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Recursive Evaluation of Interaction Pictures 
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‘The  interaction picture is a  useful tool in quantum mechanics, allowing one  to 
investigate slow and  possibly complicated processes in the presence of fast motions 
whose behavior is well understood. Important examples in NMR are the rotating- 
Frame transformation (I) and  the “togglingfi-ame” picture used in mu ltiple-pulse NMR 
(2, 3) and  composite pulses (4). The  interaction picture is related to the laboratory 
frame by a  timedependent  unitary transformation operator. If this operator commutes 
with itself at different times, as in the rotating-frame transformation, the evaluation 
of the transformation is usually quite simple. In mu ltiple-pulse NMR, however, the 
pu.lses are usually applied with different phases, leading to noncommut ing transfor- 
mation operators. In this case the transformation is conventionally performed in a  
straightforward fashion which requires a  number  of transformations proportional to 
the square of the number  of pulses in the sequence. In this paper  we show that this 
method is not inherent to the transformation and  demonstrate a  simplification which 
is recursive, thereby making the number  of necessary transformations linear in the 
number  of pulses in the sequence. 

The  Hamiltonian describing a  mu ltiple-pulse sequence can be  written in the lab- 
oratory frame as 

A?(t) = x0 + 2FRF(t), [II 
wlhere XRF(t) describes the effect of the radiofrequency pulses, while A?” contains all 
the other interactions. The  general  solution of the Liouvi l le-von-Neumann equation 

p(t)= Texp[ -i~A?(t’)dt’]p(O)relp[ i~Z(f’)dfl, PI 

where T represents the Dyson time-ordering operator, is usually transformed into an  
interaction picture where 

Here 
k(t) = u-‘(t)GY”u(t> 

represents the Hamiltonian in the so-called “toggling frame” and  
t41 

U(t) = T  exp[ -i~S?RF(t’)df] 

509  0022-2364187 $3.00 
Copyrisht 0 1987 by Acdemic Press, Inc. 
AU rights of repmduction in my form tvsmed. 



510 NOTES 

is the transformation operator. The motivation for this separation is that we are not 
interested in the fast common motion of the spins due to the RF pulses, but in the 
evolution of the system under the internal Hamiltonian 2?’ which is modified by the 
effect of the pulses. This goal can be achieved by stroboscopic observation at times 
when U(t) = 1. As can be seen immediately from Eq. [3], the evolution of the system 
is then determined entirely by the interaction representation Hamiltonian k(t). 

The evaluation of the interaction picture defined by [4] is often performed as follows: 
The transformation operator U(t) is divided into discrete parts, corresponding to in- 
dividual RF pulses. The toggling-frame Hamiltonian after the tih pulse can then be 
written as 

O@n(t)=Pi’P~” * *P,‘A?‘OPna . .PzPl, 161 
where 

Pi = TeXp[ -i~~GYRF(lf)dl’] [71 

and ti and t: mark the beginning and end of the ith pulse, respectively. This procedure 
corresponds to first applying the inverse of the nth pulse to the laboratory-frame Ham- 
iltonian, followed by the inverse of the (n - 1)th pulse, etc., until the transformation 
by the inverse of the first pulse leads to the final form of the interaction Hamiltonian. 
Because this approach proceeds backward in time, it does not permit the calculation “, 
ofZn+, from Z’,, and the (n + 1)th pulse; it is necessary to repeat the whole calculation 
for the next step, starting with P,+l . The number of transformations required therefore 
grows quadratically with the number of pulses in the sequence. In addition, the apparent 
time reversal in 161, together with the lack of a recursion formula, makes the values 
of k(t) in the different windows appear to be unrelated to each other, thereby obscuring 
the relation between &‘,, and &‘n+l. 

By a simple change in picture the same calculation can be performed in a simpler 
fashion. The idea is to express the effect of the pulses themselves in the toggling frame. 
We thus define 

~~ = pi’p;’ . - . P;!,P$“-, . * * PZP,. PI 
By inverting this equation to solve for P,, and inserting the result in Eq. [6], we can 

express 2(t) as 
k,(t) = Pi’ * . . y;q-y$pp,p2. . . p,. 191 

Thus, if the e&ct of the pulses, and therefore of the transformation operator U(t), 
is itself described in the toggling frame, the transformation can be accomplished in 
the forward sense. Successive values of the interaction-frame Hamiltonian are now 
related via the recursion relation 

k,+dt) = ~,-:&zttPn+, . [lOI 
Accordingly, the number of necessary transformations becomes linear in the number 

of pulses. The reversal of order observed here is analogous to the coordinate trans- 
formation by Euler angles, where the sequence of rotations in the modified frame 
occurs in the opposite sense compared to their application in the original frame. 

