

at the beginning of the pulse corresponds to scalar order, while
polarization along ±ỹ at the end of the pulse corresponds to
vector order.

During the detection period that follows that pulse, the
vector order evolves under HJ as a set of oscillating coher-
ences. The imaginary parts of the coherences represent spin
order that is not directly detectable, while the real parts can

be identified with oscillating magnetization. The evolution
governed by HJ causes a periodic exchange between Iz and
Sz, with the undetectable order represented by the imagi-
nary parts of the coherences functioning as an intermediate
state during the exchange. Because the gyromagnetic ratios
γ I and γ S are different, the periodic exchange between Iz and
Sz yields an oscillating magnetization, which constitutes the
NMR signal. The frequency components of this signal are
imaginary, since the pulse does not directly induce magne-
tization in the sample; rather, it is free evolution under HJ that
generates magnetization from the vector order present at the
end of the pulse.

ACKNOWLEDGMENTS

Research was supported by the U.S. Department of
Energy (DOE), Office of Basic Energy Sciences, Division
of Materials Sciences and Engineering under Contract No.
DE-AC02-05CH11231 [theoretical work, PHIP experiments,
salaries for G. Kervern, T. Theis, P. Ganssle, J. Blanchard, A.
Pines], and by the National Science Foundation (NSF) under
Award No. CHE-095765 [zero-field instrumentation, salaries
for M. Butler, M. Ledbetter, D. Budker, A. Pines].

APPENDIX A: CONSEQUENCES OF TIME-REVERSAL
AND COMPLEX-CONJUGATION SYMMETRY

The time-reversal operator can be expressed in the form33

K = exp(−iπFy)K0, (A1)

where K0 acts as the complex-conjugation operator for a state
function expressed in the product-state basis. Note that since
the Clebsch-Gordan coefficients are real, K0 also acts as the
complex-conjugation operator for a state function expressed
in any basis of states |F, MF〉 obtained by addition of angular
momenta with the Clebsch-Gordan coefficients.

Algebraic expressions involving the antiunitary operators
K and K0 can be manipulated by means of the identities

KJK† = −J (A2)

and

K0(Jx, Jy, Jz)K
†
0 = (Jx,−Jy, Jz), (A3)

where J represents the spin of an arbitrary nucleus in the sys-
tem. Equation (A3), in combination with the fact that K0 is
antilinear, implies that

K0 exp(−iπFy)K†
0 = exp(−iπFy).

Since K0 commutes with the rotation appearing in Eq. (A1), a
scalar operator invariant under time reversal is also invariant
under complex conjugation by K0.

1. Scalar order

For hydrogenative PHIP, the density matrix ρ1 is an av-
erage over evolution times t governed by the scalar-coupling
Hamiltonian HJ. With normalization neglected, this average
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can be written as

ρ1 =
∑

t

exp(−itHJ ) ρ0 exp(itHJ ). (A4)

Since HJ and the initial density matrix

ρ0 = 1

4
− I1 · I2

are invariant under time reversal, we have

Kρ1K
† =

∑
t

exp(itHJ ) ρ0 exp(−itHJ ). (A5)

Comparison of Eqs. (A4) and (A5) shows that Kρ1K† cor-
responds to an average in which the oscillation frequency of
each coherence has been reversed in sign. Since the average
over t simply eliminates oscillating terms from the density
matrix, this sign reversal has no effect on ρ1. It follows that
ρ1 commutes with K, and since it is a scalar operator, it also
commutes with K0.

For NH-PHIP, the polarization period can be mod-
eled as an average over subperiods governed by different
Hamiltonians,5 with the molecule either bound to the complex
or dissociated from it throughout each subperiod. Assuming
the characteristic duration of each subperiod is long enough
for all oscillating coherences to be averaged to zero, reversing
the sign of oscillation frequencies has no effect on the aver-
age, and it follows that ρ1 is invariant under time reversal. As
shown in Appendix B, ρ1 is a scalar operator, which implies
that it is also invariant under complex conjugation by K0.

For the three-spin system analyzed in Sec. II A, the co-
herent evolution of ρ(t) is specified by Eqs. (6), (10) and (11),
while ρ1 is given by Eq. (12). The operator �, defined by
Eq. (4) as a triple product, appears in the expansion for ρ(t)
but not in the expansion for ρ1. The triple product changes
sign under time reversal, while ρ1 is invariant under the same
transformation, and we show below that � is orthogonal to ρ1

as a result. In contrast to ρ1, the evolving density matrix ρ(t)
includes oscillating coherences; it is therefore not invariant
under time reversal and in general includes a nonzero contri-
bution from �.

