Selective Enhancement of NMR Signals for \(\alpha \)-Cyclodextrin with Laser-Polarized Xenon**

Yi-Qiao Song, Boyd M. Goodson, Rebecca E. Taylor, David D. Laws, Gil Navon, and Alexander Pines*

Xenon, hydrophobic and chemically inert, has been widely used as an NMR probe of chemical environments, both in solution and in the solid state. With the application of optical pumping, a large (\(> 10\% \)) \(^{129} \)Xe nuclear-spin polarization can be generated. This polarization has been used to increase the sensitivity of \(^{129} \)Xe NMR spectroscopy and magnetic resonance imaging (MRI) and to supply polarization to neighboring spins on surfaces. It was recently shown that enhanced xenon polarization can also be transferred to molecules in solution by cross-relaxation, a process dubbed the spin polarization-induced nuclear Overhauser effect (SPINOE). Because the SPINOE depends on the proximity of \(^{129} \)Xe atoms to neighboring spins, as well as their relative motion, more rapid transfer of polarization is expected when xenon is temporarily bound, thereby permitting selective enhancement of NMR signals of nuclear spins near xenon binding sites.

Here we report polarization transfer from laser-polarized \(^{129} \)Xe to \(^{1} \)H spins in two molecular systems in solution: \(p \)-nitrotoluene (\(p \)-NT), which couples mainly to xenon, and \(\alpha \)-cyclodextrin (\(\alpha \)-CD, Figure 1), a cyclic oligosaccharide with a hydrophobic pocket known to bind xenon and other guest species. Binding of xenon to \(\alpha \)-CD gives rise to cross-relaxation rates up to 150 times greater than those between xenon and \(p \)-NT; this results in more rapid transfer of polarization. Furthermore, enhancements of \(^{1} \)H spins adjacent to the xenon binding site in \(\alpha \)-CD are greater than those of \(^{1} \)H spins further away.

The change in the \(^{1} \)H magnetization due to the presence of highly polarized xenon is well approximated by Equation (1).

\[
\frac{\Delta M_{H}}{M_{eq}} = - \frac{\sigma_{H} n_{Xe} T_{1H} T_{1Xe}}{\gamma_{H} \gamma_{Xe}} \left(1 - e^{-t/T_{1H}} \right)
\]

Here, \(\sigma_{H} \) is the partial millimolar cross-relaxation rate, \(n_{Xe} \) is the concentration of \(^{129} \)Xe in the solution, \(T_{1H} \) and \(T_{1Xe} \) are the magnetic relaxation times, \(M_{H} \) and \(M_{eq} \) are the enhanced and equilibrium magnetization of \(^{129} \)Xe and \(^{1} \)H, respectively, and \(\Delta M_{H} = M - M_{eq} \). In the absence of laser polarization, the \(^{129} \)Xe-\(^{1} \)H NOE enhancement is minuscule (\(\approx 10^{-5} \)) due to low xenon concentration and weak \(^{129} \)Xe-\(^{1} \)H coupling. In previous work, the \(^{129} \)Xe-\(^{1} \)H interactions were indirectly observed by detecting changes in the xenon signal during proton saturation. With the use of laser-polarized xenon, however, the \(^{129} \)Xe-\(^{1} \)H NOE enhancement (\(\approx 10^{-2} \)) is detected directly in the resolved \(^{1} \)H NMR spectrum.

The technique used for optically pumping xenon has been described elsewhere (4), \(^{129} \)Xe polarizations are typically 5-10%. To detect the SPINOE signals, we used a heteronuclear difference NOE pulse sequence (Figure 2), which suppresses the equilibrium \(^{1} \)H magnetization and is therefore directly sensitive to the SPINOE. The \(^{1} \)H SPINOE NMR spectra for 0.1 \text{M} \(p \)-NT in [D\(_{2}\)]benzene with laser-polarized xenon are shown in Figure 3. Equation (1) was used to determine values of \(\sigma_{H} \) for \(p \)-NT by assuming a linear dependence of the cross-relaxation rate on the concentration of polarized xenon (Table 1).

The values are similar to that for the hydrogen atom of [D\(_{2}\)]benzene, which is in agreement with a rough theoretical approximation.
COMMUNICATIONS

Figure 3. 1H SPINOE NMR spectra of 0.1 M p-nitrotoluene in $[D_4]$benzene ($T = 4.5$ s and $r'= 3.5$ s). Chemical shifts are referenced to the signal for $[D_4]$benzene ($\delta = 7.16$). a) Spectrum acquired with the pulse sequence in Figure 2 after introduction of negatively polarized 129Xe (with xenon spins "up"); b) as in a), but in the absence of a xenon 180° pulse; c) spectrum acquired after introduction of positively polarized 129Xe (prepared by inverting the magnetic field in which the 129Xe is laser-polarized); this results in a sign change in the spectrum.

