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Abstract

Many common solid-state nuclear magnetic resonance problems take advantage of the periodicity of the underlying Hamiltonian

to simplify the computation of an observation. Most of the time-domain methods used, however, require the time step between

observations to be some integer or reciprocal-integer multiple of the period, thereby restricting the observation bandwidth. Cal-

culations of off-period observations are usually reduced to brute force direct methods resulting in many demanding matrix mul-

tiplications. For large spin systems, the matrix multiplication becomes the limiting step. A simple method that can dramatically

reduce the number of matrix multiplications required to calculate the time evolution when the observation time step is some rational

fraction of the period of the Hamiltonian is presented. The algorithm implements two different optimization routines. One uses

pattern matching and additional memory storage, while the other recursively generates the propagators via time shifting. The net

result is a significant speed improvement for some types of time-domain calculations.

� 2003 Published by Elsevier Inc.
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1. Introduction

Many computational problems in nuclear magnetic

resonance (NMR) are solved using a variety of simpli-
fication techniques related to the underlying Hamilto-

nian and its time dependence [1]. Often, the goal is to

calculate the density matrix evolution over long time

scales (up to �1 s) in order to observe dynamics as a

function of time.

qðtÞ ¼ Uðt; 0Þqð0ÞUðt; 0Þ�1
: ð1Þ

A propagator must be calculated in order to evolve the

density matrix in time. Any evolution propagator can be

calculated via the direct method given by

Uðt0 þ Dt; t0Þ ¼ T exp

�
� i

Z t0þDt

t0

Hðt0Þdt0
�
; ð2Þ

where T is the Dyson time-ordering operator. When the
Hamiltonian is time-independent, the integral can be
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evaluated analytically in one step (a constant matrix

multiplied by Dt). Consequently, the only required

OðN 3Þ operation, where N is the size of the Hilbert

space, is a single matrix exponential. Most liquid-state
or static solid-state NMR simulations can be calculated

very quickly using this method. Additional computa-

tional difficulties exist when the Hamiltonian is time-

dependent. When the Hamiltonian does not commute

with itself at different times, Eq. (2) can be approxi-

mated by dividing the time interval Dt into M equally

spaced time intervals dt such that M dt ¼ Dt.

Uðt0 þ Dt; t0Þ ¼ T
YM�1

k¼0

exp ½ � iH t0ð þ tkÞdt�; ð3Þ

where T assures that the product is time-ordered, dt is
chosen to be much smaller than any time dependence in

H , and the elements of tk are time points where the

Hamiltonian is evaluated. Choosing the time points in tk
such that they lie in the middle of each interval dt cor-
responds to an implementation of the midpoint rule for

Riemann sums to approximate the integral in Eq. (2).
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Fig. 1. Two simulation diagrams demonstrating: (A) synchronous

observation and Hamiltonian periods and (B) asynchronous observa-

tion and Hamiltonian periods. Each dark dot indicated the desired

observation point. A basic simulation diagram measuring k evolution

points using the periodicity of the Hamiltonian, HðtÞ ¼ Hðt þ sÞ. The
initial calculation of U0 (the preparation phase) is calculated by the

smaller time segments dt as in Eq. (3), is reused to calculate the time

signal at later times (propagation phase), ks. The preparation phase for

(A) is usually the time limiting step. For (B), however, both the prep-

aration phase and propagation phase can be equally time consuming.
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The evaluation of Uðt0 þ Dt; t0Þ using Eq. (3) requires M
matrix exponentiations and M � 1 matrix multiplica-

tions [2]. Both matrix exponentiation and matrix mul-

tiplication are OðN 3Þ operations [2]. All propagators for

time-dependent Hamiltonians can be numerically eval-

uated in this fashion. For Qi spin-Ii particles, the di-

mension of the Hilbert space is

N ¼
Y
i

ð2Ii þ 1ÞQi ; ð4Þ

where the index i runs over each different spin number in

the system. Thus, N easily can become large making the

number of OðN 3Þ operations prohibitively time con-

suming.

Periodic Hamiltonians (HðtÞ ¼ Hðt þ sÞ, where s is

the period of the modulation) appear frequently in

NMR. One of the most common cases of a periodic

Hamiltonian is the mechanical spinning of a sample at a
constant rate and angle with respect to the static mag-

netic field (e.g., magic angle spinning, MAS). There are

many algorithmic tricks that can be implemented in

order to simplify the calculation of periodic Hamilto-

nians and their corresponding propagators.

