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Scaling and Time Reversal of Spin Couplings in Zero-Field NMR
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We report the observation of spin echoes resulting from the time reversal of isotropic many-body spin
couplings in zero-field NMR. The coherent-averaging pulse sequences responsible for the scaling and
the time reversal of isotropic interactions of first and second rank are based on cubic and icosahedral

symmetry.

PACS numbers: 33.25.Fs, 76.60.Lz

Among the most extraordinary phenomena in nuclear
magnetic resonance (NMR) is the spin echo [1]. Al-
though the original spin echo and its analogs in other
areas of spectroscopy [2] result from reversing the de-
phasing due to independent, “inhomogeneous” interac-
tions, a true many-body spin echo resulting from a rever-
sal of the (seemingly irreversible) decay due to ‘“homo-
geneous” spin-spin couplings has been demonstrated [3].
The phenomenon occurs in high magnetic field and can
be thought of as arising from a reversal of the sign of the
Hamiltonian describing the truncated spin-spin couplings
[4], thereby reversing the evolution of the spins. Such
time-reversal effects, induced by coherent averaging un-
der sequences of radio-frequency pulses [5], have made
possible a number of novel experiments including selec-
tive excitation of n-quantum transitions [6].

An interesting question is whether the high magnetic
field normally present in NMR experiments is essential to
the possibility of time reversal of the spin-spin couplings.
Could such experiments be done in zero-field NMR,
where there is no truncation or privileged direction and
the full, untruncated, Hamiltonian is responsible for the
decay of spin order [7]1? In this Letter, we show theoreti-
cal and experimental results involving general schemes of
coherent averaging in zero field using dc magnetic-field
pulse sequences that conform to cubic and icosahedral
symmetry. From these schemes emerges the possibility of
scaling, decoupling, and time reversal in zero field.

The most general constraint that we impose upon
coherent-averaging schemes in zero field is that the ener-
gy levels of the coherently averaged local interactions
remain ‘“‘zero-field-like,” i.e., independent of the orienta-
tion of the sample with respect to the laboratory frame.
Although there may be some privileged directions in the
laboratory frame, along which the dc magnetic-field
pulses are applied, for instance, the overall effect of the
process must be independent of the orientation of the lo-
cal interaction axis with respect to these directions. The
process or the sequence is then called isotropic. It can be
shown that isotropic processes are reduced to the scaling
of the local interactions, i.e., multiplication by k, a con-
stant scaling factor. For a given isotropic sequence, the
scaling factors may not be identical for all types of in-
teractions: heteronuclear or homonuclear, first rank (due
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to couplings with residual external fields, for example) or
second rank (due to quadrupolar or dipole-dipole cou-
plings). We shall focus on the simple but important case
of homonuclear interactions of first and second ranks,
where the scaled couplings are obtained as the zero-order
average Hamiltonian over a coherent-averaging pulse se-
quence. The scaling factors for the first- and second-rank
tensors will be denoted k| and k», respectively. For ex-
ample, decoupling sequences have either k; or k; equal to
zero, while for time-reversal sequences k| or k; is less
than zero. A cubic-group-based theory has been pub-
lished for some zero-field decoupling sequences [8].
Some spin interaction terms in high-field decoupling se-
quences can also be described as randomly oriented first-
rank tensors, and iterative maps were designed according
to a similar formalism based on cubic symmetries [9].

In zero field, the spin interactions are coherently mani-
pulated by applying magnetic-field pulses, traditionally
called “dc pulses” [8]. These pulses rotate the full zero-
field Hamiltonian, and, for a given rank of interactions,
their effect can be written in terms of Wigner matrices.
A linear combination of Wigner matrix elements acts as
the transformation relating the zero-order average Ham-
iltonian to the free zero-field Hamiltonian, implying that
the condition for isotropy is

(DL (R =k 8pmme' ¢))

where (); is the average over i, and the R; =(w;,n;) are
the rotations applied to the spin Hamiltonian, defined by
the net rotation angles w; and the rotation-axis orienta-
tions n;. By taking the trace of both sides of (1), it is
found that the scaling factor is related only to the charac-
ters of the Wigner matrices, which are independent of the
n; [10]:

For /=1 and 2,
ki =(Qcosw; —1)/3); , (3a)
k> ={((4cos’w; +2cosw; — 1)/5); . (3b)

The scaling factors depend only on the mean and the
mean square of cosw during the irradiation period.
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Equations (3) restrict k; and k, to the shaded region of
the (ky,k;) plane shown in Fig. 1, with —+ <k, <1
and — + <k,=<1. For sequences that are isotropic for
one rank (but not necessarily for the other) the limits on
scaling factors still hold.

