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Abstract

The Bloch equations with T relaxation can be inverted in closed form with respect to T , using inverse scattering theory.2 2

Hence, radio frequency pulses can be calculated that cause a final magnetization response that is any desired function of T ,2
Ž .provided that function is physically realizable however, there are strong constraints on what is physically realizable . A

useful subclass of such pulses are ‘dressing’ pulses, which store the magnetization on the z-axis, with magnitude a given
function of T . This enables spins to be selectively nulled according to their T – this is demonstrated by obtaining a2 2

relaxation-selective image of a phantom. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Ž .When radio frequency rf pulses are applied to a
system made up of spins that are distinguished by

Žone or more parameters such as free-precession
.frequency, or T relaxation time , the final state of2

the spins will be a function of those parameters. The
rf pulse design problem involves finding that rf pulse
which leaves the spin system in a given desired final
state, or as close to it as possible.

This problem is most commonly approached in
the ‘forward’ direction. For example, rf pulses that
give a desired magnetization response as a function

Ž .of resonance offset ‘frequency-selective pulses’ are
often designed by numerically searching through a
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space of allowed pulses, calculating the magnetiza-
tion response for each trial pulse. Typical algorithms

w xused are gradient-based minimization 1–3 and sim-
w xulated annealing 4–6 .

For sufficiently restricted spaces of allowed
pulses, the determination of the best pulse shape can
be done more simply. For example, rf pulses that
give a desired magnetization response as a function

Ž .of T relaxation time ‘T -selective pulses’ have2 2

been obtained by calculating the response of a rect-
w xangular soft pulse 7 . This response can be given in

closed form – it is then easy to find rectangular
pulses that suppress spins with either long or short
T times. In a similar manner, T -contrast enhance-2 1

ment has been obtained by calculating the response
w xof a train of hard pulses 8 .

This Letter is concerned with the calculation of
T -selective pulses via an inÕerse method. Firstly,2

constraints on the total space of allowed magnetiza-
tion responses, as functions of T , are obtained. It is2
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important to do this, as the space is quite restrictive.
For example, it is not possible for truly ‘notch filter’
pulses to exist, as they do with frequency-selective
pulses.

Secondly, inverse scattering theory allows the
exact calculation of the rf pulse that will give any

w xallowable response 9,10 . This Letter concentrates
on an important subset of allowable responses. It is
important because the corresponding pulses are able
to selectively null spins with particular T values,2

and also because the pulses can be calculated more
simply than in the general case, using the ‘dressing

w xmethod’ – a tool from inverse scattering theory 10 .
Such pulses are therefore ‘notch filter’ pulses, to
within the constraints described below. This comple-
ments the use of a 908 pulse followed by a wait
period, which would constitute a high pass T filter,2

w xand the square pulses described in Ref. 7 , which
were used as low pass T filters.2

A pulse was calculated using this method to null
magnetization of spins with a particular T value,2

leaving other spins as unaffected as possible. This
Ž .same pulse after scaling its duration and amplitude

could be used to null spins with different T values2

to that originally specified. It was tested experimen-
tally as part of imaging a two-component system,
consisting of a short T spin species, physically2

separated from a long T species. By nulling first the2
Ž .short T species leaving the long T species alone ,2 2

Žand then nulling the long T species leaving the2
.short T species alone , selective images of the2

different T species were obtained.2

2. Theory

Inverse scattering theory allows the ‘inversion’ of
systems of the form

EF
s ij JqV t F j ,t , 1Ž . Ž . Ž .

Et

Ž . Ž .where F j ,t , J, and V t are n=n matrices, and j

Ž .is a scalar the scattering parameter . It is possible,
and often convenient, to make all quantities in the

Žabove equation dimensionless e.g., the time t is
expressed as a multiple of some convenient charac-

.teristic time . This has been done throughout this
section.

