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A simple zero-order treatment of averaging by resonance offset fields in multiple- 
pulse NMR is presented. If the resonance offset is smaller than the inverse rf cycle 
time but larger than the local fields, then the average dipolar Hamiltonian has the 
same form as the truncated dipolar Hamiltonian in the rotating frame, and is scaled 
by an easily calculated factor. From this fact, several general conclusions are drawn 
and the possibility of line narrowing, spin locking and time reversal is discussed for 
several pulse sequences. For the phase-alternated two-pulse sequence it is demon- 
strated explicitly by a calculation of truncated second moments that behavior at and 
far from resonance should be radically different, indicating that caution should be 
exercised in the analysis of such experiments. 

INTRODUCTION 
The problem of calculating the response of a coupled spin system to an arbitrary 

radiofrequency excitation is, in general, an extremely complex one. It is well known, 
however, that if the excitation fulfils certain conditions of periodicity and duration, 
an enormous simplification ensues, taking the form of what we have called “coherent 
averaging” (I). This theory has formed a powerful tool for the description and design 
of a variety of effects in pulsed NMR, including spin locking (2-4, line narrowing and 
high resolution NMR in solids (5-7), spin echoes (8), steady-state behavior (9), and 
scaling of inhomogeneous shifts (10). 

It was noticed in several of these experiments that when pulse trains were applied 
with the rf carrier frequency substantially displaced from the Larmor frequency of the 
spin system, i.e., with a “resonance offset,” a new phenomenon manifested itself in 
the form of additional averaging, for example enhanced line narrowing. This pheno- 
menon has recently been explained and, in fact, has been shown to possess a number of 
useful properties (II). 

Basically, what happens, in qualitative terms, is the following: in the presence of rf 
excitation the coupling between the spins becomes modulated with a period equal to 
that of the excitation itself, in an appropriate reference frame (I, 12). In the limit of 
strong modulation we perform a time average of this time-dependent coupling and 
obtain an average coupling which effectively governs the response of the spin system. 
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The process of “truncation” of the dipolar interaction in the presence of a large static 
external field (23-Z6), for example, is a particular case of this approach (II). Now, 
consider what happens if there is a large resonance offset. In the rotating frame, this 
appears as a static magnetic field and, as in the case of truncation just mentioned, this 
field will provide an additional modulation of the coupling, which may be averaged in 
the appropriate limit (I). Thus, the behavior of pulsed NMR experiments near and 
far from resonance should be distinctly different, as has indeed been observed (II). 

In this communication, we wish to present a simple treatment of this phenomenon 
in a form more amenable to an intuitive understanding and quantitative application 
to a variety of NMR experiments than that of our previous work. This presentation is 
warranted by the fact that these multiple-pulse techniques are becoming increasingly 
useful in studies of chemical problems, and resonance offset effects form an integral 
component in their usefulness and in their understanding. 

The approach here is simple in the sense that only zero-order (I) averaging effects 
are considered, and insofar as is possible, the notation and tools used should be quite 
familiar. Higher-order effects are more conveniently treated in terms of irreducible 
tensor operators, since we are interested in the transformations of such operators under 
the rotations induced by the rf excitation. This will be deferred to a later detailed 
exposition of these experiments. 

In section II a brief review of pertinent theory is presented and a general description 
of averaging due to resonance offset fields is derived. In section III this is applied to 
some simple multiple-pulse sequence and some of its uses and limitations are discussed. 
Details on the exact steps involved in the calculations of average Hamiltonians in 
various representations are not given, since this has been presented several times. The 
procedure is simply mentioned and the results written down directly. A concise review 
may be found in a forthcoming treatise on “magic-angle” experiments (7). 

