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The source of the residual line broadening in continuous-wave~cw! decoupled spectra under
magic-angle sample spinning conditions is reexamined. It is shown that an important contribution to
the line broadening comes from a second-order recoupling of the heteronuclear dipolar-coupling
tensor and the chemical-shielding tensor of the irradiated spin. Such an interference between the two
tensors leads to a sum of a zeroth-rank, a second-rank, and a fourth-rank tensor component in the
Hamiltonian. The zeroth-rank and the fourth-rank tensor components are not averaged out under
magic-angle sample spinning~MAS! conditions, requiring the use of higher-order averaging such as
double rotation~DOR! for obtaining narrow lines. This broadening is distinctly different from
off-resonance decoupling effects which transform as a second-rank tensor and can be averaged out
by MAS. The properties of this second-order recoupling as a source of structural information are
explored, and the conditions for removing the broadening in systems with weak homonuclear
dipolar-coupling networks are discussed. ©1996 American Institute of Physics.
@S0021-9606~96!01132-4#

I. INTRODUCTION

High-power continuous-wave~cw! irradiation remains
the most common way to achieve heteronuclear spin
decoupling1–3 in solid-state nuclear magnetic resonance
spectroscopy~NMR!. It is generally accepted that for effi-
cient decoupling the field strength must be greater than the
magnitude of both the heteronuclearand the homonuclear
dipolar interactions. In solids with strongly coupled homo-
nuclear spin systems the flip–flop fluctuations of the homo-
nuclear spins lead to an additional modulation of the hetero-
nuclear dipolar coupling which results in a further narrowing
of the observed line.2 It has been shown that by applying the
decoupling field off-resonance such that the effective field is
inclined at an angle of 54.74°~magic angle! to the static
magnetic field, the homonuclear interactions are quenched.
The reduced or vanishing homonuclear dipolar interactions
lead to a broadening of the decoupled heteronuclear line.2 In
recent years there has been renewed interest in the under-
standing of cw decoupling4–6 and in developing improved
decoupling schemes7 that decrease the residual linewidth in
decoupled spectra under magic-angle sample spinning
~MAS!.8–10 A detailed discussion of the various contribu-
tions to the line width of solid-state NMR spectra under
high-power cw decoupling and MAS has been reported in
the literature.11

In this paper we seek to clarify the source of the broad-
ening observed in systems with weak homonuclear dipolar-
coupling networks. As a model system we investigate an

isolated two-spin system where cw decoupling does not lead
to a sharp line but gives rise to a splitting and a broadening
of the line~Fig. 1!. This effect can be explained as a second-
order recoupling of the heteronuclear dipolar-coupling tensor
and the chemical-shielding tensor of the irradiated spin in the
rotating frame. This second-order effect cannot be averaged
out by MAS since the coupling of the two tensors leads to a
sum of a zeroth-rank, a second-rank, and a fourth-rank ten-
sor. However, by using advanced spatial averaging tech-
niques like dynamic-angle spinning~DAS! or double rotation
~DOR!12–14it is possible to average out both the second-rank
and the fourth-rank contributions to the Hamiltonian simul-
taneously leaving only the isotropic~zeroth-rank tensor! part.
These crossterms are mentioned in passing in Ref. 7 but they
are not elaborated on and there is no discussion of the effects
they cause.

An effect related to the second-order recoupling for the
case of isotropic interactions is well known in liquid-state
NMR as ‘‘off-resonance decoupling.’’15,16There one obtains
a scaled isotropicJ coupling when the irradiation of the cw-
decoupling field is off-resonance. However, in our case new
and interesting features appear because the interference is
between two second-rank tensors and not two scalar quanti-
ties. The recoupling we describe in this paper is also differ-
ent from off-resonance decoupling effects in solids. Off-
resonance irradiation in solids results in the coupling of a
scalar quantity~resonance offset! and a second-rank tensor
~dipolar coupling! leading to a recoupling which is fully de-
scribed by a second-rank tensor. Therefore, such a contribu-
tion to the line broadening is averaged out under MAS con-
ditions and will not lead to an observable broadening of the
line.

Second-order effects in the laboratory frame due to the
truncation of the Hamiltonian by the Zeeman field are well
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known in solid state NMR.1,2,17 The best known example is
the second-order quadrupolar shift18 but other examples such
as a shift originating from the dipolar coupling have been
observed experimentally.19,20Recently we have described an
isotropic second-order dipolar shift in the rotating frame21

which can be substantially larger than the second-order di-
polar shifts in the laboratory frame because the interaction is
scaled by the rf field and not by the Zeeman field. The
second-order dipolar shift in the rotating frame is very
closely related to the second-order recoupling of the dipolar
coupling and the chemical-shielding tensors. However, since
the Hamiltonian describing the second-order dipolar shift
commutes with theS-spin subspace of the Hamiltonian, it
has no influence on the spectrum of the observed spin.

Some years ago another related effect called ‘‘rotary
resonance recoupling’’~R3!22–25 was described which also
leads to the recoupling of the dipolar-coupling and the
chemical-shielding tensors. The condition for recoupling in
theR3 experiment is that the rf field is a small integer mul-
tiple of the spinning speed and results in a broadening of the
usually sharp sideband spectrum. The broadening was ex-
plained as an interference between the decoupling field and
the mechanical sample rotation. In our experiment, however,
the decoupling field strength is typically 1 order of magni-
tude larger than the spinning speed which results in a sepa-
ration of the time scales of the two averaging processes.
These two averaging processes will be treated as independent
in the theoretical treatment in this publication.

