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The dynamics of heteronuclear spin decoupling in solids is treated rigorously in the case of deuterons ('D)
decoupled from protons (H}. Dipole-dipole interaction among each spin species is neglected. Deuteron

decoupling in the presence of strong quadrupolar interaction co& is governed by a double-quantum process,
which is demonstrated by experiments and by double-quantum-limit calculations as compared with thet

rigorous treatment. Double-quantum satellites are observed in the proton NMR spectra due to coherent
double-quantum motion of the deuteron spins.

I. INTRODUCTION

Heteronuclear dipolar coupling KI~ between two
different spin species I and S is one of the major
line-broadening mechanisms in solids. In fact, it
is the main line-broadening mechanism in diluted
spin systems S, where dipolar interaction among
the S spins can be neglected. ' This broadening
ranges to about several kHz in solids containing
abundant I spins. High-resolution S-spin magnetic
resonance is therefore expected, when the I spins
are decoupled by irradiation with strong rf fields
at their I.armor frequency (Jopr.

This aspect of heteronuclear spin decoupling in
solids has been of considerable interest in the
past. For a review, see Ref. 2. The influence of
the dipolar interaction XII of the ebudant I spins
on the S-spin resonance line has been investigated
more recently and interesting aspects of flip-flop
spin dynamics have been demonstrated. ' Especial-
ly the "magic angle" quenching of flip-flop terms
is clearly displayed. 4 Heteronuclear spin decoupling
is heavily applied in recent high-resolution NMR
techniques applied to solids where high-resolution
NMR spectra are obtained of either nuclei with
low natural abudance ["C (1.1%), "N (0.37%)] or
of abundant nuclei, which are homonuclear de-
coupled by multiple-pulse techniques. 2' As an
alternative technique for high-resolution NMR of
protons in solids, the deuteron decoupling of high-
ly deuterated solid samples has been proposed re-
cently. ' .The feasibility of this approach is based
on a double-quantum transition first observed by
Meiboom and co-workers. ' A review of these
techniques can be found in Ref. 2. In order to
achieve complete decoupling, the field strength
~,~ =yIH~ of the decoupling field has to be usually
larger than the I-spin interactions [[K~[) in the I
spin rotating frame, i.e., u&,l» ((Kl([. This con-

dition can be achieved fairly easily if only dipolar
interactions are involved. However, if I &-,',
quadrupole interactions of the I spins can be ex-
tremely large and single-quantum spin decoupling
is not feasible. Even in the case of deuterons
(I=1), the quadrupolar interaction in molecular
solids is on the order of 100 kHz, which would re-
quire rf fields of more than 150 G to decouple the
deuterons according to the above requirements.

Since this is technically not feasible, there
seemed to be no hope for obtaining high- resolu-
tion NMH proton spectra in solids by deuteron
decoupling of highly deuterated samples in the
past. However, Meiboom and co-workers' ob-
served that in deuterated liquid crystals a double-
quantum transition allows a much more effective
spin decoupling of deuterons than is expected from
ordinary single-quantum transitions. These find-
ings have been exploited recently in order to obtain
high-resolution proton spectra in solids by double-
quantum decoupling. " In this paper we want to
derive quantitative expressions for the line shape
of deuteron-decoupled spectra and we compare
exact line-shape calculations with the double-quan-
tum limit. Satellite spectra, which display the
double-quantum coherence are observed for the
first time and are explained quantitatively.

II. QUALITATIVE ASPECTS OF DEUTERON DECOUPLING

For the convenience of the reader, let us first
repeat the simple arguments about the critical
decoupling field strength ~,* necessary for the on-
set of decoupling. Suppose two different kind of
spins I (with gyromagnetic ratio yz) and 8 (with
gyromagnetic ratio y~) are coupled by dipolar
interaction 3CI~. The secular part of the interac-
tion Hamiltonian may then be expressed as
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where x,, is the distance between spins i and j and