Any periodic problem potentially can be solved using

a Floquet treatment [3,4]. However, for large Hilbert

spaces or if the frequency range during the evolution is
large, the Floquet method becomes too computationally

demanding. This is particularly true for quadrupolar

nuclei under complex radio frequency irradiation and

sample spinning [5] where numerous frequency modes

are required to achieve a good simulation. Complex

pulse sequences are also hard to manipulate in a Floquet

treatment, as every pulse and density matrix evolution

step must be converted to the large Floquet space. Such
techniques also fail to retrieve all the information about

the density matrix as it evolves through time as typically

only the observable is propagated. In addition, inclusion

of relaxation phenomena into a frequency space prop-

agation further complicates the computation by in-

creasing the number of modes required for multi-spin

simulation. Many independent large complex simula-

tions would be required to effectively simulate the most
realistic spin situation using a frequency-based method.

In this paper we are interested in the time evolution of

the density matrix, not the transitions in the underlying

Hamiltonian. As a result, frequency-based methods will

not be discussed further. The most common method for

time propagation under periodic Hamiltonians is using

the periodic nature of the resulting propagator [6–8].

The technique is applicable only when the observation
time is stroboscopic with the Hamiltonian time depen-

dence. Fig. 1A shows a typical simulation when both the

observation and Hamiltonian periodicity coincide. Such

simulations are commonplace in many solid-state NMR

recoupling experiments [9–11]. Fig. 1B shows the case

when the observation and Hamiltonian periods do not
coincide. In both cases the initial propagator, U0 in the

figure, are calculated using Eq. (3). This preparation

phase is common to all time-domain simulations. We

present an algorithm that can expedite the further time

propagation of the propagation phase in Fig. 1B.

Parallels can be drawn between this algorithm (the

rational reduction algorithm) and lossless data com-

pression [12]. There are two steps in the algorithm, re-
duction and grouping. These steps are analogous to data

compression and data extraction (decompression), re-

spectively. However, they differ in their optimization

goals. The goal of the rational reduction algorithm is to

minimize the number of matrix multiplications, whereas

in data compression the goal is to minimize the number

of bytes required to store a data set.
2. Periodicity and propagator reduction

Throughout this paper, NMR is used as an example,

although the technique is general, and it may be applied

to any periodic time-dependent Hamiltonian. Unless the
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overall Hamiltonian (including interactions, rotor spin-
ning, and rf pulses) is periodic, the methods discussed

below are invalid. The only way to achieve complete

density matrix time evolution is using the direct method.

A typical NMR experiment observes the system at in-

teger multiples of time Dt. Given the Hamiltonian is

periodic with period s, and the observation occurs at a

rational fraction of the period (nm s), there are three

general situations depending on the values of m and n.
These situations are shown schematically in Fig. 2. Let

m and n be positive integers defining the rational frac-

tion n=m. Restricting m and n such that their greatest

common divisor is unity ensures optimal propagator

generation. For example, the cases where ðm ¼ 9; n ¼ 7Þ
and ðm ¼ 81; n ¼ 63Þ are fundamentally equivalent in

the discussion below, however, the ðm ¼ 81; n ¼ 63Þ case
is reducible to ðm ¼ 9; n ¼ 7Þ which requires much less
computation. The denominator m, is the base factor, or

number of subpropagators per period s. Here, a sub-

propagator is defined to be the propagator over a s=m
period. The subpropagators are labeled in a compact

notation, where

Ui � U ði
�

þ 1Þ s
m
; i

s
m

�
: ð5Þ

The numerator, n, represents the number of subpropa-

gators per observation point, and it is named the ob-

servation factor. There are m observation points,

spanning n modulation periods, between observations
that are synchronous with s. In other words, combining

the observations and the Hamiltonian periodicity, an

overall period of ns can be defined. In all cases, the di-

rect method (Eq. (3)) only has to be used to calculate the

m subpropagators (Ui) that span one period s. Next, the
Fig. 2. The three scenarios for observing periodic problems. The ðm; nÞ pairs c
(m ¼ 3; n ¼ 1) propagators. (C) Subpropagator groups amenable to rational

to series of n consecutive (modulo m) subpropagators. In this example, UG0
grouped subpropagators, UGi, are constructed from the
initial set of subpropagators for n > 1.
2.1. m ¼ 1; nP1

The simplest way to make use of the Hamiltonian�s
periodicity is to realize that at each interval ns the

propagator equation can be written as

Uðns; 0Þ ¼ Uðs; 0Þn: ð6Þ

Therefore, the computationally expensive product in Eq.