The second-order recoupling of the dipolar-coupling and

the chemical-shielding tensors has two aspects. First, it con-
tains valuable information about the orientation of the two
tensors in isolated two-spin systems. This information can be
extracted by fitting the second-order spectrum with the ana-
lytical solution of the expected line shape. Second, if high
resolution is required in a dimension of a multidimensional
experiment, it is necessary to remove the second-order re-
coupling. This can be achieved by using decoupling se-
quences which are symmetric in the average-Hamiltonian
sense1 as will be shown in Sec. II. It could be argued that
systems with weak homonuclear dipolar-coupling networks
are not very common and as such not important. With in-
creasing MAS spinning speeds, however, more and more
substances will fall into the category of weak homonuclear
dipolar-coupling networks. In addition, the increased use of
double isotopic labeling to obtain structural information by
solid-state NMR techniques, creates another category of sub-
stances with weak homonuclear dipolar-coupling networks.

The material in this paper is presented as follows. Sec-
tion II describes the theoretical treatment of the observed
effects and analyzes its features under static, MAS and DAS
conditions. In Sec. III we present experimental results for a
model two-spin system. Numerical simulations to illustrate
some additional aspects of the second-order recoupling effect
are shown in Sec. IV.

II. THEORY

We start our theoretical discussion of the second-order
recoupling from the truncated high-field rotating-frame
Hamiltonian for an isolated two-spin system under
continuous-wave~cw! rf irradiation of theI spin2

H5vD~VD!•2SzI z1vS~VS!•Sz1v I~V I !•I z1v rf•I x .
~1!

The Hamiltonian includes the heteronuclear dipolar-coupling
tensor, the chemical-shielding tensors for both theS and the
I spin, and the rf term. The orientation-dependent dipolar-
coupling tensor is defined in the rotating frame as

vD~VD!52
m0

4p
•

gSg I\

r SI
3 •

3 cos2 bD21

2

5
dD
2
•P2~cosbD!, ~2!

where dD is the anisotropy of the dipolar-coupling tensor.
The set of three Euler anglesVD5(aD ,bD ,gD) describes
the orientation of the dipolar-coupling tensor in the labora-
tory frame. The chemical-shielding tensor of theI spin is
defined as

v I~V I !5d I•F3 cos2 b I21

2
1

h I

2
• sin2 b I• cos~2a I !G

1v I
iso, ~3!

wheredI is the anisotropy andhI is the asymmetry of the
tensor. v I

iso is the isotropic resonance offset and
V I5(a I ,b I ,g I) is the set of three Euler angles describing
the orientation of the chemical-shielding tensor in the labo-

FIG. 1. 15N spectra of fully 15N-labeled tri-~trideuteromethyl!-
ammoniumchloride without~a! and with ~b! cw decoupling of the protons
during acquisition. The sample was spinning at the magic angle with
vr /~2p!55 kHz and the rf field strength wasvrf/~2p!571.5 kHz. Without
proton irradiation~a! the spectrum shows a single sharp line with spinning
sidebands. Under proton cw decoupling~b! the line is split and broadened
due to the second-order recoupling of the chemical-shielding tensor of the
irradiated spin and the heteronuclear dipolar-coupling tensor. The two spec-
tra clearly illustrate that cw decoupling does not give the desired result in
isolated heteronuclear two-spin systems.
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ratory frame. An analogous expression can be written down
for theS spin by replacing allI -spin indices withS. We can
analytically diagonalize the Hamiltonian of Eq.~1! and ob-
tain the following time-domain signal for an initial density
operators~0!5Sx and a phase-sensitive detection operator
S2:

S ~VD ,V I ,VS ,t !5 (
m51

4

S m~VD ,V I ,VS!

•e1 i •vm~VD ,V I ,VS!•t. ~4!

The four transition frequencies are symmetric around
vS(VS) and are given by26

v1,2~VD ,V I ,VS!5vS~VS!6
v rf

2

•FA11S vD~VD!1v I~V I !

v rf
D 2

1A11S vD~VD!2v I~V I !

v rf
D 2G ~5!

and

v3,4~VD ,V I ,VS!5vS~VS!6
v rf

2

•FA11S vD~VD!1v I~V I !

v rf
D 2

2A11S vD~VD!2v I~V I !

v rf
D 2G . ~6!

The corresponding signal intensities of these four lines are

S 1,2~VD ,V I ,VS!

5
1

4
2
1

4 S 11
4vD~VD!2v rf

2

~vD~VD!21v I~V I !
21v rf

2 !2
D 21/2

~7!

and

S 3,4~VD ,V I ,VS!

5
1

4
1
1

4 S 11
4vD~VD!2v rf

2

~vD~VD!21v I~V I !
21v rf

2 !2
D 21/2

. ~8!

In the limit of strong decoupling the intensities
S 1~VD ,V I ,VS! and S 2~VD ,V I ,VS! are small, and the
transition frequenciesv1~VD ,V I ,VS! and v2~VD ,V I ,VS!
will therefore be neglected in the further discussion. The
intensities S 3~VD ,V I ,VS! and S 4~VD ,V I ,VS! tend to-
wards 0.5 for strong decoupling fields. To analyze the cou-
pling of the two tensors in Eq.~6!, we expand the square root
as a power series. Assuming that the decoupling field
strength is much larger than the dipolar-coupling or the
chemical-shielding tensors we obtain

v3,4~VD ,V I ,VS!

5vS~VS!6
v rf

2
•F11

1

2
•S vD~VD!1v I~V I !

v rf
D 21•••

212
1

2
•S vD~VD!2v I~V I !

v rf
D 22••• G . ~9!