Table 1. 129Xe-1H cross-relaxation rates σ_n and 1H spin-lattice relaxation times T_1.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Proton</th>
<th>σ_n [10$^{-9}$ s$^{-1}$ mW$^{-1}$]</th>
<th>T_1 [s] [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-NT</td>
<td>CH$_3$</td>
<td>0.025 ± 0.007</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>H3, H5</td>
<td>0.032 ± 0.006</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>H2, H6</td>
<td>0.029 ± 0.005</td>
<td>23</td>
</tr>
<tr>
<td>[D$_4$]benzene [b]</td>
<td>H</td>
<td>0.028 ± 0.007</td>
<td>110</td>
</tr>
<tr>
<td>z-CD</td>
<td>H1</td>
<td>0.44 ± 0.14</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>H2</td>
<td>1.3 ± 0.5</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>H3</td>
<td>4.1 ± 0.8</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>H4</td>
<td>1.6 ± 0.3</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>H5</td>
<td>4.9 ± 1.2</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>H6</td>
<td>1.2 ± 0.4</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>OH(2)</td>
<td>0.70 ± 0.22</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>OH(3)</td>
<td>0.86 ± 0.18</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>OH(6)</td>
<td>0.36 ± 0.14</td>
<td>1.1</td>
</tr>
</tbody>
</table>

[a] The error range for the T_1 measurements is about ±5%. [b] Data for [D$_4$]benzene signals in the p-NT spectra.

The first indication of stronger couplings for laser-polarized xenon in z-CD is the reduced 129Xe relaxation time T_1 (~20 s) in 0.1 M z-CD/$[D_4]$DMSO, which is short compared to that for xenon in 0.1 M p-NT/$[D_4]$benzene (~500 s). The equilibrium 1H NMR spectrum of z-CD is shown in Figure 4a; the chemical shifts were assigned by means of a 2D COSY spectrum. After introduction of laser-polarized 129Xe into the solution, SPINOE NMR spectra (Figure 4b–d) were obtained by using the pulse sequence of Figure 2. Values of σ_n for the 1H spins in z-CD were obtained by fitting the data to Equation (1) (Table 1). The increase in couplings between xenon and z-CD arising from xenon binding$^{[12]}$ demonstrates the sensitivity of σ_n to the binding of xenon with molecules in solution.

In the case of σ_n variation of signal enhancements is observed in the 1H NMR spectrum: The strongest SPINOEs are observed from the H3 and H5 atoms located inside the hydrophobic pocket. Differences in the xenon coupling to various protons is expected when binding occurs, because dipolar relaxation is sensitive to the distances between spins and varies as $\sigma_n \propto r^{-6}$. For example, from this relationship a ratio of 1:1.5 can be estimated for the range of relative distances between Xe–H5 and Xe–H1, neglecting transferred NOEs$^{[11]}$. According to the X-ray structure of z-CD$^{[10]}$, a ratio between 1:1.2 and 1:2, corresponding to Xe–H5 distances of about 3 to 6 Å and Xe–H1 distances of about 6 to 8 Å, is consistent with a distribution of xenon locations within the hydrophobic pocket.

These results show the potential of 129Xe–1H SPINOE experiments for probing the structure and dynamics of molecules in solution. Furthermore, they may have implications for NMR studies of hydrophobic potentials in systems involved in hydrophobic binding, for example, inclusion compounds, membranes, and proteins.

Received: June 16, 1997 [Z.195601E]

Keywords: cyclodextrins · host–guest chemistry · laser polarization · NMR spectroscopy · xenon

Reducible Nanoscale Molecular Rods Based on Diacetylene-Linked Poly(pheny1thio)-Substituted Benzenes**

Marcel Mayor, Jean-Marie Lehn,* Katharina M. Fromm, and Dieter Fenske

Structures of defined geometry and nanometric size containing electron-accepting subunits are of much interest as reducible molecular wires for the development of molecular and supramolecular electronic and photonic devices.1-3 They may serve as connectors between components, and also possess marked nonlinear optical properties due to extended π conjugation.4-8 Whereas the very actively studied entities built from conjugated electron-rich groups (such as thiophene, pyrrole),9 lea to electronic conduction upon oxidation (p-doping), reducible wires are susceptible to n-doping through reduction and may show higher electronic mobility.

Molecular wires based on pyridine end groups and carotenoid-type conjugated chains (termed carioiologens), which we investigated earlier, induce electron transport through lipid membranes.5,6 Poly(phenylthio) aromatic systems such as I are well known for their host–guest chemistry in the solid state and also display remarkably low reduction potentials.11,12 They thus appeared to be promising candidates for incorporation into conjugated systems chosen for the development of novel types of reducible molecular wires.

We present here the synthesis, the structural characterization and some physicochemical properties of 2 and 3, in which two and three poly(phenylthio)benzene subunits are linked by diacetylene bridges as efficient π-conjugation connectors. Starting from the corresponding halogenated benzaldehydes, the acetylene-functionalized phenylthio-substituted benzenes were synthesized in three steps (Scheme 1). Aromatic nucleophilic

[**] Supported by the CNRS (URA 422), the Swiss National Science Foundation, the Collège de France (postdoctoral fellowship to M. M.), and the Deutsche Forschungsgemeinschaft (postdoctoral fellowship to K. M. F.).

[1] Prof. Dr. J.-M. Lehn, Dr. M. Mayor
Laboratoire de Chimie Supramoleculaire
Institut Le Bel, Université Louis Pasteur
4, rue Blaise Pascal, F-67000 Strasbourg (France)
Fax: Int. code +(3)8841-1020.
Dr. K. M. Fromm, Prof. Dr. D. Fenske
Institut für Anorganische Chemie der Universität Karlsruhe (Germany)

Scheme 1. Synthesis of 2 and 3. a) DMI, NaSR, RT; b) CBr₄, PPh₃, CH₂Cl₂, RT; c) LDA, THF, -78 °C; H₂O; d) Cu(OAc)₂, pyridine, 45 °C; e) CuCl, TMEDA, O₂, CHCl₃, RT.