GENERAL THEORY 

Hamiltonian and Frame of Reference 
We begin by writing down a Hamiltonian for the system. We select as an example 

of a spin coupling the dipolar interaction, since this is the most important and widely 
encountered for solids of interest to chemists. The results are easily generalized, as 
we shall see. We write the Hamiltonian in the laboratory frame in frequency units: 

zL(t) = zo + Z,(t) + z&3. PI 
S’F’,, is the Zeeman interaction with applied static field along the z axis 

2” = -wg z,. PI 
Sl(t) the applied rf excitation 

Z,(t) = -2w,(t) I, cos [cd + $@)I, [31 
where WI(t) and d(t) describe the amplitude and phase modulation of the rf excitation 
applied at frequency w, and 

is the dipolar interaction. 
14 
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We now perform the customary transformation to a coordinate system rotating at 
frequency w about the z axis. An average is then performed over a time period of 
277/w and this removes the time-dependent terms in Z1(t) and Zn in this frame. All 
this is well known; it corresponds to discarding the counter-rotating component of the 
rf field and the nonsecular terms of the dipolar interaction (or truncation) and is just 
a special case of coherent averaging. It is clearly legitimate whenever X0 is much 
larger than X1 and SF,,. Our Hamiltonian in the rotating frame thus assumes the form 

[51 

where R indicates the rotating frame. 
SF* is the resonance offset: 

s’fA = -Ad,; do=@,-co) 161 

X1(t) = --o,(t)*Z, 171 

s+r:: = 1 b,,(3Z*,Ijz - Z**Z,); i<J f3ij = pqcos e,,>. PI 

The form of o,(t) depends on the particular experiment at hand. Note that for 
brevity we sometimes use the same notation for terms of SF in different frames, to 
conform with accepted practice-the frame will always be specified if this is done. 
The O superscript indicates a truncation or zero-order average of the particular term. 

If the spin system is initially described in the rotating frame by the density matrix 
~~(0) = pL(0), then at time t it has evolved to a state described by 

PRW = G(4 0) PR(O) G% O), [91 

here Ug(t, 0) is the effective time development operator in the rotating frame, given by 

Ui(t, 0) = Texp 4 s ’ S$(t ‘) dt ’ 
0 1 DOI 

and Tis a time-ordering operator. It is an expansion of Uin which we shall be interested. 

Coherent Averaging Efsects 
We now prepare to take account of the modulation that the first two terms in Eq. [5] 

produce in the third. To this end we assume: 

(i) til(t) is cyclic and periodic with period t,, and t is restricted to integer values 
oft,, t = Nt, 

(ii) t, < tA, T,; tA = 24Aw, Pll 
(i) has been discussed in detail (1) and (ii) will allow us to perform a factorization of 
[lo] in two steps (II). Employing the conditions above we obtain to a good approxi- 
mation factoring out S’,(t) in a straightforward application of the theory: 

Ui(t, 0) = Q,(t, 0) = exp (-id&J, WI 
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where 

s%=’ uf(t,O)[P::+3?~]Ul(t,O)dt 
c s 

0 

=~~+sFy,J=c%~-dwIp; Ul(t,O) = Texp[-i[Sfl(t’)dtf]. [13] 

Note that restriction [l l(i)] applies only to calculations involving time evolution as in 
Eq. [12] and not, of course, to calculations of expansion terms as in Eq. [13]. 2$R is 
the average Hamiltonian ; Tstands for “toggling” (12) since %& is precisely the average 
Hamiltonian in an interaction (toggling) frame defined by AYI(t); (due to restriction 
11(i), o& is thus the effective evolution operator in the rotating frame). ,C refers 
symbolically to the average direction p in the rotating frame along which the spins are 
quantized (12). This is easily visualized by taking a unit spin vector TV. along the z axis 
and applying Y/,(t) in the rotating frame. Then we define: 

[I41 

For example if q(t) consists of 90” phase-alternated &pulses along the x axis then 
&i = (1/1/2)(j + k). Th’ 1s is illustrated in Fig. 1. dwis analogously the average resonance 
offset over this cycle : 

We now add to [l I] (i)-(ii) the further restriction : 

(iii) t2 < T,; ti = 2rrAw-‘. 1111 
This allows us, exactly as above, to factor the operator in [12] and then take an 
average over one cycle of the interaction with the static field -A;$. What we are 
doing is in fact a truncation of the average dipolar interaction e due to the presence 
of a large static field along the ji axis. To a good approximation then : 