(3) only has to be evaluated over the interval t ¼ 0 to

t ¼ s. This case provides the dynamics of the system

only at specific time points (t ¼ ns). The m ¼ 1, nP 1

case is well suited for rotor synchronized pulse se-

quences where the rf pulse sequence is commensurate

with the sample rotation (in the sense thatMsseq ¼ Nsrot,
with integral M , N ). Only two propagators have to be
calculated and stored (Uðs; 0Þ and Uðs; 0Þn � U ). The

density matrix time evolution is calculated via

qðtiþ1Þ ¼ UqðtiÞU�1: ð7Þ
2.2. m > 1; n ¼ 1

The second case has m > 1 and n ¼ 1. The period s is
divided into m subpropagators. The density matrix is

advanced in time by one subpropagator for each ob-

servation point. There are m subpropagators that need

to be stored. The appropriate Ui is chosen in a cyclic

fashion during the density matrix time evolution

qðtiþ1Þ ¼ Umodði;mÞqðtiÞU�1
modði;mÞ: ð8Þ
orrespond to the specific examples. (A) (m ¼ 1; n ¼ 1) propagators. (B)

reduction (m ¼ 3; n ¼ 2). The grouped subpropagators UGi correspond

¼ U1U0, UG1 ¼ U0U2, and UG2 ¼ U2U1.
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The m > 1 and n ¼ 1 case is encountered often in NMR
applications. Frequency-domain calculation algorithms

such as COMPUTE [13] and c-COMPUTE [14] use a

similar calculation method as their starting point. These

methods use subpropagators

Vi ¼ T
Yi

j¼0

Ui ð9Þ

and they use Fourier techniques to retrieve all resonance

frequencies. On the other hand, the bandwidth, Dx, for
m > 1 and n ¼ 1 time-domain calculations is restricted

to 1=ðmsÞ.

2.3. Rational reduction; m > 1; n > 1;(gcd(m; n)¼ 1)

In some cases, it may be necessary, or desirable, to

observe the system at times n
m s, where m > 1 and n > 1.

Under these conditions (including gcdðm; nÞ ¼ 1), the
Fig. 3. Schematic of the renormalization from grouping of the subpropa

Table 1

Subpropagator groups for m ¼ 9 and n ¼ 7

Subpropagator series Subpropagator group

U6U5U4U3U2U1U0 UG0

U4U3U2U1U0U8U7 UG1

U2U1U0U8U7U6U5 UG2

U0U8U7U6U5U4U3 UG3

U7U6U5U4U3U2U1 UG4

U5U4U3U2U1U0U8 UG5

U3U2U1U0U8U7U6 UG6

U1U0U8U7U6U5U4 UG7

U8U7U6U5U4U3U2 UG8
rational reduction algorithm can be performed. This
algorithm can reduce substantially the number of

matrix multiplications required to generate the UGi

propagators.

To demonstrate how the rational reduction method

achieves the same result but with fewer matrix multipli-

cations, consider a normal propagation series where

m ¼ 9 and n ¼ 7 for a periodic system with period s. A
sequence of seven subpropagators is required for each
observation, and every nine observations the sequences

repeat. These sequences are grouped together and given

the names UGi as shown in Table 1. The rows of Table 1

represent the propagator to get from the previous ob-

servation point to the current observation point, and

not the total propagator, i.e., the rows contain

Uððiþ 1Þ n
m s; i

n
m sÞ and not Uððiþ 1Þ n

m s; 0Þ. Once these

groups are formed, the problem is transformed into an
analogous m > 1; n ¼ 1 situation.

The creation of the grouped subpropagators, can be

viewed as a renormalization of the original problem.