Whereas the scaling factors depend only on the w;, the
condition of isotropy also constrains the n;. A wide range
of solutions is allowed, some of the simplest based on
group-symmetry arguments. Equation (1) can be decom-
posed into irreducible representations of SO(3), yielding
ranks A =0-2/ [10]. Thus, for both first- and second-rank
interactions, icosahedral distributions of n; readily satisfy
(1) and generate isotropic sequences (the icosahedral
symmetry averages out all terms from A =1 to 4) [11].
For example, in “zero-field NMR in high field” [12], con-
tiguous magnetic pulses of net rotation 2nx applied along
the fivefold axes of an icosahedron provide an isotropic
scaling by (k,k2) =(§,+) as shown by point E in Fig.
1. In practical applications, it is much more convenient
to use sequences based on cubic symmetries (i.e., involv-
ing only n/2 pulses along x, y, and z) [8]. Thus, the R;
are chosen among the 24 rotations of the cubic group,
and combined to yield isotropic sequences. However, the
range of accessible scaling factors reduces as compared
with the general limits given by (3) [13]. For instance,
the optimum time-reversal scaling reduces from — § to
— % in the cubic cases (points D and F in Fig. 1).

Decoupling sequences occur when a scaling factor van-
ishes, and the isotropic scaling formalism predicts that
rank-selective decoupling can be achieved between first-
and second-rank interactions (regions A4 and B in Fig. 1).
An example, using icosahedral symmetry, is provided by
the following sequence:

4)

which decouples first-rank interactions while scaling the
second-rank interactions by %. All of these pulses are
along the six fivefold axes of an icosahedron, labeled by i,
and are of nutation angle 7. Indeed, this sequence re-
moves line broadening due to the coupling with residual
inhomogeneous fields of the zero-field spectrometer.
Decoupling of second-rank dipole-dipole interactions in

zero field (not isotropic for first rank) can be achieved by |

(r-7;-37-m:li=16)n >

me-le-(n/2)-47-(7/2) -7 -(7/2) s -47 -(n/2) -

t-(n/2). -4t -(7/2):-7-(x/2) - -41-(7/2) — -7 -(&/2) —x-47-(1/2) = -7 -(&/2) -4 -(/2) ) py-7o— .

The time-reversal sequence (5) was demonstrated on the
proton NMR of a liquid water sample in an inhomogene-
ous residual field generated by deliberately setting the
zero-field shimming coils away from their optimal values.
The residual field varied in both magnitude and orienta-
tion over the sample. To observe the effect of time rever-
sal, we generated an echo, as shown in Fig. 2. The decay
of the signal was monitored under free evolution in the
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FIG. 1. Allowed combinations of isotropic scaling factors for
first- (/=1) and second- (/ =2) rank interactions, k| and k>,
are restricted to the shaded region of the (ki,k,) plane. As ex-
plained in the text, some combinations are of particular inter-
est in applications: A, line from (k,=(1—+/5)/6, k,=0) to
((1++/5)/6,0), scaling of / =1 with decoupling of / =2 interac-
tions (zero-field analog of Waugh-Hu-Ha [5]); B, line from
(0,— ) to (0, %), scaling of /=2 with decoupling of /=1 in-
teractions; C, (— §, %), optimal time reversal for / =1 interac-
tions; D, (£, — &), optimal time reversal for / =2 interactions;
E, (+,+), scaling factors for “zero-field NMR in high field”
[12]; F, (+,— %), optimal time-reversal scaling for /=2 in-
teractions under sequences involving only n/2 pulses along x, y,
and z.

a sequence of twelve n/2 pulses along the x, y, and z
directions [8]. Experimental application of such a se-
quence narrowed the proton NMR spectrum of solid
adamantane from 15 kHz to 500 Hz in zero field [13].

Of particular interest is the possibility of time reversal
of first- and second-rank interactions. Optimal time re-
versal for first rank (maximum —k; =3 ) is obtained by
the following sequence of tetrahedral symmetry:

(%)

This sequence is not isotropic for second-rank interac-
tions. It can, however, be made isotropic in second rank
by adding =/2 pulses producing scaling factors of k|
=— 1 and k,=*% (point C in Fig. 1). The adapted se-
quence is

- (T-my-T Ty -T- -7~ .

(6)

inhomogeneous field, up to some time ¢, where the se-
quence was applied. At time 4¢, an echo was recovered
from the depolarized sample, showing the time-reversal
effect with a ¥ scaling factor. A secondary echo was also
obtained by further application of the sequence followed
by a free evolution. In contrast with the original Hahn
echo in high-field NMR, the time reversal of first-rank
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tensors cannot be performed in zero field by application of a single pulse. The Hahn echo performs a phase conjugation
that is generated with one rotation because of the pseudo-two-dimensional behavior of the system in high field. In three
dimensions, however, a phase conjugation cannot be reduced to a single rotation, although combinations of pulses can

generate an inversion.