In showing that � is orthogonal to ρ1, we first expand ρ1

as a linear combination of the orthogonal operators that make
a nonzero contribution to ρ(t):

ρ1 = b1 + b2I1 · I2 + b3S · I1 + b4S · I2 + b5�. (A6)

Time reversal changes the sign of � while leaving the other
operators invariant, which gives

ρ1 = Kρ1K
†

= b∗
1 + b∗

2I1 · I2 + b∗
3S · I1 + b∗

4S · I2 − b∗
5�, (A7)

since K is antilinear. Equations (A6) and (A7) imply that

b5 = −b∗
5 . (A8)

Note that if K were linear, we would instead have b5 = −b5,
which would give the desired result b5 = 0. To obtain the same
result from Eq. (A8), we first rearrange the terms in Eq. (A6)
to obtain

b5� = ρ1 − (b1 + b2I1 · I2 + b3S · I1 + b4S · I2) . (A9)

Since Eqs. (A6) and (A7) imply that each coefficient bn ap-
pearing on the right side of Eq. (A9) is real, it follows from
(A9) that b5� is Hermitian. However, � must also be Hermi-
tian, since Eq. (4) defines it as a linear combination of terms
I1uI2vSw, each of which is the tensor product of three Hermi-
tian operators. If b5 is nonzero, Eq. (A8) implies that it is a
pure imaginary number, which would contradict that conclu-
sion that � and b5� are both Hermitian. It follows that b5 is
necessarily zero, which is the desired result.

The fact that ρ1 commutes with K0 implies that the matrix
elements of ρ1 are real in a basis where K0 takes the complex
conjugate of matrix elements. In particular, ρ1 is real when
expressed in the basis B1, defined for the three-spin system by
Eq. (17) and for the N-spin system in Appendix B, since B1 is
obtained by addition of angular momenta using the Clebsch-
Gordan coefficients. Section II C shows that ρ1 can be ex-
panded as a linear combination of orthogonal scalar opera-
tors that have a simple form when expressed in basis B1. In
the context of that discussion, certain terms can be eliminated
from the expansion because the matrix elements of ρ1 are real.

Section II B and Appendix B discuss the structure of the
scalar order that develops during the polarization period. For
hydrogenative PHIP, this scalar order is determined by the
transformation from basis B1 to basis B2, an energy eigenbasis
that diagonalizes ρ1 and divides the state space into degener-
ate manifolds of F. As noted in the introduction to Sec. III,
the phases and amplitudes of the peaks in a zero-field spec-
trum obtained using PHIP or NH-PHIP can be considered to
depend on the same transformation. We show here that this
transformation is formally associated with a set of multidi-
mensional rotations.

We begin by introducing an arbitrary quantum number Y
that distinguishes the manifolds formed by the states of ba-
sis B2. A state belonging to this basis can thus be written as
|F, MF, E, λ, Y〉, where λ is an eigenvalue of ρ1. Similarly,
a quantum number X is used to distinguish the manifolds
formed by the states of basis B1. A state of this basis set can
be written as |F, MF, I, X〉, where I is the summed angular
momentum of the protons, as defined in Eq. (1).

We wish to establish that the states |F, MF, E, λ, Y〉
can be chosen as real linear combinations of the states
|F, MF, I, X〉. For arbitrary Y, we have

|F,MF ,E, λ, Y 〉 =
∑

cn |F,MF , I,Xn〉 , (A10)

where the sum on the right side of the equation is over the
states that have the same values of F and MF as the state on
the left side of the equation. Operating on both sides of Eq.
(A10) with K0 gives state

K0 |F,MF ,E, λ, Y 〉 =
∑

c∗
n |F,MF , I,Xn〉 , (A11)

and since K0 commutes with F2, Fz, HJ, and ρ1, this
state has the same quantum numbers F, MF, E, and λ as
|F, MF, E, λ, Y〉. Equation (A3), in combination with the fact
that K0 is antilinear, implies that the raising and lower opera-
tors Fx ± iFy commute with K0, and it follows that the set of
states

K0 |F,−F,E, λ, Y 〉 , . . . , K0 |F,+F,E, λ, Y 〉
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forms an angular-momentum manifold. Letting MF range
from −F to F, we find that the linear combinations

1

2
(|F,MF ,E, λ, Y 〉 + K0 |F,MF ,E, λ, Y 〉)

=
∑

Re(cn) |F,MF , I,Xn〉 (A12)

and
1

2i
(|F,MF ,E, λ, Y 〉 − K0 |F,MF ,E, λ, Y 〉)

=
∑

Im(cn)|F,MF , I,Xn〉 (A13)

form manifolds of F which span the same space as

|F,MF ,E, λ, Y 〉 , K0 |F,MF ,E, λ, Y 〉 .