Given an initial specification of F as a function
of j , together with a ‘physically realizable’ final
Ž .F j , inverse scattering theory allows the determi-

Ž . w xnation of V t 11 . The Bloch equations with T2
Ž .relaxation can be written in the form of Eq. 1 , with

w xns3 10 . In this case, j corresponds to the T2

relaxation rate, G s1rT . F corresponds to the2 2

magnetization vector, and V to the rf pulse.
Due to the particular form of the Bloch equations,

there are constraints on the allowable final magneti-
Ž .zation, m ,m ,m , as a function of G after an rfx y z 2

pulse. The most important constraints are that the
final longitudinal magnetization, m , is analytic inz

w xthe right half complex G plane 9,10 , and that2
< <m ™1 as G ™`. It is also bounded in magni-z 2

< < Žtude, m (1, when G is imaginary. The previousz 2

two statements assume that the magnetization is
.normalized so its magnitude equals 1 at equilibrium.

Standard results from complex analysis can be
used to obtain some physically obvious results on the

q qbounds of m for G gR , where R is the closedz 2

positive real axis, 0(G (`. Apply the conformal2
X Ž . Ž .map G s G y1 r G q1 , to map the right half2 2 2

< X <complex G plane to the unit disk, G (1, with2 2

the imaginary axis mapped to the disk’s boundary.
< <Then, from above, m (1 on the boundary, and mz z

is analytic inside the disk. Hence, the maximum
w x < <modulus theorem 12 shows that either m -1z

< <everywhere inside the disk, or that m s1 every-z
Ž . < <where including the boundary . Hence m (1 forz
q < <G gR , with the proviso that if m s1 for any2 z

q Ž .G in the open interval R i.e., 0-G -` , then2 2
q< <m s1 for all G gR . This is basically provingz 2

that the magnetization vector cannot ever increase in
length above its equilibrium value, and that its length
will be less than its equilibrium value once it has
been moved off the z axis, unless it has no T2

Žrelaxation or infinitely fast T relaxation – in which2
.case it can never move off the z axis .

Suppose it is desired to construct an rf pulse that
will cause m s0 for some value, say g , of G gz 2 2

R q. Such a pulse would enable the nulling of the
magnetization of spins with T s1rg . Without loss2 2

of generality, g can be taken equal to 1. Then the2
Ž .function m G is mapped by the above conformalz 2

transformation so that m is zero at G
X s0. Thenz 2

w x < Ž X. < < X <the Schwarz lemma 12 implies that m G ( Gz 2 2

within the unit disk. Hence if m s0 at G s1, thenz 2
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< < <Ž . Ž . <m ( G y1 r G q1 for all G in the rightz 2 2 2

half complex plane. In general, if m is required toz

equal 0 for G sg , with g not necessarily equal2 2 2

to 1, then m must obey the constraintz

G yg2 2
< <m ( 2Ž .z

G qg2 2

for G in the right half complex plane.2

This result means that rf pulses cannot be used to
obtain arbitrarily sharp notch filter m responses asz

functions of G . For example, consider the notch2

filter function:

1 for G -0.5 ,° 2

~0 for 0.5 -G -1.5 ,m G s 3Ž . Ž .2z 2 ¢1 for G )1.5 .2

It would not be possible to obtain a response that
were arbitrarily close to this desired response. If a

Ž .pulse were designed that gave m G s1 s0, thenz 2
Ž .the maximum achievable value of m G s1.5 isz 2

0.5r2.5s0.2. This is in contrast to pulses used for
frequency selection, where a response arbitrarily

Žclose to the above replacing G by frequency off-2
.set could be obtained.
An important class of final responses has, given

Ž .initial magnetization 0,0,1 , a final response

m sm s0 , andx y

r G yg2 j
m s . 4Ž .Łz wG qgjs1 2 j

Here, w means the complex conjugate. Parameters gj

may be chosen arbitrarily, as can the number of
parameters, r, except that all g must be in the rightj

half complex plane, and any g off the real axis mustj
Ž w.be in a g , g pair.j j

A pulse giving such a response would store mag-
netization on the z axis, with magnitude dependent
on T . The pulse could be chosen to null spins with2

