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Abstract

The Bloch equations with T, relaxation can be inverted in closed form with respect to T,, using inverse scattering theory.
Hence, radio frequency pulses can be calculated that cause a final magnetization response that is any desired function of T,
provided that function is physicaly realizable (however, there are strong constraints on what is physically redizable). A
useful subclass of such pulses are ‘dressing’ pulses, which store the magnetization on the z-axis, with magnitude a given
function of T,. This enables spins to be selectively nulled according to their T, — this is demonstrated by obtaining a
relaxation-selective image of a phantom. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

When radio frequency (rf) pulses are applied to a
system made up of spins that are distinguished by
one or more parameters (such as free-precession
frequency, or T, relaxation time), the final state of
the spins will be a function of those parameters. The
rf pulse design problem involves finding that rf pulse
which leaves the spin system in a given desired final
state, or as close to it as possible.

This problem is most commonly approached in
the ‘forward’ direction. For example, rf pulses that
give a desired magnetization response as a function
of resonance offset (‘ frequency-selective pulses’) are
often designed by numerically searching through a
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space of alowed pulses, calculating the magnetiza-
tion response for each trial pulse. Typical algorithms
used are gradient-based minimization [1-3] and sim-
ulated annealing [4—6].

For sufficiently restricted spaces of alowed
pulses, the determination of the best pulse shape can
be done more simply. For example, rf pulses that
give a desired magnetization response as a function
of T, relaxation time (‘T,-selective pulses’) have
been obtained by calculating the response of a rect-
angular soft pulse [7]. This response can be given in
closed form — it is then easy to find rectangular
pulses that suppress spins with either long or short
T, times. In a similar manner, T,-contrast enhance-
ment has been obtained by calculating the response
of atrain of hard pulses [8].

This Letter is concerned with the calculation of
T,-selective pulses via an inverse method. Firstly,
constraints on the total space of allowed magnetiza-
tion responses, as functions of T,, are obtained. It is
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important to do this, as the space is quite restrictive.
For example, it is not possible for truly ‘ notch filter’
pulses to exist, as they do with frequency-selective
pul ses.

Secondly, inverse scattering theory alows the
exact calculation of the rf pulse that will give any
alowable response [9,10]. This Letter concentrates
on an important subset of allowable responses. It is
important because the corresponding pulses are able
to selectively null spins with particular T, values,
and also because the pulses can be calculated more
simply than in the general case, using the ‘dressing
method’ — atool from inverse scattering theory [10].
Such pulses are therefore ‘notch filter' pulses, to
within the constraints described below. This comple-
ments the use of a 90° pulse followed by a wait
period, which would constitute a high pass T, filter,
and the square pulses described in Ref. [7], which
were used as low pass T, filters.

A pulse was calculated using this method to null
magnetization of spins with a particular T, value,
leaving other spins as unaffected as possible. This
same pulse (after scaling its duration and amplitude)
could be used to null spins with different T, values
to that originally specified. It was tested experimen-
tally as part of imaging a two-component system,
consisting of a short T, spin species, physicaly
separated from along T, species. By nulling first the
short T, species (leaving the long T, species aone),
and then nulling the long T, species (leaving the
short T, species alone), selective images of the
different T, species were obtained.

2. Theory

Inverse scattering theory allows the ‘inversion’ of
systems of the form

oD

S =liga+vlecen, (1)
where @(&,t), J, and V(1) are n X n matrices, and &
is a scalar (the scattering parameter). It is possible,
and often convenient, to make al quantities in the
above equation dimensionless (e.g., the time t is
expressed as a multiple of some convenient charac-
terigtic time). This has been done throughout this
section.

Given an initial specification of & as a function
of ¢, together with a ‘physically redizable’ fina
@( &), inverse scattering theory allows the determi-
nation of V(t) [11]. The Bloch equations with T,
relaxation can be written in the form of Eg. (1), with
n=3 [10]. In this case, ¢ corresponds to the T,
relaxation rate, I',=1/T,. & corresponds to the
magnetization vector, and V to the rf pulse.

Due to the particular form of the Bloch equations,
there are constraints on the alowable final magneti-
zation, (mx,my,mz), as a function of I, after an rf
pulse. The most important constraints are that the
final longitudina magnetization, m,, is anaytic in
the right half complex I', plane [9,10], and that
m,— 1 as |I,| - . It is aso bounded in magni-
tude, [m,| < 1, when T', isimaginary. (The previous
two statements assume that the magnetization is
normalized so its magnitude equals 1 at equilibrium.)

Standard results from complex analysis can be
used to obtain some physically obvious results on the
bounds of m, for I', € K", where i+ is the closed
positive real axis, 0 < I', < . Apply the conformal
map I, =(I',—1)/(I',+ 1), to map the right half
complex I", plane to the unit disk, |I,| < 1, with
the imaginary axis mapped to the disk’s boundary.
Then, from above, |m,| < 1 on the boundary, and m,
is analytic inside the disk. Hence, the maximum
modulus theorem [12] shows that either |m,|<1
everywhere inside the disk, or that |m,| =1 every-
where (including the boundary). Hence |m,| < 1 for
I,eN™*, with the proviso that if |m,|=1 for any
I, inthe openinterval N * (i.e,, 0 < I', < ), then
Im,| =1 for all T, e \™*. Thisis basically proving
that the magnetization vector cannot ever increase in
length above its equilibrium value, and that its length
will be less than its equilibrium value once it has
been moved off the z axis, unless it has no T,
relaxation (or infinitely fast T, relaxation — in which
case it can never move off the z axis).