The actual evaluation of t.he Pi does not revert to Eq. [8], but proceeds via direct 
transformation of Z”“(t) into the toggling frame and subsequent integration, 
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In general, all the angular-momentum operators that occur in the coupling Ham- 
iltonian zRF(t) must be transformed into the toggling frame. In most cases this means 
that & and fY must be evaluated for the whole sequence, even though only i, usually 
occurs in &“’ for high-field NMR. The evaluation of all three components is normally 
required anyway for multiple-pulse sequences at zero field (5) or for iterative expansions 
(5, 6), where all three terms occur in X0. 

As a simple example we calculate the interaction Hamiltonian for the WHH-4 
sequence (7). The basic pulse cycle can be written as -~/2-X-7-y-27-J-~-x-7/2-. 
We use here the usual notation, abbreviating 90” pulses with lower case letters des- 
ignating the relative phase. Figure 1 illustrates the procedure: the relative phase of the 
pulses in the laboratory frame is written on top of the pulse while the corresponding 
phase in the toggling frame appears at the bottom. The first pulse is always the same 
in the laboratory frame and in the toggling frame, in this case P-,. It transforms the 
laboratory-frame operators (I,, Z,,, ZJ into (I,, -Z,, Z,,), using the same sense of rotation 
as Haeberlen (3). Thus, I,,, the coupling operator for the second pulse, has been turned 
into -I, and the effect of the second pulse can be written as P,, or p-,. Using the latter 
notation, it is obvious that the three operators are transformed into (-I,,, -I=, Z,). The 
last two pulses simply reverse the effect of the first two, making the calculation straight- 
forward in either notation. 

The method is equally applicable to composite pulse schemes or windowless mul- 
tiple-pulse sequen_ces. As an example consider the BLEW- 12 sequence (8). The toggling- 
frame values of Pi can be obtained by replacing x or y with the corresponding table 
entry from the line starting with Z, or ZY, respectively. The procedure is the same as 

Laboratory -X 
rf-phase 

1 . . 

v -Y X 

L-L 
Interactton 
Representation 

13~. 1. Schematic representation of the procedure for the WHH-4 sequence. The phases of the pulses in 
the laboratory frame are indicated on top of the drawing. The letters under the pulses indicate the direction 
of the pulses in the toggling frame. Note that in this frame pulses in the 2.z direction occur naturally. Each 
successive step of the interaction picture can be evaluated from the preceding one by applying a rotation 
around the axis indicated under the pulses. 
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Laboratory X Y -x Y X 
rf-phase 

Y -y -x -y x -y -x 

Interaction X Z -y -x -z y -y z x y -z -x 
Representation 

‘x ‘x ‘y ‘y -‘z -Iz -Ix -Iz -Iz (y (y Ix Ix 

iy Iz Iz -Ix -I, Jy ly ly -Ix -Ix Iz Iz ly 

Iz -ly Ix Iz ly Ix -Iz Ix ly Iz Ix -ly Iz 

FIG. 2. Same as Fig. 1, for the windowless BLEW-12 sequence. The interaction picture values of the 
angular momentum operators refer to the instantaneous values between two pulses. 

that for the WHH4 sequence and is illustrated in Fig. 2. The resulting values of the 
angular-momentum operators at the times between the pulses are shown in the figure. 
The Hamiltonian during the nth pulse can be calculated as 

[ 121 

In conclusion, we have shown that it is possible to evaluate interaction pictures 
starting with the first transformation and proceeding forward in time by expressing 
the transformation operator itself in the interaction frame. This allows one to evaluate 
successive steps recursively, thereby reducing the number of coordinate transformations 
needed from a quadratic function in the number of pulses to a linear function. This 
recursive transformation is also easier to grasp conceptually. The method is of course 
not limited to NMR but can be used for the evaluation of any interaction representation 
in time-dependent quantum mechanical problems. 
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