Žany desired T value more than one T could be2 2
.nulled at the same time . For each g on the realj

axis, the magnetization will be nulled at T s1rg .2 j

One reason for the importance of these pulses is
that they can be easily calculated from the desired
response with a tool from inverse scattering theory –

w xthe dressing method 10,13 . This is in contrast to the
inversion of a general response, which requires the

Fig. 1. The evolution of the magnetization, for a series of spins
with different T values, during a third-order dressing pulse2

designed to null species with a T of 1. All magnetizations start at2
Ž .0,0,1 and move to a position on the z axis dependent on their

ŽT . The path of the T s` species is not clear; it overshoots the z2 2
.axis, but then retraces its path to the axis.

w x Žsolution of coupled linear integral equations 9 un-
less the corresponding pulse is required to be real, in
which case simpler inverse scattering theory for a

w x.second-order system can be used 10 . A pulse with
Ž .the response of Eq. 4 will be called an r th-order

dressing pulse. Note that even-order dressing pulses
behave differently to odd-order pulses at G s0. For2

even-order pulses, m sq1. For odd-order pulses,z

m sy1. For both, m ™1 as G ™`.z z 2

Fig. 1 gives a geometric picture of how a third-
order dressing pulse designed to null a spin species
with T s1 works. The magnetization with that T2 2

Ž . Ž .is moved from 0,0,1 to 0,0,0 . Other magnetiza-
tions are stored elsewhere on the z axis, and could
then be observed with application of a 908 pulse.

3. Examples

w xThe simplest dressing pulse 10 has the form, in
Ž . Ž .units of angular frequency, v t sg sech gt , corre-

sponding to a final magnetization response

G yg2
m sm s0 , m s . 5Ž .x y z

G qg2
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Ž . Ž . Ž .Fig. 2. a Pulse shapes for a square pulse, a sech pulse, which is the first-order dressing pulse, and a third-order dressing pulse. b and c
show the longitudinal and transverse magnetization responses versus 1rT for spins on resonance, obtained by numerical integration of the2

Bloch equations for the given pulse shapes. The transverse responses of the dressing pulses are close to zero. They are not identically zero
Ž .as the pulses have been truncated. d shows the m responses versus resonance offset for spins with T s1 ms after using the three pulsez 2

shapes. In all graphs, the dashed, solid, and dotted lines refer to the square, sech, and third-order dressing pulses, respectively.

This pulse therefore nulls spins with T s1rg. Fur-2
Ž .thermore, by comparison with Eq. 2 , it is the pulse

that allows maximum contrast between these spins
and spins with a different T time.2

One problem with this pulse, however, is that it is
Žquite sensitive to resonance offset when pulses are

calculated with inverse scattering theory to have a
specified T response, it is assumed that all spins are2

.on resonance . It is possible, just as with the square
w xpulses of Ref. 7 , to use hard 1808 pulses within the

pulse to decrease this sensitivity. However, we found,
by numerical simulation, that the third-order dressing
pulse with m responsez

' 'w x w xŽ .G y1 G y 1qi 3 r2 G y 1yi 3 r2Ž . Ž .2 2 2
m sz ' 'w x w xŽ .G q1 G q 1qi 3 r2 G q 1y i 3 r2Ž . Ž .2 2 2

2Ž . Ž .G y1 G y G q1w x2 2 2
s 6Ž .2Ž . Ž .G q1 G q G q1w x2 2 2

is less resonance-offset sensitive than the sech pulse,
and might therefore be a better choice as a relax-
ation-selective pulse in many cases. See also Fig. 2,
which compares the sech pulse, the third-order dress-
ing pulse, and a square pulse designed to null spins
with T s1 ms. The third-order dressing pulse corre-2

w xsponds to that shown in Section IVC of Ref. 10 .
The figure shows the pulse shapes, the longitudi-

nal and transverse magnetization responses as func-
Ž .tions of G for spins on resonance , and the m2 z

Žresponses as functions of resonance offset for spins
.with T s1 ms . All responses were obtained via2

numerical integration of the Bloch equations for
pulse durations as shown in the figure.