3,,- is the angle between the vector ~,, and the mag-
netic field H, . For simplicity we will assume just
two spins, I and S, in the following, although the
extension to many spins is straightforward. Later
in this section when we come to the general treat-
ment, we will relax this restriction and we will
treat the many spin case rigorously. Let us dis-
cuss two different cases, namely: (i) I= ,', S=-,', -
where the resonance signal of the S spins will be
observed and the I spins will be irradiated with rf
fields of strength co, . Without irradiation of the I
spins the S spin signal will have a "broadening",
which is on the order of the I-S dipolar coupling,
l.e. )
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FIG. l. Energy-level diagram of a spin 1 in a magne-
tic field 00 including quadrupolar interaction @. Two
satellite lines at ~p+ are observed as a single-quan-
tum transitions ( 4m = 1). The double-quantum transi-
tion (~m=2) at 2up is indicated.

&a=I:Tr«ss)1'"= 2B (2)

When the I spins are irradiated with an rf field co,

the following transition rate between
l
——,') and

+ 2 occurs:

The critical field ~,* for the onset of decoupling
is reached when

for the double-quantum transition rate, i.e., ~,
is reduced by the factor &u, /&oo in the double-quan-
tum limit. This very important relation was al-
ready utilized in early double-quantum decou-
pling. ' Evaluating the critical field for decou-
pling as in case (i} we obtain under the condition

D'

W*=(oD or &*=28D 2
(d&+((d&+/(do) = (d& Or (d&+ =((d&(do) (6)

w. =(2»'/& ) 1
&1II„lo&&o II„

for the transition rate from
l
—1) to I+ 1) corre-

sponding to a double -quantum transition.
From Eq. (6), we obtain

(6)

W, = ~, (&o, /~o)

i.e. , the strength of the rf field must be equal to
the dipole-dipole interaction in order to break the
coupling. (ii) I=1, S= —, where the S-spin signal
will have a "broadening" u&~ according to Eq. (2}
as

(Z)1/2 B

with no irradiation applied to the I-spin resonance.
In case the I spins have a strong quadrupole inter-
action, this leads to a splitting of the I-spin reso-
nance into two lines separated by 2++ as shown in
Fig. 1. An rf field ~, applied at the center fre-
quency uro cannot cause transitions from lo) to
I+1) unless ~, ~ &u. Since ~&=~&/2v may reach
values of 100-200 kHz for deuterons in solids, rf
fields of this strength for deuterons are hardly
feasible. Although the transition from I-1) to
I+1) vanishes in first order, second-order per-
turbation theory, however, gives the expression' '

This equation demonstrates the efficiency of dou-
ble-quantum decoupling, since only the geometric
mean of v~ and co is needed for the rf field in
order to reach the critical field for decoupling. ' '

It will be demonstrated in the following that the
double-quantum rate W, according to Eq. (7) im-
poses a coherent motion on the I spins. This mo-
tion excites "double-quantum satellites" in the S-
spin spectra, as will be demonstrated in Sec. V.
We shall now turn to some more general and
rigorous aspects of spin decoupling with the em-
phasis on spin I= l. ,

III ~ QUANTITATIVE ASPECTS OF SPIN DECOUPLING

Let us suppose that we observe the resonance
signal of dilute S spine (with S = —,') surrounded by
abundantl spins (with I~ —,') which will be decoupled
by a strong rf irradiation ~„near their Larmor
frequency ~0~; The free-induction decay signal of
the S spins after having applied a —2'w pulse in the

y direction of the S spin-rotating frame may be
expressed as

G(f) -Tr( - "~S e*'~S )/Tr(S2)

with
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Let us consider some simple examples:

(i) N, =l, I=-,'; K =id, I„+BI+,.
It follows, that

A diagonalization of K(+) can be obtained by the
transformation

U(6) = exp(i6Iy),

where

sin3 = u&, /Q; cosh = (—,'B)/Q

with the effective frequency

Q = [ ~d'+ (-'B)'] ' ~ '

Insertion into Eq. (11) and evaluation of the trace
leads to

G(t) =sin'3+ cos'6 cosQt .
The limits of (no decoupling)

&u, =0 3=0 G(t) =cos(2B)t,

and (full decoupling)

id, » (~B); 6 = 2v; G(t) = 1

(12)

are easily recovered.
In Fig. 2 we have plotted the amplitude R =cos'3

of the satellite lines at frequency 0 as a function
of the decoupling field strength &u, in units of ~~B.