Beginning with the m and n defined in reference to the

period s, the grouping renormalizes the original m and n
values. The renormalization maps n to 1R, and m to mR,

where the subscript R denotes the renormalized peri-

odicity. The numerical value of m is unchanged during
the renormalization. However, after the renormaliza-

tion, m refers to the longer period ns as opposed to s
prior to the renormalization. Fig. 3 shows a schematic of

the renormalization procedure. Remember, the direct

method (Eq. (3)) is only required for a period of s, and
not ns.
gators: (A) before renormalization and (B) after renormalization.
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The time evolution of the density matrix can be cal-
culated using the following equation:

qðtiþ1Þ ¼ UGmodði;mÞqðtiÞU�1
Gmodði;mÞ: ð10Þ

The only difference between Eqs. (8) and (10) is the

addition of the subscript G denoting the use of a group

of subpropagators in the latter equation instead of an

individual subpropagator in the former equation.

As shown in Table 1, m subpropagators (Ui), span-

ning the time interval t ¼ 0 to t ¼ s in steps of s=m, are
needed to calculate the m grouped subpropagators
(UGi). The UGis, which span time steps of ðnsÞ=m, can be

calculated simply by time-ordered products of the Uis.

This naive approach is used as the reference point for

evaluating the efficiency of the rational reduction.

The most intensive computation is the calculation of

the initial m subpropagators. This calculation is un-

avoidable, and it uses the direct method (Eq. (3)). The

rational reduction algorithm presented here minimizes
the number of matrix multiplications used to generate

the m grouped subpropagators starting from the Uis.

There are two optimization methods used in the first

stage of the rational reduction algorithm, sequence re-

duction and time shifting reduction.

2.3.1. Case 1: m > n, sequence reduction

If m > n (e.g., m ¼ 9 and n ¼ 7, as shown in Table 1),
the n subpropagator sequences for each UGi are refor-

mulated into new sequences using a pattern matching

algorithm. The new sequences contain one matrix for

UG0; two matrices for UG1 through UGðm�2Þ; and one

matrix for UGðm�1Þ, unless m ¼ nþ 1, in which case there

are two matrices. The pattern matching is tantamount to

a lossless data compression since the net effect is to en-

crypt the information in fewer symbols. This reduction
method trades computational cost (matrix multiplica-

tions) for an increase in memory storage. For example,

in Table 1, the sequence U8U7 appears six times. If that

sequence was stored the first time it was calculated and

subsequently recalled as needed, five matrix multiplica-

tions would be saved. All possible sequences are con-

sidered in the sequence reduction method. After

matching the series of n subpropagators with one or two
sequences, the number of matrix multiplications needed

to generate the UGi sequences is often dramatically re-

duced. This point will be described more quantitatively

in the following section.

There are several possible types of sequences. Se-

quences with the form UxUx�1 � � �U1U0, called forward

sequences, are denoted by Fx. Similarly, backward se-

quences, denoted by Bx, have the form Um�1Um�2 � � �
Uxþ1Ux. Despite several redundancies in this naming

scheme, the rational reduction algorithm does not com-

pute or store redundant matrices. The redundancies

include Um�1Um�2 � � �U1U0 � Fm�1 � B0 which is a

complete cycle and is named UC; F0 � U0; and
Bm�1 � Um�1. Inverse forward sequences and inverse
backward sequences are introduced in order to save ad-

ditional matrix multiplications.

As previously mentioned, UC can be calculated as

either a forward sequence, or a backward sequence.

Assuming UC is calculated as a forward sequence. Ini-

tially, U1U0 must be calculated, and it could be stored as

F1, followed by F2 ¼ U2F1, F3 ¼ U3F2, etc. The forward

sequences are considered ‘‘free,’’ in the sense that they
require only extra memory, and not additional compu-

tational cost. The backward sequences, Um�1Um�2 � � � are
not free, as they do not have to be calculated as a part of

another calculation. Therefore, assuming the backward

sequences are calculated in an analogous fashion as the

forward sequences (e.g., Bm�2 ¼ Um�1Um�2, Bm�3 ¼
Bm�2Um�3, etc.) the backward sequences cost one matrix

storage and one matrix multiplication for each sequence.
Alternatively, UC could be calculated from backward

sequences. In which case, the Bxs are free, and the Fxs
cost one matrix storage and one matrix multiplication

each. The inverse sequences are calculated on-the-fly, as

needed. No inverse sequence is used more than once in

the calculation of a set UGis. The inverse sequences are

needed only when the corresponding forward or back-

ward sequences are used elsewhere. The inverse se-
quences do not require any additional OðN 3Þ matrix

operations since the inverse of a unitary matrix is equal

to the adjoint. The inverse can be computed as an OðN 2Þ
process (complex conjugate transpose), and not an