Truncating Eq.~9! after the first two terms is equivalent to
second-order perturbation theory and leads to the following
approximate expression for the transition frequencies:

v3,4~VD ,V I ,VS!'vS~VS!6S vD~VD!v I~V I !

v rf
D . ~10!

Equation~10! describes a splitting of the line due to the
second-order recoupling of the chemical-shielding and the
dipolar-coupling tensors. A similar effect is well known in
liquid-state NMR as off-resonance decoupling, where an ap-
parently scaledJ coupling is obtained by off-resonance irra-
diation of a coupled heteronuclear two-spin system.15,16

However, in that case all the quantities~J coupling and reso-
nance offset! are scalar. The fact that both the dipolar cou-
pling and the chemical shielding are second-rank tensors has
new and interesting consequences. The second-order recou-
pling of the two tensors shows also very different properties
compared to the off-resonance cw decoupling in solid-state
NMR. Off-resonance decoupling in solids results in a cou-
pling of the scalar isotropic resonance offset and the second-
rank dipolar-coupling tensor which results in a purely
second-rank interaction. This second-rank tensor is averaged
out under MAS conditions.

The product of two second-rank tensors can generally be
described by a weighted sum of a zeroth-rank, a second-rank,
and a fourth-rank tensor.27 To decompose the tensor product
into a sum of tensors and calculate the influence of single-
axis rotation on the different components, we have to con-
sider the transformations of both tensors from their respec-
tive principal-axis systems~PAS! into the laboratory-fixed
coordinate system~Fig. 2!. The chemical-shielding tensor is
first rotated into the PAS system of the dipolar-coupling ten-
sor. Then both the chemical-shielding tensor and the dipolar-
coupling tensor are rotated into the rotor-fixed frame from
which they are subsequently rotated into the laboratory-fixed
coordinate system. This leads to the following time-
dependent transformation for the two tensors:

vD~V,t !5
1

A6 (
n52

22

Dn,0
2 ~v r t,b r ,0!

3D0,n
2 ~a,b,g!•r2,0

D , ~11!

v I~V,t !5
2

A6 (
m522

2

(
m8522

2

(
m9522

2

Dm,0
2 ~v r t,b r ,0!

3Dm8,m
2

~a,b,g!Dm9,m8
2

~a I ,b I ,g I !•r2,m9
I .

~12!

The Wigner rotation-matrix elementsDm,n
2 ~a,b,g! are de-

fined according to Ref. 27, andbr is the inclination angle of
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the rotation axis to the static magnetic field. The sample
spinning frequency isvr , and V is the full set of Euler
angles necessary to describe all transformations. The set of
angles~a,b,g! describes the orientation of a selected crystal-
lite ~powder average!, and ~aI ,b I ,g I! are the three Euler
angles describing the orientation of theI -spin chemical-
shielding tensor in the principal-axis system of the dipolar-
coupling tensor. The dipolar-coupling tensor is always axi-
ally symmetric and is defined in its principal-axis system as2

r2,0
D 5A3

2
•dD . ~13!

The chemical-shielding tensor components in their PAS are
given by2

r2,0
I 5A3

2
•d I ,

~14!

r2,62
I 5

1

2
•h Id I .

The parametersdD , dI , andhI are defined as in Eqs.~2! and
~3!. We are interested in the time-averaged transition fre-
quencies given by

v3,4~V!5^v3,4~V,t !&br

' K vS~V,t !6S vD~V,t !v I~V,t !

v rf
D L

br

, ~15!

where ^•••&br
represents the time average over a full rotor

period. Equation~15! only has nonvanishing contributions
under the conditionm52n, wherem andn are the summa-
tion indices from Eqs.~11! and ~12!. Under this condition,
Eq. ~15! can be substantially simplified, and one obtains the
following result for the time-averaged transition frequencies:

v3,4~V!5A2

3
d0,0
2 ~b r ! (

m8522

2

Dm8,0
2

~a,b,0!

3 (
m9522

2

Dm9,m8
2

~aS ,bS,0!•r2,m9
S

6
1

3v rf
•r2,0

D

• (
j50,2,4

C~2,2,j ;0,0!•d0,0
j ~b r !

3 (
m8522

2

Dm8,0
j

~a,b,0!•C~2,2,j ;0,m8!

3 (
m9522

2

Dm9,m8
2

~a I ,b I ,0!•r2,m9
I . ~16!

Here, C( j 1 , j 2 , j ;m1 ,m2) are Clebsch–Gordan coefficients
as defined in Ref. 28 anddm,n

j ~b! are reduced Wigner rota-
tion matrix elements.27 Equation~16! shows that we indeed
obtain the sum of three different terms~j50,2,4! which scale
as a zeroth-rank, a second-rank, and a fourth-rank tensor un-
der single-axis rotation. Setting the angle of the rotation axis
to br50° gives the solution for the static spectrum. If the
inclination angle of the rotation axis to the static magnetic
field corresponds to the magic angle~br554.74°!, all
second-rank contributions to the transition frequencies will
vanish. The chemical-shielding tensor of theS spin and the
second-rank contribution to the second-order term are scaled
to zero, and only an isotropic part and a scaled fourth-rank
tensor part remain. They give rise to an isotropic splitting of
the line described by the zeroth-rank tensor part of Eq.~16!
and an additional orientation-dependent splitting described
by the fourth-rank tensor contribution. It is possible to aver-
age out both the second-rank and the fourth-rank tensor com-
ponents of Eq.~16! simultaneously by using dynamic-angle
spinning~DAS! or double rotation~DOR!.12–14 In this case
the resulting second-order coupling is fully isotropic and
gives rise to a spectrum that consists of a sharp doublet.