Note, that a critical decoupling f ield co, is reached
at the field strength —,'8 as obtained also from first-
order perturbation theory [Eq. (4)] . R falls as

K Ky + Kg/ + Kg/ +XgQ

where 3C is the total interaction Hamiltonian in the
doubly rotating frame (interaction representation)
and Tr ( ) = Trz z( ) is the trace operation over I
and S variables. Assuming S = ~ and no interaction
among the S spins Eq. (9) may be rewritten (after
taking the trace over S)

G(f) [(2I+1) I] -1 ReTr (e- itK(+ ) sit ( ))-(10)
where N~ is the number of the I spins, Re means
taking the real part of the trace, and K(+) is the
interaction Hamiltonian with S, replaced by + 2 or

—,', respectively. The free-induction decay G(t)
according to Eq. (10) cannot be calculcated rig
orously if dipolar interaction among the I spins
is involved. This case has been treated approxi-
mately using a memory function approach recent-
ly. ' Here we restrict ourselves to the neglect of
interactions among the I spins and of course among
the S spins. Inthis case [K&,K~]=0 for j0 k and

G(t) can be obtained in product form as

G(t)=He (2I+1) 'Tr, (e " &&''e" && ')

0.5-

h)i /(8/2)

FIG. 2. Amplitude A of the satellite transition for a
spin J= ~ (single-quantum transition) [Eq. (12)] versus
decoupling field strength co& in units of the dipolar in-
teraction 2B. A "critical" field is reached at co& = 2B.

for (d

The extension to many I spins is straightforward
and yields:

G(t) = ]g (sin'3&+ cos'Bi cosQ~t),

+ 8 sin'3 cos'3 cosQt

+ 2 cos'6 cos2Qt), (14)

where sin8, cos8, and 0 are defined as before.
The following spectral lines occur:

frequency

central line 0

satellite

satellite

amplitude

—,
' (1+6 sin'6 —4 sin'6 )

4 sin23 cos'3

—,cos'3

The limiting case &u, =0, 8=0, G(t) = —,(1+2 cosBt)
(no decoupling), and &d, »B, 6=—,'w; G(t) =1 are
easily recovered. Let us take the amplitude of the
satellite at frequency 2Q as a measure of the de-
coupling eff iciency:

R=cos'6=1/[1+ ~d,'/(2B)']' .
This function is plotted versus ~, in Fig. 3 among
other cases to be discussed later. Notice the ar, '
dependence of R for large (d, in contrast to the ~, '
dependence in the case of I= ,' (Fig. 2). Again the—

where 8 in the above expressions is replaced by
B&. Moreover it can be shown that G(t) is indepen-
dent of the phase of the rf field in the I rotating
frame.

(ii) Nz=1; I=1; Koz-—0 (no quadrupole interac-
tion). The same expressions for K(a) and U(8) as
in case (i) apply. Evaluating the trace in Eq. (11)
in a similar manner as in case (i) results in

G(t) = —', (1+6 sin~8 —4 sin'6



QUANTITATIVE ASPECTS OF DEUTERON (SPINl) SPIN. . .
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FIG. 3. Amplitude R of the strongest satellite tran-
sition for a spin I=1 with and without quadrupolar in-
teraction &~ versus decoupling field strength ~. In
the case ~~=0, R is given by Eq. (15) (dotted curve),
whereas for +& 0 a rigorous [Eq. (20), (solid curve)],
as well as a double-quantum limit calculation [Eq. (41),
dashed curve] are compared. A critical field of ~q
=4.5(2B) is reached in the case co=5B.

extension to many I spins is straightforward and
can be written

G(t) = '
—',(1+6 sin'S, . —4sin23, .

