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Sideband Patterns in Dynamic-Angle-Spinning NMR
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It is known that dynamic-angle-spinning (DAS) NMR can be
accomplished using a variety of complementary angles (6, 0,)
characterizing the two orientations of the spinner axis with re-
spect to the magnetic field. In cases where the evolution period
of the two-dimensional DAS experiment is divided into unequal
parts, for example, by RF pulses or spinner reorientation, a
complex sideband pattern emerges. We describe a simple theory
of the sideband pattern and provide illustrative experimental
results of spectra over a range of DAS angles. The DAS exper-
iment with the angle pair (0°, 63.43°) has sidebands at integer
multiples of 0.83¢ and should be particularly useful for DAS
cross-polarization experiments involving central transitions of
quadrupolar nuclei. Our considerations are relevant to other
NMR experiments in which an evolution time is composed of
periods separated by a perturbation and/or characterized by dif-

ferent effective Hamiltonians. < 1993 Academic Press, Inc.

INTRODUCTION

Spinning sidebands appear in a nuclear magnetic reso-
nance spectrum when the Hamiltonian describing the system
has a periodic time dependence and a rotational frequency
greater than the homogeneous linewidth of the system. This
situation commonly occurs in rotating liquids in an inho-
mogeneous magnetic field (/) or in a rotating solid with an
anisotropic Hamiltonian (2-6). Spinning sidebands usually
appear at integral muitiples of the rotation frequency with
the intensity decreasing with increasing integer multiple and
increasing rotation frequency. However, in certain types of
two-dimensional NMR experiments, in particular, 2D echo
spectroscopy, spinning sidebands can exhibit a much more
complex behavior. An example of this behavior was observed
by Bodenhausen et al. (7) in 2D J spectroscopy in which
the spinning sidebands appeared at multiples of half the
spinning frequency in the w, dimension. This behavior is
the result of the two equal periods of evolution separated by
the echo 7 pulse. Kolbert er al. (8) later utilized this behavior
in a 2D solid-state NMR spin-echo experiment to correlate
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the anisotropic information available from the sideband in-
tensities of an effectively slower spinning sample in the first
dimension with the simpler relatively sideband-free spectrum
in the second dimension. They also showed how additional
w pulses can be employed in ¢; with a corresponding increase
in the number of sidebands.

The recently developed technique of dynamic-angle spin-
ning (DAS) (9-11) naturally involves a 2D echo experiment,
the two periods of evolution being defined by the two DAS
spinning angles (8,, 8,). Because the refocusing time is not
necessarily equal to the dephasing time, DAS can display a
more complex spinning-sideband pattern. In addition, the
amplitudes of the DAS spinning sidebands vary as the mag-
nitude of the time-dependent components of the Hamilton-
ian change during the refocusing and dephasing times under
different spinning-axis angles. In this paper we provide a
general approach that explains the patterns of spinning side-
bands in DAS and related NMR experiments involving par-
titioned evolution periods. Our treatment provides a simple
intuitive description that complements previous theories of
2D echo experiments (7, 8).

Spinning sidebands spaced at noninteger multiples of the
actual spinning speed can be obtained in the isotropic di-
mension of a DAS experiment. By proper choice of the com-
plementary angle pair (6,, #,) in a DAS experiment designed
to remove second-order broadenings, spinning sidebands
spaced at 0.83 times the actual spinning speed can be ob-
tained in the isotropic dimension, an increase over the value
of 0.5 previously reported for DAS (/7). In addition, we
describe how sidebands spaced at 1.33 times the actual spin-
ning speed can be obtained in the isotropic dimension of a
DAS experiment designed to remove only first-order broad-
enings.

EXPERIMENTAL

All spectra were taken in an 11.7 T magnet using a home-
built DAS probe (/2). A modified version of the DAS ex-
periment ( /3) that provides pure-absorption-phase spectra
was employed and all experiments were obtained without
synchronization of the rotor. The evolution times at each
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rotor angle in the DAS experiments were separated by a
constant spinner-axis reorientation delay of approximately
30 ms. RbClO, and PbNO; were obtained from Aldrich and
used without further punfication.

THEORY

We consider the case of a periodic time-dependent Ham-
iltonian, .# (¢), with adiabatic behavior under sample ro-
tation about a single axis at a frequency Qr. The arguments
presented here can also be applied to more complex time
dependences such as that characteristic of double rotation
(14).