Suppose it is desired to construct an rf pulse that
will cause m,= 0 for some value, say vy,, of I, €
N *. Such a pulse would enable the nulling of the
magnetization of spinswith T, = 1/,. Without loss
of generdlity, y, can be taken equal to 1. Then the
function m(I,) is mapped by the above conformal
transformation so that m, is zero at I, = 0. Then
the Schwarz lemma [12] implies that |m, (')l < | T, |
within the unit disk. Hence if m,=0at I, = 1, then
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Im,|<(I',—1)/(I,+ 1) for al I, in the right
half complex plane. In general, if m, is required to
equal O for I, = y,, with vy, not necessarily equal
to 1, then m, must obey the constraint

=y,
I+,

(2)

Im,| <

for I', in the right half complex plane.

This result means that rf pulses cannot be used to
obtain arbitrarily sharp notch filter m, responses as
functions of I',. For example, consider the notch
filter function:

1 forl, <05,
m,(I,)={0 for05 <I,<L15, 3
1 forl, >15.

It would not be possible to obtain a response that
were arbitrarily close to this desired response. If a
pulse were designed that gave m,(I", = 1) = 0, then
the maximum achievable value of m,(I',=15) is
0.5/25=0.2. Thisisin contrast to pulses used for
frequency selection, where a response arbitrarily
close to the above (replacing I", by frequency off-
set) could be obtained.

An important class of fina responses has, given
initial magnetization (0,0,1), a final response

m,=m, =0, and
r I, —a
mz=l_[ 2= 9

j=1 Fz""gj* .

(4

Here, * means the complex conjugate. Parameters g;
may be chosen arbitrarily, as can the number of
parameters, r, except that all g; must be in the right
half complex plane, and any g; off the real axis must
beina(g;,g/) pair.

A pulse giving such a response would store mag-
netization on the z axis, with magnitude dependent
on T,. The pulse could be chosen to null spins with
any desired T, value (more than one T, could be
nulled at the same time). For each g; on the real
axis, the magnetization will be nulled at T, =1/g;.

One reason for the importance of these pulses is
that they can be easily calculated from the desired
response with a tool from inverse scattering theory —
the dressing method [10,13]. Thisisin contrast to the
inversion of a general response, which requires the
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Fig. 1. The evolution of the magnetization, for a series of spins
with different T, values, during a third-order dressing pulse
designed to null specieswith a T, of 1. All magnetizations start at
(0,0,1) and move to a position on the z axis dependent on their
T,. (The path of the T, = species is not clear; it overshoots the z
axis, but then retraces its path to the axis.)

solution of coupled linear integral equations [9] (un-
less the corresponding pulse is required to be real, in
which case simpler inverse scattering theory for a
second-order system can be used [10]). A pulse with
the response of Eq. (4) will be caled an rth-order
dressing pulse. Note that even-order dressing pulses
behave differently to odd-order pulsesat I', = 0. For
even-order pulses, m,= +1. For odd-order pulses,
m, = —1. For both, m,» 1 as I', - .

Fig. 1 gives a geometric picture of how a third-
order dressing pulse designed to null a spin species
with T, = 1 works. The magnetization with that T,
is moved from (0,0,1) to (0,0,0). Other magnetiza-
tions are stored elsewhere on the z axis, and could
then be observed with application of a 90° pulse.

3. Examples

The simplest dressing pulse [10] has the form, in
units of angular frequency, o(t) = g sech(gt), corre-
sponding to a final magnetization response

m _Fz_g
‘ F2+g'

(5
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Fig. 2. (@) Pulse shapes for a square pulse, a sech pulse, which is the first-order dressing pulse, and a third-order dressing pulse. (b) and (c)
show the longitudinal and transverse magnetization responses versus 1,/T, for spins on resonance, obtained by numerical integration of the
Bloch equations for the given pulse shapes. The transverse responses of the dressing pulses are close to zero. They are not identically zero
as the pulses have been truncated. (d) shows the m, responses versus resonance offset for spins with T, = 1 ms after using the three pulse
shapes. In all graphs, the dashed, solid, and dotted lines refer to the square, sech, and third-order dressing pulses, respectively.

This pulse therefore nulls spins with T, = 1/g. Fur-
thermore, by comparison with Eq. (2), it is the pulse
that alows maximum contrast between these spins
and spins with a different T, time.