Note that the coefficients appearing on the right side of Eqs.
(A12) and (A13) are real. It follows that the eigenstates
|F, MF, E, λ, Y〉 can be chosen as real linear combinations
of the states |F, MF, I, X〉. We assume that the eigenstates of
basis B2 have been chosen in this way.

Expressing a state |F, MF, E, λ, Y〉 as a linear combina-
tion of the states |F, MF, I, X〉 defines a single row of a matrix
RF. The remaining rows are defined by letting Y vary, while
keeping F and MF fixed. The Wigner-Eckart theorem implies
that for a given F, the matrix obtained in this way does not
depend on the value of MF, and so the set of matrices RF can
be considered to describe mixing of manifolds that have quan-
tum numbers (F, I, X) to produce manifolds that have quantum
numbers (F, E, λ, Y). The matrices RF are real, by construc-
tion, and they can be formally associated with multidimen-
sional rotations if the ordering of the rows is chosen such that
det (RF ) = 1 for each F.

2. Vector order

Under the assumption that the energy eigenstates of ba-
sis B2 are chosen as real linear combinations of the states
|F, MF, I, X〉 in B1, the operator K0 acts as the complex-
conjugation operator for states expressed in the basis B2.
Since μz, defined by Eq. (58), commutes with K0, its matrix
elements are real in this basis. In Sec. IV, we use this property
of μz, which represents the observable during the detection
period, to show that the signal is associated with the real parts
of oscillating coherences.

Section IV also discusses the evolution of 〈μz(t)〉 during
the detection period and shows that the spectrum is imaginary.
The conclusion is based on a detailed analysis of the evolution
occurring during the pulse; we show here that the same con-
clusion can be reached using the fact that ρ1, HJ, and (Iz−Sz)
commute with K0. In carrying out this derivation, we let θ

represent the “flip angle” for the pulse, i.e., the angle through
which the transverse components of I are rotated with respect
to the transverse components of S. In order to simplify nota-
tion, we drop the proportionality constant ¯(γ I − γ S)/2 from
the expression for the observable μz. The signal can then be
written as

〈μz(t)〉 = Tr{(Iz − Sz)

× exp(−itHJ ) ρ2 exp(itHJ )}, (A14)

where

ρ2 = exp[−i(θ/2)(Iz − Sz)]

×ρ1 exp[i(θ/2)(Iz − Sz)]. (A15)

We wish to show that if t is replaced by −t in Eq. (A14),
the sign of the signal changes. We define f(t) to be the function
obtained by making this substitution:

f (t) = Tr{(Iz − Sz) exp(itHJ ) ρ2 exp(−itHJ )}. (A16)

Since f(t) can be identified with 〈μz(t)〉 in a system governed
by the Hamiltonian −HJ, it is real-valued. Taking the complex
conjugate of Eq. (A16) therefore leaves the left side of the
equation unchanged. The complex conjugate of the right side
of the equation is obtained by replacing the matrix product
inside the curly brackets by its complex conjugate. Since the
trace is invariant under a change of basis, we can consider the
trace to be evaluated in a basis where K0 acts as the complex-
conjugation operator. This assumption gives

f (t) = Tr{(Iz − Sz)

× exp(−itHJ )K0ρ2K
†
0 exp(itHJ )}, (A17)

where

K0ρ2K
†
0 = exp[−i(−θ/2)(Iz − Sz)]

×ρ1 exp[i(−θ/2)(Iz − Sz)]. (A18)

Comparison of Eqs. (A14) and (A17) shows that replacing ρ2

by K0ρ2K
†
0 in Eq. (A14) converts 〈μz(t)〉 to f(t). From Eqs.

(A15) and (A18), this replacement amounts to changing the
sign of θ , which is equivalent to reversing the direction of the
pulsed field.

Note that ρ2 can also be transformed to K0ρ2K
†
0 by ro-

tating the coordinate system by 180◦ about a transverse axis,
as can be seen by applying such a rotation to the right side of
Eq. (A15). The function f(t) can thus be identified with the sig-
nal observed in the rotated coordinate system, and it follows
that f(t) = −〈μz(t)〉. The periodic signal defined by (A14) is
therefore an odd function of time; its frequency components
are all “sine functions” rather than “cosine functions,” and its
spectrum is imaginary.