The unperturbed evolution operator, U(¢, 0), obtained
from -# (1) through the Schrédinger equation,

iU(t,0) = # (1)U, 0), [

contains frequency components characteristic of # (1),
which in the case of sample rotation includes frequency
components separated by integer multiples of (g . In contrast,
when perturbations, R, are applied during the evolution time,
the perturbed evolution operator,

U(l, O) = U([’ = xn-lt)Rn«l

s e RU(xt + xt, x DR U(xyt, 0), [2]
can contain frequency components that differ significantly
from the unperturbed evolution operator and in the case of
sample rotation, can include frequency components sepa-
rated by noninteger multiples of Qy. Here, the parameters
x;are constrained such that 27 x; = 1, and the perturbations
R may take the form of RF pulses, rotor reorientations, gra-
dient switching, etc. The basic premise is that through a
transformation of time variables, which may require an in-
crease in dimensionality, any perturbed NMR experiment
can be redefined in terms of unperturbed evolution times
where the frequency components in each associated time
evolution operator are easily predicted and can be related to
the frequency components in the original experiment
through a similarity transform or a skew projection.

Consider, for example, the pulse sequences shown in Fig.
1. Although the perturbations R, and R, are identical in
both sequences, the resonance frequencies in either 2D spec-
trum can differ significantly due to the different definition
of time variables. This difference between the resonance fre-
quencies of the two experiments can be explained in terms
of a similarity transform. It is well known ( /5) that a trans-
formation of the variables in one domain is reflected by a
corresponding transformation in the other (Fourier trans-
form) domain. Using the notation of Ref. (15) the transfor-
mation of time variables between the pulse sequences in Fig.
1, given by
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FIG. 1. Two identical pulse sequences with different time-vanable def-
initions. The data acquired with these two sequences are related by a shearing
transformation.

t' = .oft, where s'(t) = s(.o/t), (3]
and
o - [ L/ 0] [4]
“.Yz/xl l

corresponds to a transformation of the frequency variables
given by

1
@ =o', where $'(&) = —— S(&o/ ),

/] (5]

and

o= [;C‘ ?] (6]
X3

This transformation is accomplished by a ‘‘shearing” of the
frequency-domain data from the sequence in Fig. 1b with
an angle, 6, given by

o X2
§,=tan"' =,
X

[7]
followed by a scaling of the w, axis by x,. Shearing trans-
formations are well known in two-dimensional NMR (76—
20) and as we shall show provide a simple picture for un-
derstanding sideband patterns in DAS.

A schematic example of the behavior of spinning sidebands
after a shearing transformation is shown in Fig. 2 for two
cases where 6, = 45° and , = 38.7°. The frequency axes in
Fig. 2a are in units of g, the actual spinning speed. The
example in Fig. 2b is the familiar situation in 2D echo spec-
troscopy, where the dephasing and refocusing times are equal
(e.g., 2D J spectroscopy). In this example even though the
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FIG. 2. Schematic examples of the shearing transformation relating the two-dimensional spectra obtained from the two pulse sequences in Fig. 1. (a)

Two-dimensional spectrum obtained using pulse sequence in Fig. 1b. (b} Two-dimensional spectrum obtained using the pulse sequence in Fig. la. This
case corresponds to equal dephasing and refocusing times (x; = x; = 0.5) and is obtained from the two-dimensional spectrum in a by a shearing
transformation that employs a shearing angle of 45° and a scaling of the w, by x, = 0.5. In this case the spinning sidebands in the two-dimensional
spectrum are aligned with respect to w' so that a projection onto the «' axis contains only spinning sidebands separated by integer multiples of 0.5¢g.
(c) Two-dimensional spectrum obtained using the pulse sequence in Fig. 1a. This case corresponds to unequal dephasing and refocusing times (.x, = 0.56
and x; = 0.44) and is obtained from the original two-dimensional spectrum in a by a shearing transformation employing a shearing angle of 38.7° and a
scaling of the w; by x; = 0.56. In this case the spinning sidebands in the two-dimensional spectrum are not aligned with respect 1o w| so that a projection
onto the w' axis contains spinning sidebands that are separated by multiples of and also sum and difference frequencies of x,Qz = 0.56Qg and x;Qx =
0.44Q5.

In general, for an arbitrary number of perturbations during
the evolution time, the perturbed evolution time can be re-
defined in terms of smaller unperturbed evolution times, as
in Fig. 3, with an increase in the dimensionality of the ex-
periment, where

spectrum is sheared, the sidebands remain aligned such that
a projection onto the ' axis contains only sidebands at in-
teger multiples of 0.5Qg . In contrast, the example in Fig. 2c,
where x; = 0.44 and x, = 0.56, describes a 2D echo exper-
iment with unequal dephasing and refocusing times. In this
situation the spinning sidebands are not aligned in «, and
consequently a projection onto ' yields a fairly complicated
sideband pattern. In the next section we present examples
of such DAS experiments that use unequal dephasing and
refocusing times and the associated complicated sideband