Gw, 0) = Ddt, 0) GOT&, 01, [I61 
where 

Dd(t, 0) = exp (-itS?d) 1171 

@&(t, 0) = exp (-it%?~&) WI 
*3 

sgR = 1 2;" = - 
tz s 

DQt, 0) 2; DA@, 0) dt. PI 
0 

Here the additional D subscript stands for “doubly rotating”-%;& is precisely the 
average Hamiltonian in a frame which now rotates about the ii axis at frequency do 
(12). Superscript O” indicates the double averaging or truncation. 
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Now using Eqs. [13] and [19] and changing the order of integration over t, and t2 

we have 
te 

1 tz 
s;gR = - 

tc tii s J 
dt ” dt’Uj(t’,O) U~(t”,O)S: Ul(t”,O) Un(t’,O), PO1 

0 0 

but using [13] and [17] it is easily found that 
11 

; 
A s 

dt’U&t’,O) U;(t”,O)Xj: U&“,O) &(t’,O) =Z?&P2[@-p(t”)] WI 
0 

where 

S+?& is of course just the “secular” part of Zz, the part that commutes with 24. 
With this notation, for example, XI: ESP &. Thus, we obtain finally for the average 
Hamiltonian (excluding sd) putting [21] into [20] : 

200 DTR = 2Py = 2y&F&*p(t)]. 

As usual the bar denotes an average over the rf cycle: 

1231 

[241 

where IX is defined in [14] and p.(t) is the integrand. We prefer to leave [23] in the 
rotating frame since normal detection methods (17) correspond to measurements in 
this frame and not in the more suitable tilted frame along jI. (24). 

Discussion 
Equation [23] expresses a simple yet remarkable result. It says that no matter how 

complicated the cycle of rf excitation, if it is applied with a resonance offset fulfilling 
conditions 11(i)-(iii) then the average dipolar Hamiltonian is just the truncated 
Hamiltonian itself along an average axis in the rotating frame. This is depicted pic- 
torially in Fig. 1. Obviously in a frame tilted (24) with its z axis along &, 2:” is exactly 
proportional to [8]. In order to calculate this average Hamiltonian it is thus not 
necessary to calculate SP!& in the intermediate step-we need only: (i) find @ and 
write down S& immediately and (ii) calculate Jr2 as in [24], so no manipulations are 
necessary on the spin variables. This fact, although rather obvious with a little reflection, 
is obscured in the original work (II) and with complicated cycles the manipulation of 
spin operators becomes unwieldy. The form of [23] allows a simple understanding of 
these experiments and permits us to draw more general conclusions (as we shall see 
for example in the discussion of spin locking). Of course in the event that we wish to 
enquire about the behavior at resonance (dw = 0) this treatment is not valid and 
G@!& must be calculated separately. 

These results are easily generalized. If our interaction is not dipolar but is given, 
say, by a Hamiltonian &‘z whose effective spin part transforms like the zero-order 
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component of an n’th rank irreducible tensor in the rotating frame, then under the 
same conditions : 

3;” = %qp Pn,[p ’ p(t)]. [251 

For example the isotropic chemical shift treated by Ellett and Waugh (IO) has a spin 
part which transforms like a first-rank irreducible tensor and indeed their average 
Hamiltonian is a special case of our results. There, however, zFR commutes with 
2: (since Z transforms like p.) and thus the result is independent of resonance offset. 

FIG. 1. Pictorial description of resonance offset averaging under the pulse sequence of Fig. 2(a). 
The pulses are imagined to be 6 pulses (tW = 0) and are depicted by arrows along x and --x which 
nutate the unit magnetization vector p. alternately by angles 0” and -0”. Thus r(t) switches between 
positions 1 and 2 and its average direction is given by the unit vector ii. The average offset field 
dw = c0s(0/2)& points along 6 and thus any magnetization Mwill precess on the average about this 
axis with frequency dw. This gives rise to the scaling of chemical and inhomogeneous shifts. The 
factor P&.p&)] in Eqs. [23], [24] is simply evaluated for this sequence as P2(cos0/2), so the average 
dipolar interaction is scaled by a#.. p.(t)] = P2(cos e/2). 