+ 8 sin'3& cos'3& cosQ& t

+2cos'S~cos2Q&t) .

(iii) N~= 1; I=1; Keg 0 .

In this case, we have

(16)

U, K(+)U =K„„=U,K(-)U-, ', (16)

with the eigenvalues X„X„X,. The Trz( ) in E(I.
(ll) can now be expressed as

Re Trz[ exp(- it K«„)U, U, ' exp(itK«„)U, U, ']

mph =lg2t3
f '„„cos(X —X„)t . (19)

I6(g)=(d, I„+—,'(do[3I', I(I+1)]+(2B)I, . (17)

The diagonalization of K(+) is not as trivial as in
the previous cases, although straightforward.
With the transformation U, diagonalizing K(+),
and U, diagonalizing K(-), the same diagonal ma-
trix K«„results, namely,

arbitrary values of co, and ~ according to Eq.
(20) in the limit of no dipole-dipole Interaction'
among the deuterons and among the protons.

A typical behavior of the amplitude of the
strongest satellite line with &u, /(-,'B) as calculcated
according to E(I. (20) is shown in Fig. 3 for v
=5B (solid line). Notice that the critical field (d~

is reached at about 4.5 ( ,B—),which is considerably
less then co.

The extension of E(I. (20) to many I spins is
readily obtained as

N1

G(t}=.ll — P f', (j}cos(}„"'—},"&}t).
)~j. mt%~i)2)3

(21)

Summarizing, we note that the analytic expressions
of the free-induction decay G(t) in the cases (i)-(iii)
are rigorous under the assumption of the neglect of
dipolar interaction among the I spins.

In the last case (iii) the diagonalization of the
interaction Hamiltonian was performed algebra-
ically and the dynamics involved are easily lost in
the procedure. %e will therefore attack the prob-
lem in a different way by using fictitious spin--,
operators in the following. ""In order to treat
double-quantum coherence in operator form Vega
and Pines' introduced fictitious spin- —,

' operators
for the spin-1 case recently.

Instead of the Vega-Pines'~" fictitious spin--,'
operators, however, we prefer here to use the
Vega" ' and W'okaun-Ernst" operators, which
refer to the basis of I„ i.e. ,

I," ' =2(I&&(sI+ Is&&&I),

I," '=-ai(I&&(sI- Is&&&I), (22)

I," '= —'(Iy&(rI- Is)(s I),
where Ir& and Is) can take the following values

I» = I+1& I2& = I0&
I
3& = I-»

as shown in Fig. 1. Commutation relations and
others among these operators are given in the
Appendix.

The Hamiltonian K(+) in Eg. (17) may now be
expressed in terms of these fictitious spin--,' op-
erators as'"

This leads to the free-induction decay G(t) as
follows

K(+) =+BI' '+3(do(I' '-I' ')

+ v 2 (o, (I„' '+I'„'). (23)

G(t) =
3
1 f', cos(X„—X~)t,

m, k ~lp2p3
(20)

This Hamiltonian K(+) will now be transformed in
different steps, beginning with

where the expressions for the eigenvalues X& of the
Hamiltonian K«as well as the coefficients f ~

are given in the Appendix. The free-induction
decay can thus be calculated rigorously for

K, =exp[(i-,'m) I'„"'] (+K) exp[(- i-,'v)i', '] . (24)

After some algebraic manipulation, using the com-
mutation relations and sum rules of the fictitious
spin--,' operators, '"X, can be expressed as
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A diagonalization of the I' ' part can now be
achieved by the transformation

K, = exp(i'', ')K, exp(- i''„'),

(25)

(26)

(u =(4(u'+(u')'~' .e 1 Q (28)

The next step in the transformation procedure is
a —,'w rotation of the I' ' part

which leads after similar algebraic mariipulations
as above to"

X,= +B(I'„'cos2 8 —I„' ' sin —,'6+. ~(&o, —&uo)I'