Equation ~16! allows very efficient simulation of the
second-order recoupled spectra which is important if extrac-
tion of parameters from measured spectra is desired. Nonlin-
ear least-square fitting to obtain parameters~orientation of
the two tensors! and their corresponding error ranges is pos-
sible based on the analytical solution. The result of Eq.~16!
agrees with our previous analytical result obtained for the
coupling of the dipolar-coupling tensor with itself as ob-
served in the isotropic second-order dipolar shift, assuming
hI50 and setting the angle between the two tensors to zero
~bI50!.21

Although the second-order recoupling contains interest-
ing information concerning the orientation of the two ten-
sors, it is sometimes desirable to remove the splitting to ob-
tain a single sharp line for each resonance. The simplest way
to calculate the Hamiltonian under a multiple-pulse sequence
is to use average Hamiltonian theory.1,29 For cw decoupling
with the rf field along thex axis the average Hamiltonian to
first order is given by

H̄~0!5vS~VS!•SZ ~17!

FIG. 2. Sequence of transformations and Euler angles necessary to rotate the
two tensors from their respective principal-axis systems into the laboratory-
fixed coordinate system. The chemical-shielding tensor is first rotated into
the principal-axis system of the dipolar coupling tensor~D2(a I ,b I ,g I)!,
and then both tensors are rotated into the rotor-fixed frame~D2~a,b,g!! and
from there finally into the laboratory-fixed frame~D2(v r t,bm,0)!.
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and

H̄~1!5
vD~VD!21v I~V I !

2

2v rf
I X1

vD~VD!v I~V I !

v rf

•2I XSZ . ~18!

The first term of Eq.~18! is the second-order isotropic dipo-
lar shift which we have previously analyzed and discussed.21

Since the first term commutes with theS-spin subspace of
the density operator it has no influence on the time evolution
of the S spin. The second term describes the second-order
recoupling of the chemical-shielding and dipolar-coupling
tensors. In the limit of strong decoupling, the result from
average Hamiltonian theory is fully equivalent to the result
derived from second-order static perturbation theory@Eq.
~10!# and illustrates the fact that the first-order average
Hamiltonian corresponds to second-order static perturbation
theory.30 The problem of folded decoupling sidebands6 is not
relevant in our case since we analyze only the main transi-
tions @Eq. ~6!# and have neglected the minor ones@Eq. ~5!#.
Such a treatment is justifiable in the limit of strong decou-
pling because the intensities of the minor transitions are very
small under this condition@Eqs.~7! and~8!#. Using the well
known fact that symmetric pulse sequences eliminate all odd
orders of the average Hamiltonian1 we can easily design very
simple pulse sequences to remove the second-order recou-
pling term ~first-order average Hamiltonian!. The simplest
such experiment consists of alternating~2p!1x and ~2p!2x

pulses. However, all multiple-pulse sequences used in high-
resolution liquid-state NMR also fulfill the symmetry condi-
tion and could possibly be used. Under MAS the length of
the pulse sequence is an important consideration. The repeti-
tion rate of the sequence should be considerably faster than
the mechanical spinning speed of the sample to avoid inter-
ferences between the two different averaging processes.31–33

The phase-alternating sequence and other simple symmetric
sequences will be experimentally analyzed and discussed in
Sec. III.

The reason that the second-order recoupling of the
dipolar-coupling and the chemical-shielding tensors is not as
prominent in normal solids is the strong homonuclear
dipolar-coupling network among the protons. The spin flip–
flop terms of the homonuclear dipolar-coupling Hamiltonian
lead to an additional modulation of the heteronuclear dipolar
coupling which results in a narrowing of the lines of the
decoupled heteronuclear spin~‘‘self-decoupling’’!.2,17,34 If
the decoupling field is applied off resonance, such that the
effective field is inclined at an anglewI to the static magnetic
field, we obtain the following effective homonuclear dipolar-
coupling Hamiltonian in the tilted rotating frame:1

H̄ II
~0!5P2~cosw I !•(

k,m
vD

~k,m!~VD
~k,m!!

3~3I kzI mz2I k–Im!. ~19!

The homonuclear dipolar coupling scales like a second-rank
spin tensor, and thus forwI554.74°~magic angle! Equation
~19! is zero. The vanishing homonuclear dipolar-coupling

Hamiltonian leads to a broadening of the line of the decou-
pled heteronuclear spin because the second-order recoupling
is no longer quenched by the homonuclear spin flip–flop
terms. Such a line broadening for an effective decoupling
field along the magic angle has been observed
experimentally.2,4,35–37 Off-resonance decoupling with the
effective field inclined at the magic angle also scales the
heteronuclear dipolar coupling in the tilted-rotating frame

H̄ IS
~0!5cosw I•vD~VD!•2I zSz . ~20!

This scaled zero-order contribution to the broadening is
purely second rank and, assuming that the sample spinning is
fast enough, will be averaged out by MAS.

It has been observed experimentally that in ferrocene,
where the homonuclear dipolar couplings are scaled and
weak due to fast internal motion, the13C linewidth of the
proton-decoupled spectrum under MAS increases with in-
creasing MAS spinning speed.5 This phenomenon can be
qualitatively understood in the framework of the second-
order recoupling. At low spinning speeds the quenching of
the second-order recoupling by the homonuclear proton–
proton dipolar coupling is still efficient. At higher spinning
speeds the homonuclear dipolar-coupling network is weak-
ened and the self-decoupling effect is reduced resulting in a
broadening of the line of the decoupled spin.