OðN3Þ process (generalized matrix inversion). The in-

verse sequences are needed only when the corresponding

forward or backward sequences are used for other cal-

culations. Finally, only a subset of the forward and
backward sequences is necessary to compute the sub-

propagator groups.
2.3.2. Case 2: m < n, time shifting reduction

The second reduction method in the rational reduc-

tion algorithm has a simple solution that requires no

additional matrices to be stored. The first group is cal-

culated via

UG0 ¼ Fmodðn�1;mÞðUCÞfloorðn=mÞ: ð11Þ

Even though a forward sequence is shown in Eq. (11), it

does not need to be stored explicitly. Next, the re-

maining m� 1 UGis are calculated (possibly out of nu-

merical order) by shifting them in time. The time shifting

can be implemented by shifting forward or backward
one subpropagator each step. The remaining UGis can be

generated recursively using Eq. (12) for forward time

shifting, or Eq. (13) for backward time shifting.

UGðorderFðjÞÞ ¼ Umodðmodðn�1;mÞþj;mÞUGðorderFðj�1ÞÞU�1
j�1; ð12Þ

UGðorder ðjÞÞ ¼ U�1 UGðorder ðj�1ÞÞUm�j; ð13Þ
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where the index j runs from 1 to m� 1, and orderF and
orderB are lists whose elements correspond to the order

that the grouped subpropagators are calculated.

orderFðmodðjmodðn;mÞ;mÞÞ ¼ j; ð14Þ

orderBðmodðm2 � jmodðn;mÞ;mÞÞ ¼ j: ð15Þ
An example where m ¼ 5 and n ¼ 12 is shown in Table

2. The top half of Table 2 demonstrates forward time

shifting, while the bottom half demonstrates backward
time shifting. There are m different possible starting

positions for a sequence of an arbitrary length n. This
time shifting method requires 2ðm� 1Þ matrix multipli-

cations to calculate the final m� 1 grouped subpropa-

gators.
Table 3

A reduced set of propagators for m ¼ 9 and n ¼ 7 produced using the

rational reduction algorithm (sequence reduction)

Subpropagator group Reduced series

UG0 F6
UG1 F4B7

UG2 F2B5

UG3 U0B3

UG4 F7U�1
0

UG5 F5U8

UG6 F3B6

UG7 F1B4

UG8 B2
3. Results and discussion

The two methods for the reduction step (sequence

reduction or time shifting reduction) in the rational re-

duction algorithm do not require any actual propaga-

tors. They only use the indices of the subpropagators

and the labels for the various types of sequences. Given

m and n, the optimization is performed via one of the

reduction methods. After the reduction stage determines
the optimized scheme to produce the grouped sub-

propagators, the second step of the algorithm generates

the grouped subpropagators. A C++ class RationalRe-

duction is given in the BlochLib [15] distribution that

contains routines to perform both steps of the algo-

rithm.

The reduction step (sequence reduction or time

shifting reduction) only needs to be performed once per
simulation, independent of both the number of crystal-

lite orientations in a powder average and the dimension

of the Hilbert space. For these reasons, the overhead of

having to perform the reduction step becomes increas-

ingly negligible as the size of the Hilbert space increases

and/or as the number of orientations in a powder

average increases.
Table 2

Time shifting reduction for m ¼ 5 and n ¼ 12

Reduced forma

Forward time shifting subpropagator sequence

U1U0U4U3U2U1U0U4U3U2U1U0 F1UCUC

U2U1U0U4U3U2U1U0U4U3U2U1 U2UG0U�1
0

U3U2U1U0U4U3U2U1U0U4U3U2 U3UG3U�1
1

U4U3U2U1U0U4U3U2U1U0U4U3 U4UG1U�1
2

U0U4U3U2U1U0U4U3U2U1U0U4 U0UG4U�1
3

Backward time shifting subpropagator sequence

U1U0U4U3U2U1U0U4U3U2U1U0 F1UCUC

U0U4U3U2U1U0U4U3U2U1U0U4 U�1
1 UG0U4

U4U3U2U1U0U4U3U2U1U0U4U3 U�1
0 UG2U3

U3U2U1U0U4U3U2U1U0U4U3U2 U�1
4 UG4U2

U2U1U0U4U3U2U1U0U4U3U2U1 U�1
3 UG1U1
The results from the sequence reduction for the ex-
ample where m ¼ 9, and n ¼ 7 are shown in Table 3.