APPENDIX B: SCALAR ORDER OF THE N-SPIN
SYSTEM

In generalizing the discussion of Sec. II B 1 to the N-
spin system, we first consider the case where parahydrogen is
chemically added to the molecule. The summed angular mo-
mentum of the spins I1 and I2 in the initial singlet is denoted
by

I12 = I1 + I2.

Basis B1 is obtained by first adding I1 and I2 to obtain singlet
and triplet manifolds of I12, and then adding the angular mo-
menta of the remaining spins, with the heteronucleus added
last. Addition of angular momenta in this order yields states
|F, MF, I, I12〉, where I is the summed angular momentum
of the protons. When expressed in basis B1, the initial density
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matrix ρ0 is diagonal and has zero population in all states with
I12 = 1. All states with I12 = 0 have equal nonzero population.

The structure of the scalar order that develops during
the polarization period can be characterized by expressing ρ1

in an appropriately chosen basis of energy eigenstates, de-
noted by B2. Since HJ commutes with F, the vector operator
for the total angular momentum, the energy eigenstates can
be grouped into degenerate angular-momentum manifolds la-
beled with quantum numbers (F, E). The arguments given in
the paragraph containing Eq. (15) generalize to show that each
degenerate manifold can be considered a linear combination
of the manifolds (F, I, I12) formed by the states of basis B1.
As shown by the discussion in Appendix A, the invariance of
HJ under time reversal implies that the mixing of manifolds
(F, I, I12) to form the degenerate manifolds (F, E) can be de-
scribed by rotation matrices RF. It follows from the Wigner-
Eckart theorem that the time-averaged density matrix ρ1 is
proportional to the identity within each manifold (F, E), since
it is a scalar operator. In the absence of additional energy de-
generacies beyond those resulting from the spherical symme-
try of HJ, matrix elements between states belonging to dif-
ferent manifolds correspond to oscillating coherences that are
averaged to zero during the polarization period. The net effect
of the free evolution and the average over evolution times is
thus to distribute the population that is initially contained in
manifolds (F, I, I12 = 0) among the manifolds (F, E) while
preserving the value of F.

When additional energy degeneracies are present, we can
derive the same conclusions about the structure of ρ1 by con-
sidering the properties of its eigenstates. Under the assump-
tion that all oscillating coherences in the density matrix are
averaged to zero during the polarization period, ρ1 commutes
with HJ, which implies that ρ1 can be diagonalized by a set
of energy eigenstates. Since ρ1 and HJ both commute with F,
the energy eigenstates that diagonalize ρ1 can be chosen to
form degenerate manifolds of F. Since it is a scalar operator,
ρ1 is proportional to the identity within each manifold. We
let B2 denote the energy eigenbasis that diagonalizes ρ1 and
divides the state space into degenerate angular-momentum
manifolds. Appendix A shows that ρ1 is invariant under time
reversal, and that as a consequence, the manifolds of B2

are related to the manifolds of B1 through multidimensional
rotations RF.

These conclusions can be generalized to NH-PHIP. Dur-
ing the polarization period, the analyte molecule is a lig-
and that dissociates from a metal complex. Since the disso-
ciation removes spins from the network of scalar couplings
and causes the loss of correlations between the spins of the
molecule and the spins that remain in the complex,5 the evo-
lution of spin order cannot simply be described as a process of
averaging coherences. However, the structure of the scalar or-
der at the end of the polarization period is the same for hydro-
genative PHIP and NH-PHIP. During the polarization period,
we can consider the spins of the entire sample to be governed
by a scalar-coupling Hamiltonian whose terms are modulated
by the binding and dissociation processes. Evolution under
this spherically symmetric spin Hamiltonian converts the sin-
glet spin order of parahydrogen molecules into scalar spin
order in the sample, which to a good approximation is lim-

ited to individual molecules. The density matrix ρ1 that repre-
sents the resulting ensemble of analyte molecules is therefore
a scalar operator. Under the assumption that the oscillating co-
herences in the density matrix do not survive averaging over
the distribution of times that follow the final dissociation of
the molecule from the complex, the matrix elements of ρ1 be-
tween states of different energy are zero, which implies that
it commutes with HJ. The arguments of the previous para-
graph show that ρ1 can be diagonalized by an energy eigenba-
sis B2 that divides the state space into manifolds (F, E), with
ρ1 proportional to the identity within each manifold. Basis
B1 is formed by addition of angular momenta, with the het-
eronucleus added last. This basis divides the state space into
manifolds (F, I). For NH-PHIP as well as well as for hydro-
genative PHIP, ρ1 is invariant under time reversal, as shown
in Appendix A, and the mixing of manifolds (F, I) to form
manifolds (F, E) can thus be described by means of rotation
matrices RF.
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