Time reversal for second-rank interactions (k, = — + scaling) is given by the sixteen-pulse sequence

(#/2) = x-(/2) -y -l0-(/2) -1 -(7/2) -7 -(7/2) s -27 - (7/2) -
t-(n/2) —y-1-(7/2) -7 -(2/2),-27-(7/2), -
t-(n/2) —x-t-(n/2) - -7 -(7/2) - 27 -(n/2) — -
-(z/2),-1-(1/2) -1 -(7/2) -y -20-(/2) =, ) -(7/2) - (7/2) . (7

This sequence isotropically scales first-rank interactions
by ky=+ 1% (point F in Fig. 1). In this process, the
Hamiltonian is rotated by all of the six n/2 and the eight
37/2 rotations of the cubic group, with relative weights 2
to 1, respectively [13]. The time reversal of zero-field di-
polar couplings using sequence (7) was demonstrated on
a sample of solid adamantane, generating an echo after
the free induction decay, as shown in Fig. 3. This echo
sequence is an isotropic, zero-field analog of the “magic
sandwich” in high field [3]. As for first-rank interactions,
a secondary echo was also obtained by further application
of the sequence followed by a free evolution.

The experiments were carried out on a modified version
of our zero-field spectrometer [14]. The sample polariza-
tion was prepared and monitored using field cycling with
a sample shuttling system [7,14], and the zero-field evolu-
tion was initiated and terminated by the sudden switching
of a magnetic field (along the main z axes) stronger than

T T T T T

the local interactions [7]. Three class-4, dc to 1 MHz,
2-kW amplifiers were interfaced to the 0.1-us-resolution
pulse programmer via 12-bit digital-to-analog converters.
They provided up to 75x10~% T in three orthogonal
coils, x, y, and z, around the zero-field region of the spec-
trometer. The homogeneity and the orthogonality of the
coils over the sample (0.6 mm diameter and 0.7 mm
height) were better than 0.5%. Pulse precision and sta-
bility had to be especially addressed because symmetriza-
tions to compensate for first-order average Hamiltonian
and for finite pulse lengths [4] increased the recycling
times by at least a factor of 6. These symmetrized se-
quences were produced by first repeating the basic series
of pulses in opposite order with the opposite sign, and
then this doubled sequence was repeated with the pulse
directions permuted [9]. The corrections yielded
significant improvements although the complete se-

(b) (Time Reversal) () i (@) (b) (Time Reversal) (c) |
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FIG. 2. Isotropic spin echoes on first-rank interactions: (a)
The magnetization of the protons in a sample of water decays in
the low residual magnetic field (which varies in both direction
and magnitude over the sample) in the zero-field NMR spec-
trometer. (b) The isotropic time-reversal sequence (5) is ap-
plied after 1.2 ms of free evolution, and generates an echo 3.6
ms later, because the scaling factor is — §. (c) Free evolution
is resumed at time 8.4 ms, resulting in a second echo at 9.6 ms.
One sample point is taken per cycle (120 us). The pulse dura-
tion is 2 us.

Time (microseconds)

FIG. 3. Isotropic spin echoes for zero-field second-rank in-
teractions. (a) The magnetization of the protons in polycrystal-
line adamantane decays due to the local isotropic dipole-dipole
couplings. (b) After 74 us, the isotropic time-reversal sequence
(7) is applied and the magnetization is retrieved 370 us later,
because the scaling factor is — +. (c) Free evolution in zero
field is resumed at time 810 us, resulting in a second echo at
883 us. One sample point is taken per cycle (36.8 us). The
pulse duration is 1 us.
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quences commonly reached hundreds of pulses.

The theoretical and experimental examples described
above show the feasibility of isotropic coherent irradia-
tion experiments in zero-field NMR. Sequences for selec-
tive decoupling of first-rank interactions can improve the
resolution when limited by arbitrary residual fields, and
provide a starting point for treating the problem of zero-
field heteronuclear decoupling (because heteronuclear in-
teractions are first-rank tensors in each of the spin
species). Particularly interesting is the possibility of
using time reversal to perform ‘“multipolar zero-field
NMR,” the isotropic analog of high-field multiple-
quantum NMR [6]. This experiment can provide a new
tool for structural studies by using isotropic dipole-dipole
couplings to extract structural information even in poly-
crystalline samples.
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