One nice feature of [23] is that it allows a quantitative comparison with experiment 
as, for example, in the work of Lee and Goldburg (15). In the case of irradiation at 
resonance, 2: usually has some form different from SC?: and lineshape comparisons 
are difficult to reconcile with theory. Thus, we have to date mostly satisfied ourselves 
with qualitative or semiquantitative conclusions, except in special cases. In the present 
case, however, arguments can be made more precise and quantitative. 

Note that this treatment is not applicable to resonance offset experiments such as 
those of Lee and Goldburg (15) and Barnaal and Lowe (16), since there, requirement 
11 (ii) is violated (tC - td). In these cases the first transformation must be made not by 
U1(t, 0) as in our case, but by the full effective field (14) : 

U,(t, 0) = exp [-it(S1 + SPA)]. 
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In the present case the fact that HI is not exactly perpendicular to Ho would be 
accounted for by correction terms in the expansion of Ui”, which are not considered 
here. 

REPRESENTATIVE PULSE SEQUENCES 
It now remains for us to specify the form of wl(t) in [7] and to write down some 

representative results. We select only simple examples to illustrate the general approach 
to application of the theory. Other examples will undoubtedly be investigated for fun 
by the interested reader. 

Two-Pulse Cycle 
Figure 2(a) shows the form of o,(t) for a phase-alternated two-pulse sequence. By 

inspection (see Fig. 1) we find immediately that p is in the y - z plane and makes an 
angle of 012 with the z axis. Defining the duty cycle 6 by 

f3 = 2t& WI 
and using Eq. [23] we find trivially for a pure dipolar interaction 

2:” = S:ii{[3JQ(e) + 1]/4} 
ps(B) = (1 - S) cos 13 + @sin e/e). 

+ tc/2-+ 
b-----tc1 

(4 

(b) 
8, 8 -X 8-x ox ox 

tw (I+a)r tw tw (I+a)r tw tw l l l 

I 

I=--- tc/2-4 
- tc 7-4 

cc> 

1271 

FIG. 2. Pulse sequences discussed in the text. Although not carried out here, these sequences may 
be symmetrized (31) by a redefinition of the cycle to eliminate some correction terms to the average 
Hamiltonian. 
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If there is an inhomogeneous or chemical shift term in the rotating frame Hamiltonian : 

SE = - 2 Uizz Ii, Pf31 I 
where Xz is again a truncated form of the full chemical shift Z,, then *gs, will 
contain another term given by : 

with ps defined in [27]; this is in agreement with previous results (20). 

Line Narrowing 
Figure 3 shows a calculated plot of (3pa(B) + 1)/4 as a function of 0 for several values 

of the duty factor 6. For 6 < 0.75 we see that 24” can be made to vanish by an appro- 
priate selection of 0 and thus leads to a simple technique for line narrowing. For 6 = 0, 

lz o.o- 
4 
2 
5 

-0.5 - 
I I I I I I 

90 160 270 360 
109.5 257.5 

NUTATION ANGLE (8") 

0.50 

0.75 
1.00 

FIG. 3. Plot of the dipolar scale factor P&..p.(t)] = 1/4[3p,(0) + l] vs. 0 for several values of the 
duty factor 6 in the phase alternated pulse sequence [Fig. 2(a)]. The sequence produces line narrowing 
and is applicable for high resolution NMR in solids when pz = 0, e.g., at 109.5” for 6 = 0 (the phase- 
alternated tetrahedral experiment). For pz < 0 the Hamiltonian becomes “negative” yielding the 
conditions for time reversal. 

i.e., 6 pulses, we need 0 = 8, where 8, is the tetrahedral angle (109”28’); this is just the 
previously described PAT sequence (II). However, the present analysis shows that 
even for 6 > 0 the coupling can be made to vanish with 8 > et, thus eliminating the 
term in Eq. [21] of reference (IO). 

