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A sample method for selemve doublequantum NMR m sohds LS descriied The spin system 1s first prepared m a state 
haavmg only &polar, or quadrupolar, order. Selective exatation and detection of double-quantum coherence xs then aciueved 
by the 90Qty-t-45F p&e sequence. 

1_ Introduction 

in the last few years there has been a growmg in- 
terest m multiple-quantum NMR spectroscopy, see 
e.g. ref’s (I-71 and references therem, where the 
Zeeman quantum-number selection rule becomes A.&? 
=n, wrth arbitrary IZ, mstead of the usual LX&# = 1 of 
ordmary NMR spectroscopy. With non-selective exct- 
tations, however, spectral resolution IS usually rather 
poor especially III sohds and intensltres of the hnes de- 
creased rapidly with increasing n. Moreover, the inten- 
sittes, even withm a gtven order, depend strongly on 
preparation; therefore some sort of averagmg IS neces- 
sary to get appreciable rntenslties of all the hnes [3,8J 

Recently Warren et al. [9] have developed a meth- 
od for cvldeband seiectlve excitation of n-quantum co- 
herence. Therr method consists of a combination of 
multiple pulse averagtng [I OJ and phase shafts [8]. 

In the present paper we propose a simple method 
for wideband selective excitation and detectlon of 
double-quantum coherence m &polar or quadrupolar 
solids. We note that the present study apphes to multi- 
level spm systems and is quite &fferent from the 
double-quantum NMR of a spm 1 system [2,1 I]. 

2. Theory 

Consder a system of dipole-coupled spins m solids, 
subject to a high magnetic field. The relevant ham& 
toman, m the frame v&h (x,y, z) axes rotating around 
the z axis wtth angular frequency w, IS given by 

N=LII,+H:), n=w,-w, 0) 

where wdz IS the Zeeman system, 00 being the Larmor 
precession frequency, and N$) IS the truncated dspolar 
interaction, wh.~ch commutes withI,. Terms leading to 
relaxation are neglected in eq (I)_ The density matrix 
of the spin system in equilibrium, m the hlgh-tempera- 
ture approxlmatlon, is gven by 

p= 1 -PI,. (2) 

Now we bnng the spin system mto a state having 
only &poIar order. One way to do this IS by applymg 
a phase shifted pulse pan [ 121 90:-7145;, either 
on-resonance (LL = 0) or off-resonance, see fig. 1. In 
the latter case, to avold Zeeman order i-1 must be 
chosen such that sin ATE =O [13].~terw~tmgfora 
tune 7~ w&h must be fonger than the decay tune T2 
of the off-diagonal elements, i.e. multiple-quantum 
coherences [7,14], the dens@ matrix becomes 

p=l-PI@, (3) 
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Fe. 1. Selective exutation and detection of doublequantum 
coherence First d~polar order is prepared usmg the 9Oi-q- 
4$ pulse sequence and wating for a time I-W longer than the 
decay of the off&agonal elements of the density matnx. Se- 
lectlve excitation and detection is then achieved with a 
90” X,y-t-45> pulse sequence. The doublequantum coher- 
ence is measured by observmg (fY) as a function oft, for a 
certam value of 72. 

where /3 will be time-dependent because of spm- 
lattice relaxation, but we shall pay no attention on 
this aspect. 

Selective excltatlon of double-quantum coherence 
1s achieved by applymg a 90:) or 90;) pulse. This fol- 
lows easdy from the known transformation property 
of @, see e.g. ref. [7]. We get for 90G,Y pulse: 

P = exp($filX,y) (I- P$?)) exp(-?m&J , 
so 

px,y = I+ $Ifg” F (61’2/4)fl(H62’ + Hg”) , (4) 

where the + sign refers to the 90; and the - sign to 
the 90; pulses and I@ + H’f2’ are doublequantum 
dipolar operators (AM = *2), conta.mingf,,,fi, - I,yfj~, 

i and 1 denote the lth andjth spms. The opposite signs 
m eq. (4) for 90: and 90; pulses respectrvely, can 
easily be understood since the latter pulse can be ob- 
tained from the first one by a rotation of 90” about 
the z axis (90” phase shift), changmgx intoy III e2). 
It IS also a well-known property of double-quantum 
coherence which changes in phase by twice the phase 
shift. 