U([I) fees t”) = U(T! T-— tﬂ)RnAl

s RU(L + 1, 1R UG, 0), [8]

and 7 = X7 ;. Upon Fourier transformation of this n-di-

behavior. mensional experiment, the spinning sidebands will appear
at integer multiples of Qg in every dimension. A projection
R, R R R R of this n-dimensional spectrum onto an axis given by the
1 2 n-2 -1 direction cosines /;, where
‘f x,t Xt x3t7 XLt x t] ] xt / X,
_______ e 9
4 t t; th-2 tn-1 tn ! V Z/ ij (91
FIG. 3. Redefinition of a one-dimensional perturbed evolution period,

followed by a rescaling of the projection axis by V 2, x7 pro-

1. into multidimensional unperturbed evolution periods, 1,, 5. . . ., 4,.
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vides the frequency-domain spectrum of the one-dimensional
perturbed evolution under the operator in Eq. [2]. Spinning
sidebands separated by {2y in the unperturbed dimension w;
will then be separated by x;Qx on the projected axis. This
procedure is similar to accordian spectroscopy (217), where
a concerted variation of two evolution times (¢, and 7,,)
reduces a three-dimensional experiment to a two-dimen-
sional experiment.

Although the simple arguments of similarity transfor-
mations or projections describe the frequency positions of
the spinning sidebands under perturbed evolutions, details
of the sideband amplitudes will depend on the specifics of
the perturbations. To illustrate this we consider a DAS ex-
periment on the central transition of a half-integer quad-
rupolar nucleus. To second order, the central transition fre-
quency in the rotating frame may be expanded as (see Ap-
pendix )

4
Q(z)(g’ t) — Z Wn(ﬂ, ¥, g)ein(llR{+u)’

n=—4

(10]

where (g is the rotor frequency, a, 8, and v are the Euler
angles between the principal-axis system of the quadrupolar
interaction and the rotor-axis system, and 4 is the angle of
the rotor spinning axis with respect to the external magnetic
field. In the simplest implementation of DAS, Ry is a /2
pulse, and R, is a perturbation that is composed of two
/2 pulses separated by a constant length of time during
which the rotor axis is switched. The signal in terms of the
unperturbed evolution times ¢, and ¢, can be written

Sty 1) = eMoBTaB

T ST A (0)A%,(8))An(62)4%,(62)

¢ Ny=—a Ny=-

X e\i[(t'V|'N2+N3*1\4)(x+(/\|+N3*[\4)QRI|+fV]SZR12+(N3*N4)¢DR]’ [1 l]

where ¢g 1s the constant rotor phase accumulated during
the hop, and the 45(#) are given the Appendix. The un-
sheared 2D DAS spectrum can thus be written as a product
of the one-dimensional variable-angle-spinning ( VAS) spec-
tra associated with each rotor angle. In general, a correlation
between two VAS spectra will depend parametrically on the
powder angles 3 and vy. However, for the special DAS com-
plementary rotor-angle pairs for which

Xj WO(.Bs Y, 01) = —XZWO(B’ Y, 02)9 [12]

the correlation between associated VAS spectra will be a
linear isotropic correlation. There exists a continuous set of
angle pairs, (6,, 6,), that satisfies Eq. [12]. A similarity
transformation of this correlated 2D VAS experiment, im-
plemented by a shear of angle tan ' x,/x, followed by a scal-
ing of the w, axis by x,, results in the 2D DAS spectrum.
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It is easily proved that the centerband and sideband am-
plitudes in the projection onto the w, or w, axis of the cor-
related 2D VAS spectrum are all real and positive (22). Ex-
perimentally, we have observed that all sidebands and cen-
terbands in the 2D DAS spectrum are also real and positive.
In general, this may not be true for all sidebands in a 2D
DAS spectrum; however, numerical simulations of 2D DAS
spectra confirm our experimental observations that all side-
bands of significant intensity do indeed have the same phase.
In the Appendix we analytically show that if specific rotor
angles are used, or if averages over certain experimental vari-
ables are taken, the sidebands in the 2D DAS spectrum will
be real and positive. Therefore, for the remaining discussion
we assume, in general, that all sidebands and centerbands
in the 2D DAS spectrum have the same phase. Thus, knowl-
edge of the sideband amplitudes and positions for the 1D
VAS spectrum associated with each DAS angle can aid in
predicting the sideband amplitudes and positions in any 2D
DAS spectrum. In the next section we use this approach to
explain the sideband patterns that can be observed in DAS
experiments.