+ [-', (so+ -,'((u, —(uq}] (I' —I', '), (27}

where

sin6 = 2&v, /~, ; cosh = &uc/&u,

and

Note that the same result was obtained from
second-order perturbation theory" [ Eq. (7)],
demonstrating the role of the rf field &o,'/roc in the
double- quantum frame. ' Experimental conse-
quences of this will be shown in Sec. V. Under the
assumption ~y «(0g the transformed Hamiltonian
K,* in the double-quantum limit may now be re-
written

X"=+BI', '+(v', /~o)I' '+-', &u (I' ' I' ') (33)

This is virtually the same Hamiltonian as X(+)
in Eq. (23) where W2+, (I'„'+I'„') has been re-
placed by (~', /~o} I'„' and where the 1 —3 part
commutes with (I', ' I', ').-In this limit spin
dynamics introduced by the rf field is restricted
to the double-quantum frame and can be treated
in a simple fashion as was done in the cases (i)
and (ii) (K+=0).

We now come back to the more general ex-
pression of K,* as given by Eq. (31) and perform
the transformation

X,=exp[(- i-,'w)I', '] K, exp[(i-,'w)I,' '],
which leads to

(29) Xf = exp (+ijI,'~) X,*exp (+ i PI ', '),
which lea.ds to

(34)

K ~ =. 6BIz cos 26 + 2(coe —(d& )Iz

+ [-', u)q+ —,'((u, —(u~)] (I', ' —I,' ')

~(2) ' 'B sin(g6)(I„' ' —I'„'). (30)

Xf = 2 0 I +g[ 3 (d &+ 2 ((d —(d J](I I), -
(s5)

where
If we now introduce the assumption ~, «uc (8 =0)
in order to neglect sinai with respect to cos —,'8, we
reach the "double-quantum limit" and the last term
in Eq. (30) can be neglected, resulting in

and

sin P = [—,
' (v, &u z) ]/0*; cos P = Bcos(&6)/0*,

(36a)

K,*=+BI', 'cos-,'6+ 2((u, —u)q)I'„'

+[~~&+2(~,—~&)](I', -I, ) (31)

It is evident that K,* can immediately be diagonlized
by some transformation exp(i ji„'~), sincei„'~ com-
mutes with (I,'~ I~ ). Beforep-erforming this step,
however, we would like to discuss Eq. (31) a, little
further.

Note that K,* can be separated into two parts:

K*=K' '+Kc 1 2

with

&*=((8 cos —,'6)'+ [-,' (~, —&so)]'P ~'.

I«he limit ~, «co this again reduces to

»n P= ~',/(~on*}; cosp =B/fl+

with

0+ = [8+ ((d&/(d c) .]

(s6b)

(37a)

(s7b)

The Hamiltonian X„* is in diagonal form and can
be readily used to calculate the trace in Eq. (11)
and thus the free-induction decay. The total trans-
formation used may be summarized as

[lC,'",X,j= 0, U,.„,= U(~ P) U(6), (38)

and where the "double-quantum operator Ky
introduces transitions between levels 1 and 3.

Since K,' ' commutes with K, we face a similar
situation as in the case Kc =0 [cases (i) and (ii)],
but now with a double-quantum transition involved.
The effective rf field strength in the double-quan-
tum case, however, is reduced by a scaling factor
&u, /&uo as follows from [Eq. (31)]:

-,'((u, —(uq) = (o,'/(uq when (o, «ufo .

where

U(3) = exp [(-i —,'m) I,' ']
x exp (i aI', ') exp [(i —,

'
w) I', '],

U(+ P) = exp (+ i PI ', ') . (4o)

Evaluation of the trace in Eq. (11) by using the
transformation U„„, (Eq. 38) and the diagonal



19 QUANTITATIVE ASPECTS OF DEUTERON (SPIN I) SPIN. . .

G(t) =
& (1+2 sin' P+ 2 co s '