The fact that 0 = 8, explains the limited line narrowing in Fig. 2 of the above work. 
With careful adjustment of 0 > Br decay times exceeding 1 msec for the 19F nuclei in 
CaF have actually been attained for this experiment (18). Interestingly, it appears 
from Fig. 2 that employing 6 - 0.75 should be superior to the PAT experiment since 
the region of line narrowing is then markedly less sensitive to the exact value of t9 and 
should thus be less sensitive to any inhomogeneities in the rf field. However, in this 
range dw is also reduced so there is no large gain in cycle time. An experimental check 
of the full curves in Fig. 2 will be interesting and should provide an additional veri- 
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fication of this simple theory. Note that for any solution of tan0 = 0, e.g., 6 = 257.5”, 
the line narrowing is predicted to be independent of the duty factor 6. 

Magic Echoes 

Magic echoes, which appear after homogeneous free induction decays in solids, 
were first reported by Rhim, Pines and Waugh (8). To remind the reader, magic echoes 
are produced in the following way: following the decay of magnetization due to Zj, 
a strong rf perturbation is applied under which the effective Hamiltonian is given by 
k%z with k < 0. This induces a negative time development which recalls the previous 
history of the spin system and produces an echo. 

Looking at Fig. 2, we see that for small S, we can make 3ps(B) + 1 < 0, i.e., 2:” 
“negative,” thus yielding the necessary conditions for time reversal (8). The observation 
of magic echoes should provide verification for this aspect of the theory. These could 
be produced simply by applying a train of phase alternated pulses “sandwiched” 
between a pair of phase shifted 5 and -.$ pulses as in the analogous on-resonance 
experiments (8). 

Note that this is another manifestation of the simple form taken by the average 
Hamiltonian G@:‘&. In a general pulse experiment, say an on-resonance phase- 
alternated sequence, the effective Hamiltonian has some other form except for special 
cases like 90” pulses (3) (de infia) and time reversal becomes much more restricted. 

Spin Locking 

-O” The form of SD, allows another general conclusion. Since 

vp, -e&J = 0, 1301 

we have all the prerequisites for spin locking of the ,G component of magnetization. 
We point out that [30] is the correct criterion to employ for spin locking; the presence 
of an average or mean ZY1 field is neither sufficient nor a necessary condition as is still 
sometimes erroneously assumed. 

We see, then, that the observation of T, and TL (20) should be a general phenomenon 
in any resonance offset multiple-pulse experiment. If we start with the magnetization 
along an arbitrary axis in the rotating frame, we may separate it into components 
perpendicular to and parallel to @. The perpendicular component will then precess 
about Is, and decay by spin-spin processes with a time constant TL = Pi1 T2 where isZ 
is given by [24] and T2 is the normal transverse relaxation time. For PZ --f 0 the decay 
will of course be dominated by correction terms. The parallel component will be spin 
locked and will change only by spin-lattice relaxation in the rotating frame (12, 14, 
21-24). The effects of spin-lattice relaxation are very interesting in these experiments 
and will be treated in detail elsewhere. 

If the effective field along p, i.e., in 24, is inhomogeneous (for example from an 
inhomogeneous Ho or from inhomogeneous shifts as in a polycrystalline solid) then 
Tl may be dominated by this inhomogeneity if pZ is small. This effect can be demon- 
strated quite dramatically by production of inhomogeneous rotary spin echoes (25) 
when IZ is at the magic angle (i.e., pZ = 0) as in the experiments of Rhim and Kessemeier 
(26) and Pines, Rhim and Waugh (27). In the latter experiment, the nature of the two 
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components of magnetization is shown quite clearly using the off-resonance four-pulse 
technique (5). 