After excitation of the doublequantum coherence 
we let the system evolve for a time t: 

P&y(t) = 1+ 5P@) -c P2W 1 

pz(f) = (6’j2/4)P exp[i(A1, +@))t] 

X (6’) + H6_*‘) exp[-i(A1, + @)t] , (5) 

where the double-quantum coherence is entuely con- 
tamed in &). The above evolution takes place with- 
out an observable signal in the transverse plane, since 
~_.&t) does not contain smglequantum coherences. 
(N-B The absence of an observable signal durmg the 

evolution period t can be taken as a criterion for COT- 
rect adjustment of @se widths and phase settings.) 
From eqs. (4) and (5) it foliows that the combination 

px - p,, further selects the doublequantum coherence 
from the rest. 

Detection of the doublequantum coherence in eq. 
(5) 1s achieved by a 45; pulse. This transforms pah-t of 
pa(f), and also off@, into singlequantum coherence 
[l-8] _ The evolution of the doublequantum coher- 
ence can thus be detected by observing U”> as a func- 
tlon of C, for a certain value of 72 after the last pulse, 
i.e. for the doublequantum coherence: 

UY> = Tr IY exp[r(Mz +R@)r2] exp($ri$) 

X pa(t) exp(-idY) exp[-i(Nz f E@))s~] _ (6) 

The whole sequence is depicted in fig. 1. We note that 
the detection pulse need not be a 45” ptise, other 
angles wdI do, except a 90” pulse when A = 0. As is 
well-known [l-7] (I ) wdl be modulated with a fre- 
quency 20, since p2 f) contains exp(*2iA& and it (’ 
~nll change sign upon applying a 90; instead of a 90: 
excitation pulse as explained above. In addition to the 
signal as given by eq. (6) there will be a common base- 
line for the two excitation pulses. This baseline corre- 
sponds to the dipolar signal, cf_ eq. (5) and ref. 1141; 
it IS independent of phase shift and A. 

We end this section with three remarks: (i) The 
above results apply also when H$$) is a quadrupole in- 
teraction, because the latter mteraction transforms In 
the same way under rotations as the dipolar interaction. 
(ti) Actually only the last two pulses in fig. 1 belong to 
the selective excitation and detection of the double- 
quantum coherence, because dlpolar order can be cre- 
ated m other ways, viz. by ADRF [1’S], by of!Greso- 
nance saturation [13,16] and in some cases by sample 
heating [ 17,181. (ih) In the usual excitation scheme, 
e.g. wrth 90;-r-90”_,, intensities of multiple-quantum 
Lines are sensitive functions of combinations of r witi 
off-set A and with the strengths of spin-spin interac- 
tions. In our method excitation of the doublequantum 
is achieved by a smgle pulse; there is no 7 involved. 
Consequently, the intensities of the double-quantum 
lines are independent of preparation, cf. eqs_ (4) and 
(5). ms distinct feature is of great practical importance, 
since the doublequantum Gectra to be obtained by 
tis method wdl be characteristic of the sample COR- 
sidered. 
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3. Experimental results 

To illustrate the method we have done measure- 
ments at room temperature on the protons of adaman- 
tane (C,OHl~), partly deuterated I&mine 
(ND$B-ICH~COO-) and gypsum (&SO4 - 2HzO). 
The samples were powders and have been chosen for 
no particular reason except that their relaxatron tunes 
were rather short (SI s) which is convenient to do the 
experiments. T%e measurements have been done on a 
Bruker CXP p&se spectrometer at 60 MHz, The 90” 
pulse wtdth, rgv = 2.85 W, corresponded to an rf am- 
plitude ‘yHLf2n = 88 kHz. 

Fig. 2 shows Uv) as a function oft for A = 0, The 
dots are for the 9tI excltatlon pulse and the open czr- 
cles are for the 90u excitation pulse. The comiwn 
baselines have been subtracted Fig. 2a* adamantme, 

Fig. 2. try, a.!i a function of I for A = 0. e 90: excJtation 
pulse: o 90; exhtauon puke (3) Adamantane, TJ = 46 JS, 
I-W = 500 PS, 7-2 = 46 US, @) ND:CHCWJCOO-, tJ cr: 16 MS, 
q+~ = 200 IJS. ~2 = 18 us, tcf gypsum, rI = 12 ~5, TW = ZOO pus. 
T2 = 18 ps. The twb excitahn pulse.9 give opposite srgnals 
wth a common basebne as evidence of the d~~bf~#~~~rn 
coherence m Uj,f. 