P cos II*t), (41)

where sin P, cos P, and 0* are given by Eq. (36)
in the limit u, & v

@
and by Eq. (37) in the limit

~i ~~ ~a

A central line with intensity 3 (1+ 2 sin' P) is
observed together with two satellite lines at the
frequency + 0* with intensity 3 (cos' P). It is
instructive to compare this double-quantum limit
with the case (ii) (X o=0) and the rigorous cal-
culation in case (iii) (3C &00). Especially the ques-
tion arises: Is the double-quantum limit [Eq.
(41)] a good enough approximation to the rigorous
result [Eq. (20)] in practical cases. In Fig. 4,
we have plotted spectral lines for the two different
cases with the quadrupole interaction v = 2B for
different parameters &u,)(—,

' B). Notice that only

(~,is) =o

Hamiltonian 3C f [Eq. (35)] proceeds along the Same
lines as in case (ii) and results in

a slight difference is observed in the spectra
derived from the rigorous (exact) and the double-
quantum limit calculation, respectively. We have
also calculated line shapes for many-spin inter-
actions for different configurations of deuterons.
In all these cases there is only a minute difference
between the exact line shape according to Eq.
(20) and the double-quantum limit [Eq. (41)].
Further, we would like to note that the behavior
of the critical decoupling field ~,*-(&uo~n)' ' is
also displayed in Fig. 4. Similar spectra have
been obtained by Emsley et al."by means of
computer diagonalization.

The amplitude variation of the strongest satellite
lines are compared for the rigorous [Eq. (20)]
and the double-quantum limit [Eq. (41)] calcula-
tions with co~= 5B in Fig. 3. The overall behavior
is quite similar for both calculations. Notice
that the critical field &*, =4.5 (2 B) is close to
the value expected from second-order perturba-
tion theory, namely [Eqs. (5) and (8)),

+,*= (ru o &u n)
' t ' = 4.04 (—,

' B) .

(~, is)= &

(~ ~/8) = 1.5

(~&/B) = 2

V

-2

-2

-2

2

(~-~o) i B

(4l-UJ )/B

The deviation of the double-quantum limit cal-
culation from the rigorous treatment decreases
drastically for larger quadrupolar interaction
('d q.

The extension to many I spins with no inter-
action among each other is again straightforward
and is given here for completeness:

G(t) = ] s (1+ 2

sin�'

p, + 2 cos '
p& cos it* t),

where B and ~~ in the above expressions have
to be replaced by B,. and ~, , respectively. Free-
induction decays and spectra have been calculated
according to Eq. (42) and are compared with ex-
perimental data in Sec. V.

IV. EXPERIMENTAL

(m~/B) = 2.5
(aO-V0) I B

iI
'-2

~ f

2

(~-~, )i e

FIG. 4. Spectral lines of a spin S= ~ coupled to a
spin I=1 by dipolar interaction B for different values of
the decoupling field strength co~ applied at the Larmor
frequency of the I spins. The quadrupole interaction of
the I spins isfixedat u@=2B. Rigorous (solid line) cal-
culations according to Eq. (20) are compared with
double-quantum limit (dashed lines) calculations ac-
cording to Eq. (41). For larger ~@values both calcula-
tions are hardly distinguishable.

Experiments were performed on highly deu-
terated (~ 98%) hexamethylbenzene (HMB) and
squaric acid (SQA) with different grades of deu-
teration. Single crystals were grown from aqueous
solutions. The applied magnetic field was 6.3
T, which corresponds to the resonance frequency
of 270 MHz for the observed proton signal arid to
46.45 MHz for the decoupled deuterons.

The rf fields at both frequencies mere applied
to the sample in a homebuilt single coil double-
resonance probehead. The 270-MHz channel
mas equipped with a Bruker pulse spectrometer
SXP 4-100/270, whereas the decoupling channel
(46.45 MHz) employed a homebuilt double reso-
nance spectrometer. At the deuteron frequency
rf fields up to 100 G could be obtained. Data
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accumulation and storage was performed in a
homebuilt averager and Fourier transformed by
a Varian 620 I computer. All measurements
were performed at room temperature.