As can be seen from the widespread use of cw decou-
pling under MAS the second-order recoupling is not as ap-
parent in solids with strong homonuclear dipolar couplings
as it is in isolated two-spin systems. Recently a new decou-
pling scheme for solids under MAS conditions called ‘‘two
pulse phase modulation’’~TPPM!7 has been published which
significantly reduces the linewidth compared to cw decou-
pling. The sequence consists of pulses with flip anglesb and
alternating phases6w. Numerical simulations and experi-
ments have shown that the optimum flip angle and phase
depend on the spinning speed but are usually aroundb'180°
andw'20°. Such a sequence can be viewed as a strong cw
decoupling field along thex axis with a small phase-
alternating field along they axis superimposed on it. The
strong cw decoupling field is necessary because of the strong
homonuclear dipolar couplings while the small phase-
alternating field reduces the second-order recoupling effects.
We would like to emphasize that the resonance offset is not
sufficient to explain the broadening observed in the spectra
presented here. The interference between the dipolar-
coupling tensor and the resonance offset term leads to a
purely second-rank second-order contribution to the line
broadening which would be averaged out by magic-angle
sample spinning. Using average Hamiltonian calculations for
the following model pulse sequence~1801w

+ ,1802w
+ !N with

w5p/(2N) we can show why the TPPM decoupling scheme
leads to a reduction of the second-order recoupling term. The
above choice ofw andN ensures that the sequence is cyclic
in the average Hamiltonian sense. The zeroth-order and first-
order average Hamiltonians can be calculated for the general
sequence withN.1 leading to

H̄~0!5vS~VS!•SZ ~21!
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and

H̄~1!5
2 tanw

p
•FvD~VD!21v I~V I !

2

2v rf
•I Z

1
vD~VD!v I~V I !

v rf
•2I ZSZG . ~22!

Based on Eq.~22! we can predict that the residual line width
should decrease with decreasing phasew. However, asw
decreases the number of pulse-sequence cyclesN needed to
obtain the full averaging increases, and one has to find an
optimum condition which satisfies the goal of a narrow line
and avoids interference between the pulse sequence and the
mechanical sample rotation. Comparing Eq.~22! with the
equivalent result for cw decoupling@Eq. ~18!# shows that the
residual second-order coupling obtained under the TPPM se-
quence is 2•tan~w!/p smaller than for cw decoupling. For
w520° this is 0.23 or more than a factor of 4 in reduction of
the second-order recoupling contribution to the line broaden-
ing. Despite the simplifications made in the derivation of the
average Hamiltonian, Eq.~22! illustrates why the TPPM de-
coupling scheme works and how it is connected with the
second-order recoupling of the dipolar-coupling and the
chemical-shielding tensors.

All theoretical calculations shown so far are based on the
assumption that the decoupling field strengthvrf is greater
than the maximum value of both tensors and much larger
than the MAS spinning speed. If the second assumption is
not true, the consecutive averaging approach used in our cal-
culations breaks down, and we have to use different methods
to predict the spectrum. One possibility is the use of rotor-
synchronized rf irradiation as has been done in the analysis
of ‘‘rotary resonance recoupling’’~R3!.22–25 However, for
long cycle times~2p/vr! the question of the convergence of
the average Hamiltonian series arises,38,39 and it might be
necessary to calculate higher orders of average Hamiltonian.

III. EXPERIMENTAL RESULTS

All experiments were performed on a home-built spec-
trometer operating at a proton Larmor frequency of 301.2
MHz. A commercial 4 mm MAS probe assembly from Che-
magnetics was used for the MAS experiments, and a home-
built variable-angle probe12,40 with a Doty Scientific 7 mm
spinning module was used for the DAS experiments. The
spinning frequency was controlled by a home-built spinning-
speed controller~MAS probe only!. As a model substance
for an isolated two spin system~1H–15N!, we used fully15N
labeled tri-~trideuteromethyl!-ammoniumchloride. The short-
est nitrogen–nitrogen distance calculated from the crystallo-
graphic data of trimethylammoniumchloride41 is 5.7 Å cor-
responding to a dipolar-coupling constant ofdD/~2p!513.3
Hz. The shortest proton–proton distance is of the same order
of magnitude. The dipolar coupling of the15N–1H spin pair
was measured from static and slow-spinning MAS spectra
and was found to bedD/~2p!520 1106206 Hz correspond-
ing to a distance ofrNH51.06660.004 Å. The chemical-
shielding tensor of15N in this compound is very small. A

static proton-decoupled spectrum~data not shown! using a
symmetric~2p!1x , ~2p!2x sequence resulted in a Gaussian
line with a half width at half height of 290 Hz. The chemical-
shielding tensor of the proton was not measured directly. Its
anisotropy was obtained from fitting the second-order MAS
spectrum assuming that the PAS of the chemical-shielding
tensor of the proton and the PAS of the dipolar-coupling
tensor are coaxial. The value obtained from these fits was
dI /~2p!568006200 Hz. This value agrees with independent
measurements of the chemical-shielding tensor.42

The experiments under magic-angle sample spinning
were performed using a standard cross-polarization sequence
with cw decoupling during the acquisition.43–45 Figure 1
shows 1D spectra without~a! and with~b! decoupling of the
protons by cw irradiation. The spectrum without decoupling
@Fig. 1~a!# shows a single sharp line with spinning side
bands, while the spectrum with decoupling@Fig. 1~b!# shows
a split and broadened line. Figure 3 shows a series of15N
spectra where the proton-decoupling field strengths was var-
ied fromvrf/~2p!58.6 kHz tovrf/~2p!571.5 kHz. The spec-
tra were recorded with a CP contact time of 0.5 ms and a
MAS spinning speed ofvr /~2p!55 kHz. Two hundred and
fifty-six time points were recorded and 1024 scans were
added up for each of the experiments. Even with the highest
decoupling field strength we see a rather large broadening as
well as a splitting. Both the splitting and the broadening are
due to the zeroth-rank and fourth-rank tensor contributions to
the second-order recoupling since MAS can only average out