~~ ~46 ys, TW = 500 M, 72 = 46 /JS, Iinewidth ~14 
kNz. Frg. 2b* 1 &mine, 71 = 16 ps, rw = 200 W, 72 
= 18 ,US, lmewidrh =30 kflz. Ftg. Zc gypsum, rl = 12 
p.S,TW”2UL1@S,T~’ 18 m, Iinewldth =30 kI-Iz, For 
~d~rn~tane the stgnal at t = ZOO w has been chosen 
as the baseline of $1. For I&nine and gypsum the 
basehne is the sil;naI at t = 70 /XL In all the three cases 
the change of sign of Uy>, i.e. a 180” phase shift, for 
90; compared to 90: excitation pulse is evident. It 
was also observed that with correct adjustments of 
pulse widths and phases there was indeed no signal 
after the excitation (ihrrd) pulse. 

Frg. 3 shows Cr,, as a function of r for the three 
samples for A/2n = 40 l&z. Since the pulse widths are 
fmlte the condition for zero Zeeman order becomes 
sm A(r, + 5) = 0. We found expe~ent~Iy that thus 

I J I 

20 40 60 
--m-e Frsf 

Fxg. 3. Uy) as a funcrlon oft for a/2= = 40 kHz. l 90: excita- 
tion pulse, 0 905 excitation pulse. (a) Adamantane, ‘I= 46 5 
ys, T-W = SO0 .US, ~2 = 18 PUS, &) ND~CHCH,COO-, T, = 21 J 
/is, qy = 200 I.LS, 72 = 18 ps, (cl gypsum, TV = 9 ps, 7~ = 200 
gs, 72 = 18 11s. The xnodulatzon untb 80 kHz and the 180” 
phase sb& for 90; compared to 90% excltatlon puke are bath 
charactenstics of doubiequantum coherence. 
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was the case for r1 = 9,21-S, 34 and 46.5 w, so 8 
= 3.5 w. Fig. 3a: adamantane, rL= 46.5 ps, TW = 500 
cls and 72 = 18 w. Frg. 3b: 1-alanine, r1 = 21.5 ~.ls, 
rW=200~andr2= 18 m. Fig. 3c: gypsum, r1 = 9 
p, 7w = 200 w and 72 = 18 /JS. In fig. 3 the expected 
modulations with a frequency of 80 kHz as well as 
the 180” phase shifts are clearly seen. The baselines 
have been chosen as in fig. 2 and subtracted from the 
signals. In contrast to the case of A = 0, in the present 
case the srgnal after the third pulse was not exactly 
zero. This 1s due to the fact that -yHL was not much 
larger than A and consequently the pulses were not 
correct 90” and 45” pulses anymore. 

The functional dependence of UY> on phase shrft 
and A shows that Uv) contains only double-quantum 
coherence, so the prediction of the theory is experi- 
mentally confirmed. We note that the responses to 
90: and 90; excitation pulses have been observed 
separately only to venfy expenmentally the proper 
dependence of UY) on phase shift, whereas the signal 

from f@) IS mdependent of phase shrft. It should be 
obvrous that the doublequantum coherence could be 
observed directly, with zero basehne, simply by sub- 
tracting the responses to the two excitation pulses 
from each other. 

4. Conclusion 

We have proposed a rather sunple method for selec- 
trve excttatron and detechon of double-quantum coher- 
ence in spur systems wrth drpolar, or quadrupolar, m- 
teraction. The method consists of first creating dipolar 
order. Selective excitation and detection has then been 
achieved by the 90& -t-45; pulse sequence. The 
method is partrcularly surtable for solids, where free 
mductron decay time T2 IS much shorter than spin- 
lattrce relaxation time, T,, in tlus case, so that one 
can choose rw 4 T,,, fig. 1. However, wrth the fol- 
lowmg modrficanon it can be apphed to spm systems 
drssolved in hquid crystals where T2 = TID. After cre- 
ation of &polar order one can apply a strong pulsed 
field gradrent [ 19,201 to dephase possible off-dragonal 
elements in a trme T; < T,,, so that again one can 
choose rw < T,,. Ths technique is also a proper alter- 
natrve to the method proposed earlier [ 143 for dipolar 
relaxation measurements in liquid crystals. 

In additron to the simplicity of the method the cre- 

ated doublequantum coherence is independent of de- 
tarls of preparation, in contrast to usual excitation 
schemes of multiplequantum coherences [L-7] _ Ibis 
drstmct feature of the method is of immense practical 
importance. It allows obtaining double-quantum spec- 
tra which are characteristic of the spin systems con- 

sidered, like in ordinary singlequantum spectroscopy, 
independent of parameters used during preparation, 
whereas usual multiplequantum spectroscopy was 
deficient in this respect. 
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