kHz

(dq/2"= 5.1 kHz

V. RESULTS AND DISCUSSION

A representative example of the proton line shape
in highly deuterated HMB is shown in Fig. 5 for a de-
coupling field strength of &u, = 2m x 3.2kHz andaquad-
rupole interaction of ~ = 2w x 8.0 kHz. HMB has the
interesting property, that all deuterons in the
unit cell are magnetically equivalent due to rapid
molecular reorientation, i.e. , only a single value
of the quadrupole interaction ~~ is observed, de-
pending on the angle P of the molecular sixfold
axis with respect to the magnetic field as

(do=2(3cos P —1) co@),

LI
C

QJ 2

(D

OJ
1-

U

I

6

(dl /2TC

v~=8.0 kHz
v1= 3.2 kHz

I I t

3 -2 -1 0 1 2 3 4 5

4Hz

FIG. 5. Proton-resonance spectra (dotted curve) at
270 MHz of highly deuterated (~ 98%) hexamethylben-
zene (HMB) for v@ =8.0 kHz and v&=3.2 kHz. The
theoretical line shape (solid curve) was calculated
according to Eq. (21) (rigorous) as well as Eq. (42)
(double-quantum limit) by using the molecular and cry-
stal structural data together with the values for ~g
and ~q as given above. Notice the "double-quantum
satellites" at about v ~/v .

where ~~= 2m' 16.2 kHz in HMB.
The theoretical line shape was calculated using

the given molecular and crystal structure together
with the measured value for the quadrupole inter-
action ~. No detectable difference between the
exact [Eq. (21)] and the double-quantum limit [Eq.
(42)] calculation was observed.

In Fig. 5 we compare the calculated and the
experimental line shape and find a fairly good
agreement. Note the satellite peaks in Fig. 5,
which are due to the coherent spin motion caused

FIG. 6. Double-quantum satellite frequency v, as
obtained from spectra like Fig. 5 versus decoupling
field c)i. The theoretical curve (solid line) derives from
line-shape calculations like in Fig. 5, whereas the
dashed line represents the simple relation v, = v &/v @.

I

by the double-quantum transition with a rate of
about cu', /&uo. The satellite frequency v, as ob-
tained from similar spectra for different values
of (d, is plotted versus ~, in Fig. 6. The theoret-
ical curve (solid line) in Fig. 6 derives from cal-
culated line shapes as shown in. Fig. 5. The agree-
ment with the experimental data is quite pleasing.
Also the rough estimate of the satellite frequency
v, by &u', /eo (dashed line) shows the correct trend.

In order to investigate the decoupling efficiency
we have measured the linewidth of the proton res-
onance line in HMB for different decoupling fields

Typical results for two different co@ values
are plotted in Fig. 7, together with the theoret-
ically determined normalized linewidth (5„. The
calculations were done rigorously [Eq. (21)] as
well as in the double-quantum limit [Eq. (42)]
with no noticeable difference in Fig. 7. Note also
the rapid decrease of the linewidth once the crit-
ical field &,* is reached. This behavior was also
demonstrated in the coherent average approach
as used previously. ' From the simple formula
[Eq. (8)], the critical field should be proportional
to (vo"D)'~'. We have therefore plotted e,* versus
(&o")' 'in Fig. 8. Different values of &uo and
coD were obtained by different orientations of the
HMB crystal in the magnetic field. The critical
field &,* was obtained from plots like Fig. 7. The
calculated curve (solid line) follows from rigorous
as well as double-quantum limit calculations and
represents the data quite accurately. The sim-
ple expression ~,"= (~otal'~' (dashed line) ob-
tained from second-order perturbation theory
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FIG. 7. Normalized linewidth 6 „ofproton spectra
in deuterated HMB versus decoupling field (d& for differ-
ent values of the quadrupole interaction w@ of the deu-
terons. The theoretical curves (solid lines) are ob-
tained by taking the linewidth of spectra, which were
calculated rigorously [Eq. (21)] as well as in the double-
quantum limit [Eq. (42)], with both calculations leading
to indistinguishable results on the scale of the drawing.

does show the general trend, but deviates from
the experimental data appreciably.