FIG. 3. 15N spectra of15N-labeled tri-~trideuteromethyl!-ammoniumchloride
as a function of the proton decoupling power. The decoupling field strength
was varied fromvrf/~2p!58.6 kHz to vrf/~2p!571.5 kHz. Even for the
highest decoupling power the line is still split and rather broad. The full
width of the line scales linearly with the inverse of the decoupling field
strength, as expected.
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the second-rank tensor component. The line width of the
spectra at different decoupling powers correlate very well
~correlation coefficientR50.998! with the inverse of the
proton-decoupling field strength as expected from the theo-
retical calculations shown in Sec. II. This shows that we are
justified in neglecting all terms higher than second order in
the expansion of Eq.~9!.

In order to investigate the influence of the spinning
speed on the second-order recoupling and to rule out
rotational-resonance phenomena22–25as the source of the ob-
served splitting, we recorded cw-decoupled spectra as a
function of the spinning speed fromvr /~2p!54 kHz to
vr /~2p!59 kHz with an rf field strength ofvrf/~2p!571.5
kHz ~Fig. 4!. The spectra are unchanged over the full range
of spinning speeds except for an overall decrease in intensity
with increasing spinning speed. The decrease in intensity is
explained by the lower cross-polarization efficiency at higher
spinning speeds since standard Hartmann–Hahn cross polar-
ization was used rather than one of the newer methods de-
signed to achieve efficient cross polarization while spinning
at the magic angle.46 If a quantitative analysis of the second-
order powder pattern is of interest one has to make sure that
the cross-polarization process does not favor certain crystal-
lite orientations.

As mentioned already in Sec. II, the second-order recou-
pling can be made isotropic by performing the experiment

under DOR or DAS conditions. The pulse sequence used to
record an isotropic second-order recoupled spectrum under
DAS is shown in Fig. 5. The experiment is implemented as a
pure-phase experiment47 in t1 and uses States-type
processing48 in v1 to distinguish between positive and nega-
tive frequencies. Since the second-order recoupled Hamil-
tonian is quantized along the decoupling field for theI spins
@Eq. ~18!#, additional storage pulses for theI spins before
and after the change of the rotor axis are needed compared to
a standard pure-phase DAS experiment.47

For the 2D-DAS experiment 50t1 times were recorded
with 256 scans of 256 points int2 for each of the two com-
plex data sets. Duringt2, phase-alternating 2p-pulse decou-
pling ~see next paragraph! was employed to obtain a narrow
line in v2. The flipping time to change the angle from
b1537.38° tob2579.19° was set toD5100 ms. During this
time no noticeable loss of magnetization was observed since
the longitudinal relaxation times of both spins are consider-
ably longer thanD. The rf field strength during the cw de-
coupling int1 wasvrf/~2p!'35.7 kHz. After a hypercomplex
Fourier transformation and phase correction, a slice through
the highest point inv2 alongv1 was taken and is shown in
Fig. 6. A comparison with a MAS spectrum recorded under
similar conditions shows a significant narrowing of the line
due to the simultaneous averaging of the second-rank and
fourth-rank tensors. However, the DAS spectrum still has
very broad lines which may be due to inaccuracies in adjust-
ing the two DAS angles or differences in the cw-decoupling
field strengths at the two different rotor orientations. The
splitting obtained by a fit of the DAS spectrum to two
Lorentzian lines isDv56506100 Hz. It would be advanta-
geous to implement this experiment under DOR instead of
DAS. Both problems, the adjustment of the two angles and
the differences in the rf field strengths, would not be present
under DOR.

As pointed out in the previous section, we can eliminate

FIG. 4. 15N spectra under cw proton decoupling for six different MAS
spinning speeds fromvr /~2p!54 kHz to vr /~2p!59 kHz. The decoupling
field strength in all spectra was set tovrf/~2p!571.5 kHz. The width of the
line is independent of the MAS spinning speed. The variation in the line
intensities is due to varying cross-polarization efficiency at different spin-
ning speeds.

FIG. 5. Pulse sequence used to measure the DAS spectrum of the second-
order recoupling. The pulse sequence implements pure phase duringt1 ~Ref.
47! by storing the appropriate orthogonal components during the change of
the rotor axis and adding up two data sets modulated as cos2~vt1/2! and
sin2~vt1/2!. The rf field strength during the two decoupling periods must be
equal. The phase cycle was as follows~phases are given in multiples of 90
deg,wR is the receiver phase!: w1: 0 2; w2: 1 3; w3 andw8: 0 0 1 1 2 2 3 3;
w4: 1; w5 andw7: 0 0 1 1 2 2 3 3 3 3 0 0 1 1 2 2;w6: 3; wR : 2 0 3 1 0 2 1
3. To record the second data set needed for States-type processing int1 the
phase ofw3 was shifted by 90° while keeping the phase of all other pulses
and the receiver unchanged.
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the second-order effects in the rotating frame by using a
symmetric decoupling sequence instead of cw irradiation.
The simplest implementation of such a sequence is a phase
alternating~2p!1x , ~2p!2x decoupling sequence. Figure 7
shows a series of 1D spectra obtained with this type of syn-
chronous phase-alternating decoupling with an rf field
strength ofvrf/~2p!571.5 kHz. The line is sharp with a half
width at half height ofDv/~2p!'45 Hz and varies only

slightly over the range of spinning speeds~vr /~2p!54 kHz
to vr /~2p!59 kHz!. The decreasing intensity of the line is
again due to the lower efficiency of the cross polarization at
higher spinning speeds. Other simple decoupling schemes
~MLEV-449,50 and WALTZ-451,52! have also been imple-
mented and give slightly narrower lines withDv/~2p!'30
Hz at slow spinning speeds. However, at higher spinning
speeds interference effects between the pulse sequence and
the mechanical sample spinning appear. They lead to a
broadening of the line and give rise to sidebands~data not
shown!. Such interference between two averaging processes
that are not synchronized is a well known effect which has
been described in the literature.31–33