The simple behavior we have outlined above is a peculiar characteristic of the 
resonance offset experiment. If we enquire into the behavior of the spin system under 
the pulse sequence of Fig. 2(a) at resonance (du = 0) we find from [13] 

2: = -+i%& + $Pa(e) 2 bi j[COS &I*, ZJ= - Ziy Zjy) - sin e(Zi, Zj, + I*, Zj,)]. [3 I] 
i<J 

In this case an analysis of the spin system response is difficult and comparison with 
the normal unperturbed behavior can be made only on the basis of moments of the 
decays. For example the second moments defined by (28) 

are given for [31] by 

(&x = Pm (&o 

+2), =+g(e) + ~COSBP~(B) + i1+2)~ 

m, = tbm) - 2 cos ekde) + 1 I wh, 
where (&, is the normal high field truncated second moment 

For 0 = 90”, 6 m 0 we have the experiment of Waugh and Huber (29) which produces 
a prolonged decay only along the x axis as expected from [33]. As we have seen though, 
this picture changes drastically as we go off resonance. 

We take this opportunity to note that [33] also gives the second moment of a spin 
echo decay (with constant 6) produced by a 90, pulse followed by a 0, pulse since this 
is one cycle of the appropriate pulse sequence. This important problem has been dealt 
with separately (9). 

Ideal 90” Pulses 

Since the simple properties of 90” S-pulses have a special appeal and in fact most 
proponents of multiple-pulse NMR have been primarily obsessed with such pulses, 
we enquire here into the possibility of using them for experiments similar to those 
mentioned above. A general two-pulse sequence composed of such pulses is shown in 
Fig. 2(b) with CL variable from 0 through 1. If this sequence is applied with the appro- 
priate resonance offset then, from [23] 

1 ' 

where p is in the y - z plane and 

p.*F=a/[a2+((1-a)2] [381 

and therefore 22” cannot be made to vanish for any real a. Thus using only 90” &pulses 
we conclude that we must resort to a cycle containing more than two pulses to achieve 
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line narrowing. It is interesting that the maximal line narrowing of 0.25 occurs at 
0: = l/2 which gives just the pulse sequence of Waugh and Huber (29). 

Four-Pulse Cycle 
There are many possible four-pulse cycles. The most well-known to pulsed NMR 

spectroscopists is the four-pulse four-phase WAHUHA cycle (5). Here we treat a 
four-pulse cycle employing only two phases shown in Fig. 2(c). Defining 6 as in [26] 
we find again using [23] : 

which reduces for l3 = ~~12 to 
@” = Si[l - 3cr(l - 6)]/4. WI 

For ideal S pulses, 6 = 0, we see that we can achieve an effective line narrowing, 
3jj”ji” = 0, for M = l/3; this yields precisely the same timing as that of the WAHUHA 
cycle and has been verified experimentally, yielding decay times of 2 msec on the 19F 
spins of CaF,. Just as in this latter cycle the effects of finite pulse width can be com- 
pensated for. If we wish to retain 90” pulses then this is easily done by varying a (as 
long as 6 < 2/3) using [40]. The observed change in effective decay times going off 
resonance is quite marked for this pulse sequence. Magic echoes may be produced 
just as in the two-pulse cycle by making 3:” “negative.” 

SUMMARY 
We have attempted to present a clear picture of the additional averaging effects 

produced by resonance offset fields in multiple-pulse NMR, and have illustrated this 
with some simple examples. In particular, the theory shows that behavior at, and far 
from resonance may be distinctly different, and that calculations made disregarding 
the resonance offset field lead to erroneous results (30). In addition, several uses of 
this phenomenon including line narrowing, spin locking, and magic echoes have 
emerged. We conclude by pointing out two other possible applications of this pheno- 
menon in the future. 

(i) Design of more efficient pulse sequences for line narrowing and magic echoes. 
The discussion in this paper has centered on zero-order effects, but there are equally 
profound higher-order effects which can be accounted for by the theory. These effects 
may in some cases outweigh the conclusions drawn from symmetry considerations 
alone in designing multiple-pulse experiments (7,8, 27, 32, 32). 

(ii) This type of experiment provides a simple means of producing effective static 
fields in the rotating frame with arbitrary directions and magnitudes, and with modified 
dipolar interactions, while being able to observe the magnetization between pulses. 
These facts give it an appealing potential for application to double-resonance experi- 
ments (33, 34) which have stirred up some interest among chemists since their recent 
adaptations to high resolution NMR of dilute spins in solids (35-37). 
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