One problem with this pulse, however, isthat it is
quite sensitive to resonance offset (when pulses are
calculated with inverse scattering theory to have a
specified T, responsg, it is assumed that all spins are
on resonance). It is possible, just as with the square
pulses of Ref. [7], to use hard 180° pulses within the
pulse to decrease this sensitivity. However, we found,
by numerical simulation, that the third-order dressing
pulse with m, response

(L= 1)(T—[1+1V3]/2)(T, - [1-1V3]/2)
(L +1)( I +[1+41V3]/2) (I, +[1-1V3]/2)
(D, = D[(I)*— T, +1]

T (L, + D[P+ I, +1]

z

(6)

is less resonance-offset sensitive than the sech pulse,
and might therefore be a better choice as a relax-
ation-selective pulse in many cases. See also Fig. 2,
which compares the sech pulse, the third-order dress-
ing pulse, and a square pulse designed to null spins
with T, = 1 ms. The third-order dressing pulse corre-
sponds to that shown in Section IVC of Ref. [10].

The figure shows the pulse shapes, the longitudi-
nal and transverse magnetization responses as func-
tions of I', (for spins on resonance), and the m,
responses as functions of resonance offset (for spins
with T,=1 ms). All responses were obtained via
numerical integration of the Bloch eguations for
pulse durations as shown in the figure.

Note that the transverse responses for the two
dressing pulses are very close to zero for al T, rates,
whereas that for the square pulse is appreciable (in
principle, the transverse responses for the dressing
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pulses should be zero — their being non-zero is a
consequence of the pulses being truncated). Hence,
dressing pulses do truly null the magnetization at
specified T, values, whereas other pulses null just
the longitudinal response.

It is interesting that the m, response of the square
pulse is very similar to the response of the sech
pulse, athough |m,| for the latter is always greater
than or equa to that of the square pulse (as follows
from the previous section). The resonance offset
behaviour of the third-order dressing pulse is approx-
imately the same as would be obtained from the
square pulse shown if two 180° hard pulses were
added to the latter at times T/3 and 2T /3, where T
is the sguare pulse’s duration.

As a simple test of using a dressing pulse to
selectively null spins with a specified T,, a phantom
as shown in Fig. 3a was constructed. This consisted

15mmol MnCl,, 1.9 mmol MnCl,

Imm

of two concentric water samples, doped with MnCl ,,
so that the separate components had different T,
times, but similar resonance offsets (MnCl, was
used as a doping agent, as it has very little effect on
the resonance offset of the water). Combined with
the homogeneity of the field (10 Hz broadening), all
spins in both compartments lay within the range of
resonance offsets over which the third-order dressing
pulse works.

The two components had different T, times. The
outer component’s T, was sufficiently long to be
taken as infinite. The inner component had a T, of
12 ms. Although the dressing pulses are designed
assuming no T, relaxation, it can be shown [10] that
odd-order dressing pulses work with T, present.
Finite T, has the effect of decreasing the T, nulled
by the pulse (to what value it is decreased to must be
determined by numerical simulation).

Fig. 3. (& The doped water phantom used to demonstrate the T, selectivity of the third-order dressing pulse. It consisted of two concentric
tubes, filled with MnCl, with concentrations shown. The T, times of the outer and inner solutions were 3.79 and 0.45 ms, respectively. The
T, relaxation of the outer solution was long enough to be taken as infinite, the T, time of the inner solution was 12 ms. (b), (c), and (d)
show three images obtained from the phantom. In (b), all the spins were excited with a 90° hard pulse prior to imaging. In (c), the
fast-relaxing spins were selectively nulled prior to the excitation pulse. In (d), the Slow-relaxing spins were selectively nulled prior to the

excitation pulse. All images have their intensities to the same scale.
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Fig. 3b shows an initia image of both compo-
nents of the phantom, obtained at 4.2 T using a hard
90° pulse, followed by an imaging sequence.

Subsequent images were obtained by preceding
the above sequence with the third-order dressing
pulse described above, and shown in Fig. 2a. By
scaling the pulse in duration and amplitude, it could
be used to selectively null either the fast or the slow
relaxing species (e.g., doubling the pulse duration
and halving its amplitude will double the T, nulled
by the pulse). These images are shown in Fig. 3c,d,
confirming the ability of this pulse to act as a notch
T, filter.

4. Conclusions

Relaxation-selective pulses are a useful comple-
ment to frequency-selective pulses. They have previ-
ously been used to create contrast between spin
species with different relaxation times [14], and to
selectively null magnetization [7]. They have also
been used in magnetization transfer experiments[15].

In contrast to previous work, we have found
strong constraints on the physically alowable T,
responses, and determined how to invert any such
response. We have concentrated on ‘dressing’ pulses
as they are relatively easy to calculate, and they
work well in nulling the magnetization of one or
more spin species distinguished by T, — although the
constraints on the alowable responses mean that
pulses that null multiple T, values will work well
only if the values are well separated.

For example, we have demonstrated the selective
nulling of spins in a two-component system, where
the T, times are different by about a factor of 8. We
also chose the system so that all spins were reason-
ably close in resonance offset. For a system with a
wide range of resonance offsets, a bandwidth-broad-
ening scheme would need to be considered (the

scheme used in Ref. [7] works for dressing pulses).
However, it is not possible, even in principle, to
sharpen the discriminatory ability of rf pulses be-
tween species with different T, times above a certain
limit.
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