Comparing the left column of Table 1 to the right col-

umn of Table 3 for the sequence reduction, or the two

left-most columns in Table 2 for time shifting reduction,

demonstrate the parallels with data compression.

In the m ¼ 9; n ¼ 7 example, one inverse sequence is

used. The number of inverse sequences used is zero for

n ¼ 2, and m� n� 1 for n > 2. The efficiency of the
rational reduction versus the naive method was evalu-

ated in terms of matrix multiplications and memory

storage by calculating all combinations of the positive

integers m and n less than 160 that satisfy the condition

gcdðm; nÞ ¼ 1.

The contour plot in Fig. 4 illustrates the efficiency of

the rational reduction method. The formulae in Eq. (16)

return the number of matrix multiplications, Mðm; nÞ,
used to generate UC and UGi. Eq. (16) exactly matches

all calculated values, yet it does not have the restriction

that gcdðm; nÞ ¼ 1.

Mðm;nÞ¼
3ðm�1Þþ floor n=mð Þ; m< n;
2ðm�1Þ; mPn;n¼ 2;
2ðm�1Þþceil ðmþnÞ=2ð Þ�3; mPn;n> 2:

8<
:

ð16Þ
The top formula in Eq. (16) is also valid for m > n when

the time shifting reduction is used. The naive method for
t Subpropagator group Index j

UG0

UG3 1

UG1 2

UG4 3

UG2 4

UG0

UG2 1

UG4 2

UG1 3

UG3 4



Fig. 5. Relative speed of the calculation of UC and the UGis with and

without the rational reduction algorithm. The contour levels indicate a

factor of 5, 10, 20, and 40 increase in speed using the rational reduction

algorithm versus the naive approach to grouping (increasing towards

larger m and n values). A Hilbert space dimension of 100� 100 was

used. In nearly all m; n pairs, the time shifting reduction was faster than

the sequence reduction. The contours in this figure are in good

agreement to the predictions made in Fig. 4 using the time shifting

reduction. An interpolation procedure was used prior to the calcula-

tion of the contour levels since the data is only obtainable when

gcdðm; nÞ ¼ 1.

Fig. 4. Effectiveness of the rational reduction method at reducing the

number of matrix multiplications for calculating the grouped sub-

propagators compared to the original method. The percent reduction

contour levels are 80, 90, 95, and 97.5%, increasing towards higher m
and n values. The dashed contours refer to the efficiency for using the

time shifting for cases when m > n. The contours are equivalent to a

factor of 5, 10, 20, and 40 fewer matrix multiplications for the rational

reduction than the naive approach, respectively.
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generating the UC and the UGis takes m� n� 1 matrix

multiplications.

The optimal solution from the sequence reduction for
m > n and n > 2 requires approximately mþ n addi-

tional matrices (the forward and backward sequences)

to be stored in memory while the UGis are calculated.

Although the time shifting reduction uses no additional

memory storage, it requires approximately ðm� nÞ=2
more matrix multiplications than the sequence reduction

(for m > n). The dashed contour lines in Fig. 4 corre-

spond to the reduction efficiency using the time shifting
algorithm when m > n. A modified form of the sequence

reduction could be used when m < n, however, the se-

quence reduction never uses fewer matrix multiplica-

tions than the time shifting reduction. This fact,

combined with the extra memory requirements for the

sequence reduction and more complicated implementa-

tion, makes the time shifting reduction the method of

choice for m < n.
Up to this point the efficiency of the rational reduc-

tion has been measured in terms of the number of matrix

multiplications. In practice, however, the speed (and

accuracy) of the computation is all that matters. Some

factors that affect computational performance include

the memory requirements and memory management,

the matrix multiplication library, the programming

language implementation of the algorithm, computer
hardware, and the compiler and/or compiler options

used. Many of these factors are outside the scope of the

discussion of the rational reduction algorithm, never-

theless, measures have been taken to use fast library

functions (e.g., ATLAS [16] and BlochLib [15]) and to
write efficient code for the implementation of the ra-

tional reduction algorithm. Fig. 5 shows the actual

speed improvements that can be realized by using the

rational reduction algorithm when grouping subpropa-

gators. The data in Fig. 5 are in good agreement with
Fig. 4, suggesting the time to perform the reduction step

is negligible, since the computation time is primarily

determined by the number of matrix multiplication that

need to be performed (at least for larger Hilbert space

dimensions).