Note that the transverse responses for the two
dressing pulses are very close to zero for all T rates,2

Žwhereas that for the square pulse is appreciable in
principle, the transverse responses for the dressing
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pulses should be zero – their being non-zero is a
.consequence of the pulses being truncated . Hence,

dressing pulses do truly null the magnetization at
specified T values, whereas other pulses null just2

the longitudinal response.
It is interesting that the m response of the squarez

pulse is very similar to the response of the sech
< <pulse, although m for the latter is always greaterz

Žthan or equal to that of the square pulse as follows
.from the previous section . The resonance offset

behaviour of the third-order dressing pulse is approx-
imately the same as would be obtained from the
square pulse shown if two 1808 hard pulses were
added to the latter at times Tr3 and 2Tr3, where T
is the square pulse’s duration.

As a simple test of using a dressing pulse to
selectively null spins with a specified T , a phantom2

as shown in Fig. 3a was constructed. This consisted

of two concentric water samples, doped with MnCl ,2

so that the separate components had different T2
Žtimes, but similar resonance offsets MnCl was2

used as a doping agent, as it has very little effect on
.the resonance offset of the water . Combined with

Ž .the homogeneity of the field 10 Hz broadening , all
spins in both compartments lay within the range of
resonance offsets over which the third-order dressing
pulse works.

The two components had different T times. The1

outer component’s T was sufficiently long to be1

taken as infinite. The inner component had a T of1

12 ms. Although the dressing pulses are designed
w xassuming no T relaxation, it can be shown 10 that1

odd-order dressing pulses work with T present.1

Finite T has the effect of decreasing the T nulled1 2
Žby the pulse to what value it is decreased to must be

.determined by numerical simulation .

Ž .Fig. 3. a The doped water phantom used to demonstrate the T selectivity of the third-order dressing pulse. It consisted of two concentric2

tubes, filled with MnCl with concentrations shown. The T times of the outer and inner solutions were 3.79 and 0.45 ms, respectively. The2 2
Ž . Ž . Ž .T relaxation of the outer solution was long enough to be taken as infinite, the T time of the inner solution was 12 ms. b , c , and d1 1

Ž . Ž .show three images obtained from the phantom. In b , all the spins were excited with a 908 hard pulse prior to imaging. In c , the
Ž .fast-relaxing spins were selectively nulled prior to the excitation pulse. In d , the slow-relaxing spins were selectively nulled prior to the

excitation pulse. All images have their intensities to the same scale.
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Fig. 3b shows an initial image of both compo-
nents of the phantom, obtained at 4.2 T using a hard
908 pulse, followed by an imaging sequence.

Subsequent images were obtained by preceding
the above sequence with the third-order dressing
pulse described above, and shown in Fig. 2a. By
scaling the pulse in duration and amplitude, it could
be used to selectively null either the fast or the slow

Žrelaxing species e.g., doubling the pulse duration
and halving its amplitude will double the T nulled2

.by the pulse . These images are shown in Fig. 3c,d,
confirming the ability of this pulse to act as a notch
T filter.2

4. Conclusions

Relaxation-selective pulses are a useful comple-
ment to frequency-selective pulses. They have previ-
ously been used to create contrast between spin

w xspecies with different relaxation times 14 , and to
w xselectively null magnetization 7 . They have also

w xbeen used in magnetization transfer experiments 15 .
In contrast to previous work, we have found

strong constraints on the physically allowable T2

responses, and determined how to invert any such
response. We have concentrated on ‘dressing’ pulses
as they are relatively easy to calculate, and they
work well in nulling the magnetization of one or
more spin species distinguished by T – although the2

constraints on the allowable responses mean that
pulses that null multiple T values will work well2

only if the values are well separated.
For example, we have demonstrated the selective

nulling of spins in a two-component system, where
the T times are different by about a factor of 8. We2

also chose the system so that all spins were reason-
ably close in resonance offset. For a system with a
wide range of resonance offsets, a bandwidth-broad-

Žening scheme would need to be considered the

w x .scheme used in Ref. 7 works for dressing pulses .
However, it is not possible, even in principle, to
sharpen the discriminatory ability of rf pulses be-
tween species with different T times above a certain2

limit.
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