Finally, we want to demonstrate again that this
technique might be useful for obtaining high-
resolution proton NMR spectra in solids, by
showing the deuteron decoupled proton spectrum
in highly deuterated squaric acid (C~O~D, ), where
the proton chemical shift tensor has been deter-
mined previously" (see Fig. 9). The residual
proton linewidth was investigated for different
grades of dilution in this compound. An account
of this will be reported la.ter.

VI. CONCLUSION

Proton line broadening of diluted protons im-
mersed in a, deuterated matrix can be calculated

kHz

5-

3-

FIG. 9. High-resolution proton spectra at 270 MHz
in highly deuterated (99%) squaric acid by deuteron de-
coupl. ing. Shift values a are given with respect to TMS.

quantitatively for arbitrary strength of the de-
coupling field &,. The spin dynamical process
involved is a double-quantum transition, which
makes the decoupling very efficient. Line-shape
calculations show that only minute differences
occur for rigorous and double-quantum limit cal-
culations. Coherent spin motion due to the double-
quantum transitions is observed a,s "double-quan-
tum satellites" in the proton spectra, . All these
phenomena can be accounted for quantitatively.
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APPENDIX

A. Diagonalization of 3.'(+)

We have

X(+) = cu, I„+ s ~o |3I ', —I(I+ I) 1 ~ (z /B) I, . (Al)

Diagonalization of X(*) is achieved by the trans-

formationn

II, X(+)II =X„„=U,X( ) U, ',
where

(A2)

I I I I I I

1 2 3 4 5 6 tIHz

(+O(I)a) '»

FIG. 8. Critical decoupling field co& (6 „=2) as ob-
tained from data like those presented in Fig. 7 versus
(~@era} . The theoretical line (solid line) derives
from critical fields co~ at 6„=2 as obtained from similar
theoretical curves as in Fig. 7.

ll 12 13

&2& &22 &23

31 F32 33
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(A3)
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with

(A4)

and where

(A11)

y,'t = X2 Xs —(A + As) Q + Q2+ r ttt2t,

y,' = —(u, (A +A. +Q)/ ~,
&d13 2 1~

F. Fictitious spin-'/2 operators for I= 1 in the Vega-Kokaun-

Ernst notation (Refs. 9 and 'IO)

(A12)

y', = —(tt, (X, +X, +Q )/~,
y' = X, A. + —', &uO (A., + X,) + tds, + s ttts,

y2 = —(u, (Xt+ As+ Q )/~,
with

(A13)

uP
1

31 2

y' = —ltd (A., + X + Q )/~,
ysls At Xs (Xt+ A )Q++Q++ q uPt/2

For the convenience of the reader, we summarize
some of the relations of the operators I" ', a
=x., y, z following Wokaun-Ernstto (for I =1):

(A14)

1 1
Qs = s otto + 2 I ~

The eigenvalues ~„~„~3of X«„are then given
by

2 (Il-2 +Is-s)
s

and with

I 1-2 +I2-3 +I3-1
Og g g 7

(A15)

(A16)

&, =-2p cos (—,'tp+60'),

&, = —2 p cos (-,' cp- 60 ),
X, = 2 fy cos (—,'tp),

(A6)

follows

The following commutation rules apply:

(A17)

cos p= -tI/P (A7)

(A8)

and

(I" ' Ir~ ') =ilr ' a P 7=x,y, z(cyclic) (A18)

[Ir tI s t] —[I-r-tI s t] —(t t)-Ir-s-

tI=(s ~o) [(s td, )'- (2&)'+s &t].
From Eq. (19), G(t) follows readily:

~
1 Z f'.so" (~.—~s) '

(A 9)

(A10)

[Ir tIs t] —(t-t)-Ir-s

[Ir tIst] —-( tt) Ir&

[Ir tIs-t] (tt)-Ir t-
[Ir tIs-t] -0

(A19)

where &„&„and &, are given by Eqs. (A6)-(A9) where x, s, t are all unequal.
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