The sequence reduction (both the reduction step and

the grouping step) is substantially more complicated

than the time shifting reduction. As a consequence of
the differences in the complexity of the algorithms, the

fastest reduction and grouping method may not be the

method that uses the fewest matrix multiplications.

Some general recommendations for choosing which

method to use include: Time shifting reduction should

be used whenever m < n. For n ¼ 2, use the naive ap-

proach for grouping. For small n values ðnK 4Þ, again
the naive approach for grouping may be faster than ei-
ther of the reduction methods. Time shifting reduction is

often the fastest method when m > n, despite the fact

that it uses more matrix multiplications than the se-

quence reduction method. Regardless of these recom-

mendations, a quick test to determine which method

performs the best for each combination of m, n, and N
with m > n and n > 2 should be performed. There is a

dependence on the size of the Hilbert space, N . The
details of the implementation of the rational reduction
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algorithm, beyond what was mentioned previously, are
included in the documentation of the C++ class Ra-

tionalReduction in the BlochLib library.

In order to demonstrate the rational reduction in a

specific example, a spin system that models manganese

decacarbonyl, Mn2(CO)10, was used. The spin system

includes two coupled I ¼ 5=2 which has a Hilbert space

dimension of 36� 36. The dipole–dipole coupling be-

tween the two Mn nuclei is 305Hz (calculated using the
internuclear distance from X-ray diffraction data [17]).

The other couplings used were 3.01MHz quadrupolar

coupling and 65Hz isotropic J coupling [18]. The

quadrupolar–dipole cross-term was neglected. The

‘‘isotropic’’ projection from the 3QMAS (triple quan-

tum version of the multiple-quantum MAS [19]) spec-

trum was calculated.

Instead of calculating a full 2D data set with evolu-
tion under a multiple-quantum coherence during t1 and

evolution under single-quantum coherence during t2, as
is collected experimentally, the desired spectrum was

calculated from a 1D data set that traverses the two time

domains with a slope of t2 ¼ ð19=12Þt1. Calculating this

1D data set across the two time domains reduces the

amount of computation to less than what would be re-

quired for three slices of the 2D data set (a potential
saving of several orders of magnitude).

The ratio 19/12 is determined by ratio of the expan-

sion coefficients for the rank 4 terms of the second-order

quadrupolar Hamiltonian under triple- and single-

quantum coherences (for I ¼ 5=2 nuclei) [19]. After

evolution under two different coherences for the ap-

propriate times (according to the aforementioned ratio),

the inhomogeneous broadening caused by a the rank 4
terms of the second-order quadrupolar Hamiltonian is

removed. The rank 2 terms are removed by MAS,

leaving a resonance that is not broadened by anisotropic

quadrupolar interactions.

The calculation of the isotropic dimension without

using the rational reduction algorithm for 1154 crystal-

lite orientations took approximately 877 s, whereas us-

ing rational reduction to group the propagators took
829 s (a 6% improvement). A similar experiment using a

two spin I ¼ 7=2 system requires t2 ¼ ð55=101Þt1 (or

n=m ¼ 55=101) to measure the isotropic projection. The

simulation of this larger system took approximately

5080 s without rational reduction and 3570 s (a 30%

improvement) using rational reduction [20].
4. Conclusions

The rational reduction algorithm is applicable to the

generation of any set of grouped subpropagators (i.e.,

m > 1, n > 1, gcdðm; nÞ ¼ 1). The algorithm can de-

crease the time for calculations by reducing the number

of matrix multiplications to generate the grouped sub-
propagators. Rational reduction is useful for time-do-
main calculations where the elements in the density

matrix are of interest, and not just the energy levels of

the Hamiltonian.

Fully exploiting the periodicity of a time-dependent

Hamiltonian can dramatically reduce the number of

matrix multiplications and matrix exponentiations in-

volved in calculating long time spin dynamics. For off-

period observations, a new algorithm is presented that
minimizes the number of matrix multiplications used to

calculate the grouped subpropagators. This rational re-

duction technique can provide vast speed improvements

for the calculations of the grouped subpropagators

needed for time-domain observations of the density

matrix. Determination of the reduction itself is a fast

procedure using only integer labels, and its computation

time is generally negligible compared to the computa-
tion time of the propagators.
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