IV. NUMERICAL SIMULATIONS

In order to illustrate some of the features of the second-
order recoupling of the chemical-shielding and the dipolar-
coupling tensors we have performed numerical simulations
using the parameters of our model compound. The simula-
tions were performed using the NMR simulation environ-
mentGAMMA .53 In all simulations the dipolar-coupling ten-
sor was set todD/~2p!520 kHz and the chemical-shielding
tensor was assumed to be axially symmetric~hI50! with an
asymmetry ofdI /~2p!56.8 kHz.

The accuracy of simulations based on the analytical so-
lution from second-order perturbation theory@Eq. ~16!# was
tested by comparing exact numerical simulations calculated
by small step integration of the time-dependent Hamiltonian
with simulations based on the analytical solution at different
rf field strengths. The numerical simulations were done for
an MAS frequency ofvr /~2p!55 kHz and with 5000 time
steps per rotor cycle leading to a 40 ns time resolution. The
two tensors were assumed to be coaxial. Simulations for 300
different crystallite orientations were added up using the
method of Chenget al.54 to obtain optimum coverage of the
sphere. The dwell time was set to one third of the rotor cycle
~SW515 kHz! and 4096 data points were computed. The
spectra were processed with a line broadening of 100 Hz.
The spectra based on the analytical solution of the time-
averaged Hamiltonian were calculated in the frequency do-
main. All parameters were the same as in the time-domain
simulations except that 10 000 different powder orientations
were added up. The resulting frequency-domain spectra were
convolved with a 100 Hz Lorentzian line. The spectra calcu-
lated by the two different methods for three different rf field
strengthsvrf/~2p!570, 30, and 10 kHz are shown in Fig. 8.
The time-domain spectra show spinning sidebands at65
kHz. It is apparent that for the two higher rf field strengths
the two simulation methods agree very well with differences
in the central line on the order of 1%. The small deviations
could be due to the finite time steps in the time-domain simu-
lations, the truncation of the analytical solution in second
order, or the different number of powder points used in the
two simulation methods. However, they are so small that
they can be neglected. Forvrf/~2p!510 kHz, the differences
are very large and the shape of the two spectra is very dif-
ferent. This is due to the breakdown of the assumptions made

FIG. 6. Magic-angle sample spinning~MAS! and dynamic-angle sample
spinning ~DAS! spectra for a decoupling field strength ofvrf/~2p!535.7
kHz. The MAS spectrum was recorded as a 1D cross-polarization cw-
decoupling spectrum, while the DAS spectrum was recorded with the pulse
sequence of Fig. 5. The 1D spectrum shown is the slice through the highest
point in v2 along thev1 dimension. The DAS spectrum is considerably
narrower due to the simultaneous averaging of second-rank and fourth-rank
tensor contributions. The splitting of the two lines in the DAS spectrum
corresponds to the isotropic value of the second order recoupling of the
chemical-shielding and the dipolar-coupling tensors.

FIG. 7. 15N spectra under proton decoupling using a phase alternating
~2p!1x8 ~2p!2x sequence. The half width at half height of the line is 45 Hz
and is independent of the spinning speed. The variation in the line intensity
is due to varying cross-polarization efficiency at different spinning speeds.
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in deriving the analytical solution in Eq.~9!. At an rf field
strength of 10 kHz the decoupling field strength is no longer
greater than the magnitudes of the chemical-shielding and
the dipolar-coupling tensors. Figure 8 illustrates that the
truncation in second order is a good approximation as long
as the decoupling field strength is larger than the maximum
value of the two tensors as it is required for the validity of
Eq. ~9!. The advantage of the frequency-domain simulation
based on the analytical solution is its speed. The frequency-
domain simulation is 6000 times faster than the time-domain
simulation using small step integration of the Liouville–von
Neumann equation. The frequency-domain simulation using
10 000 different crystallite orientations took only 17 s cpu
time on a SGI Indigo with an 100 MHz MIPS R4000 pro-
cessor.

Figure 9 shows the second-order recoupled spectra under
static, magic-angle sample spinning, and double rotation
conditions illustrating the averaging properties of the second-
order recoupled Hamiltonian under spatial rotation. The
simulations were performed as frequency-domain simula-
tions based on the analytical solution shown in Eq.~16!.
Again, the two tensors were assumed to be coaxial and the

decoupling field strength wasvrf/~2p!571.5 kHz. Ten thou-
sand different crystallite orientations were added up, and the
resulting spectrum was convolved with a Lorentzian line-
width of 50 Hz. The static spectrum is very broad with a full
width of 1838 Hz. It is the result of a superposition of the
isotropic splitting with the second-rank and the fourth-rank
contributions to the second-order Hamiltonian. The MAS
spectrum shows a pure fourth-rank tensor powder pattern
superimposed on the isotropic splitting with a full width of
528 Hz. The DOR spectrum shows, as expected, two sharp
lines with an isotropic splitting of 363 Hz.

The dependence of the second-order recoupled spectra
on the relative orientation of the two tensors is illustrated in
Fig. 10. The simulations were done as frequency-domain
simulations using the same parameters as for the spectra
shown in Fig. 8. It can be seen that there is a strong depen-
dence of the line shape on the anglebI as expected from Eq.
~16!. It is not straightforward to predict the line shape from
Eq. ~16! especially if the chemical-shielding tensor is not
axially symmetric. The simulations of Fig. 10, however,
show that the variations should be strong enough to allow the

FIG. 8. Comparison of simulations based on small-step numerical integra-
tion of the time-dependent Hamiltonian and simulations based on the ana-
lytical solution of Eq.~16! for three different decoupling field strength. The
two simulations atvrf/~2p!570 and 30 kHz show differences on the order of
1%. The simulations atvrf/~2p!510 kHz are very different which reflects
the fact that the assumptions made in the second-order truncation@Eq. ~9!#
are not valid here. The parameters used for the simulations were
dD/~2p!520 kHz, dI /~2p!56.8 kHz, andhI50.0. The spinning speed was
vr /~2p!55 kHz for the time-domain simulations which is reflected in the
spinning sidebands at 5 kHz. The two tensors were assumed to be coaxial
~bI50°!.

FIG. 9. Simulated second-order recoupled spectra under static, magic-angle
sample spinning, and double rotation conditions showing the averaging
properties of the second-order Hamiltonian. The static spectrum is very
broad ~full width 1838 Hz! and shows a superposition of a zeroth-rank, a
second-rank, and a fourth-rank tensor contribution to the Hamiltonian. The
MAS spectrum is a pure fourth-rank tensor powder pattern superimposed on
an isotropic splitting with a full width of 528 Hz. The DOR spectrum shows
only the isotropic splitting of 363 Hz. The dipolar coupling constant was
dD/~2p!520 kHz; the chemical-shielding tensor parameters were
dI /~2p!56.8 kHz andhI50.0; and the two tensors were assumed to be
coaxial ~bI50°!. The rf field strength wasvrf/~2p!571.5 kHz.
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determination of the angle between the two tensors from this
type of second-order spectrum.

We have developed a program which allows the simul-
taneous optimization of the following seven parameters:
asymmetry of the dipolar-coupling tensor~dD!, asymmetry
and anisotropy of the chemical-shielding tensor~dI andhI!,
two Euler angles~aI and bI!, the line broadening, and the
isotropic chemical shift of theS spin (vS

iso). It is based on the
frequency-domain simulations using the analytical solution
of Eq. ~16! and uses nonlinear least-square fitting to obtain
the optimum parameters and error estimates. It is obvious
that a simultaneous optimization of all seven parameters
does not make sense due to the high correlations between
some of the parameters. We have used this program to obtain
a value for the anisotropy of the chemical-shielding tensor
from the second-order MAS spectrum of Fig. 3. Three pa-
rameters~dI , vS

iso, and the line broadening! were optimized
simultaneously assuming that theI -spin chemical-shielding
tensor is axially symmetric~hI50.0! and that the two tensors
are coaxial~bI50°!. The value obtained from these fits is
dI /~2p!568006200 Hz. So far we have not explored the
possibilities to use the second-order MAS spectra to obtain
the orientation of the principal-axis systems of the two ten-
sors.

V. CONCLUSIONS

We have shown that the second-order recoupling of the
dipolar-coupling and the chemical-shielding tensors is an im-
portant source of residual line broadening in cw-decoupled
spectra of isolated two-spin systems. Since this residual
broadening results from the coupling of two second-rank ten-
sors it will not average out under MAS conditions because of
the zeroth-rank and fourth-rank tensor contributions. In the
case of our model system~1H–15N! we have seen broaden-
ings of ca. 1000 Hz for a decoupling field ofvrf/~2p!571.5
kHz. The use of a simple phase-alternating sequence which
is symmetric in the sense of the average Hamiltonian theory
removes the second-order broadening in spin systems with
weak homonuclear dipolar-coupling networks. In spin sys-
tems with strong homonuclear dipolar-coupling networks,
the second-order recoupling is also contributing to the re-
sidual line broadening. The use of the TPPM decoupling
scheme7 leads to a reduced second-order broadening even in
solids with strong homonuclear dipolar-coupling networks.

The impact of this second-order recoupling will most
visibly be seen in doubly labeled substances which are now
more commonly used in the structure determination of pep-
tides and proteins by solid-state NMR. We can estimate the
magnitude of the broadening for a13C–15N double label
based on the analytical results of Eq.~16!. Calculating for a
one bond distance, a carbon chemical-shielding tensor of
d/~2p!59750 Hz ~78 ppm at 125 MHz carbon larmor fre-
quency!, and a decoupling field strength of 70 kHz one ob-
tains a residual linewidth of approximately 200 Hz.

It is possible to use the second-order recoupling to ex-
tract information about the magnitude or the orientation of
the principal-axis systems of the two interfering tensors from
the second-order spectrum. In systems with strongly dipolar-
coupled protons, the use of off-resonance decoupling, with
the effective decoupling field along the magic angle, can
reduce the quenching of the second-order recoupling by the
homonuclear flip–flop modulations. Such off-resonance de-
coupling might allow the extraction of structural information
from the second-order recoupled spectra even in systems
with strong homonuclear dipolar-coupling networks. Further
investigations in this direction are under way in our labora-
tory.
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FIG. 10. Dependence of the second-order recoupled spectrum on the orien-
tation of the two tensors. The chemical shielding tensor was assumed to be
axially symmetric so only one parameter~bI! is needed to describe the
orientation of the principal-axis systems of the two tensors. The line shape
of the spectrum depends very strongly on this angle which suggests that it
might be possible to determine the angle between the two tensors from
experimental spectra. The parameters of the simulation are the same as in
Fig. 9.
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