RESULTS AND DISCUSSION

In many 2D echo NMR experiments the dephasing and
refocusing times are equal (i.e., x, = 0.5 and x, = 0.5), and
the spinning sidebands appear at multiples of 0.59x in w.
In the DAS experiment the dephasing and refocusing times
are not necessarily equal, and the values of x; and x, will
depend on the rotor-angle pair used. When first- and second-
order anisotropic broadenings are removed with DAS, equal
dephasing and refocusing times are obtained with the rotor
angle pair 8, = 37.38° and 6, = 79.19°, and, as noted pre-
viously ( /1), when using this angle pair, spinning sidebands
are obtained at multiples of 0.5Q in the isotropic DAS di-
mension. A 2D ¥Rb NMR spectrum of RbCIQ, correlating
the 37.38° and 79.19° VAS spectra is shown on the left in
Fig. 4. Spinning sidebands appear at multiples of Qg in both
dimensions. The correlated 2D (37.38°, 79.19°) VAS spec-
trum can be transformed into a 2D DAS spectrum using a
shearing of 45° followed by a scaling of w, by 0.5, the same
transformation used in the schematic example of Fig. 2,
whereby the spectrum in Fig. 2b was obtained from that in
Fig. 2a. Thus all the sidebands are aligned in « and a pro-
jection onto the w') axis provides an isotropic DAS spectrum
with spinning sidebands equally spaced at multiples of 0.5Qg.
The projection onto the w} axis provides the VAS spectrum
characteristic of the final rotor angle, in this case 79.19°.

The situation for unequal dephasing and refocusing times
is illustrated by the 2D DAS 8Rb NMR spectrum of RbClO,
in Fig. 5, in which the DAS angle pair #;, = 39.23° and 8, =
90° was used, corresponding to x; = 0.44 and x, = 0.56.
Using the same shearing transformation applied in the sche-
matic example of Fig. 2c, the 2D DAS spectrum in Fig. 5
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FIG. 4. On the left is a ¥’ RbClO, 2D NMR spectrum correlating the VAS spectra of the DAS angle pair 8, = 37.38° and 8, = 79.19°. This 2D VAS-
correlated spectrum is transformed into the 2D DAS spectrum on the right using a shearing transformation as described in the text and in the legend to
Fig. 2 when x, = x; = 0.5. The rotor frequency was g = 3.2 kHz. In this example the spinning sidebands in the 2D DAS spectrum are aligned with
respect to ) so that a projection onto the w) axis contains only spinning sidebands separated by integer multiples of 0.5Qg = 1.6 kHz.

was obtained from the correlated 2D (39.23°, 90°) VAS
spectrum. In this example the spinning sidebands are not
aligned in w'. So even though each of the v slices in Fig. 5
resembles the w5 slices in Fig. 4 the overall projection on to
the w' axis in Fig. 5 yields a much more complicated side-
band pattern in the isotropic DAS dimension.

Simulated isotropic projections from the *’Rb DAS of
RbClO,, demonstrating the sideband behavior for various
different pairs of DAS angles, are shown in Fig. 6. In each
isotropic 1D DAS spectrum the spinning sidebands appear
at integer multiples of x;Q and x,{x and also at the sum
and difference frequencies of integer multiples of x, Qg and
x>Qx. The angle pair (37.78°, 79.19°) has an advantage that
X, Qr = 20 = 0.50% and a simple sideband spacing of 0.5Qz
is obtained. Of particular interest is the fact that the 1D DAS
spectrum for the (0°, 63.43°) angle pair contains only spin-
ning sidebands at muitiples of x,Qg = 0.83Qg . The spinning
sidebands at x,Qg = 0.17Qg do not exist, and thus the (0°,
63.43°) angle pair provides the highest effective spinning
speed when removing first- and second-order broadenings
with DAS. The experimental isotropic DAS projections are
shown in Fig. 7 and indeed bear out these expectations.

The particular simplification of the sideband spectrum for
the (0°, 63.43°) angle pair 1s due to the fact that all time-
dependent terms have zero amplitudes when the sample is
rotating about 0°. Thus the sideband behavior for the (0°,
63.43°) DAS experiment can be easily understood when one
considers the correlated 2D (0°, 63.43°) VAS spectrum

shown on the left in Fig. 8. While the 63.43° VAS spectrum
contains spinning sidebands at integer multiples of Qg, the
0° VAS spectrum contains no sidebands. The 2D DAS spec-
trum on the right in Fig. 4 is obtained after a shearing trans-
formation employing a shearing angle of 78.69° and a scaling
of the w, axis by 0.17. The projection of this 2D DAS spec-
trum onto the w} axis contains only spinning sidebands at
integer multiples of 0.83Qx.

In the case of first-order broadenings, it is possible to in-
crease the effective spinning speed in the isotropic dimension
beyond the actual spinning speed using the arguments above.
By combining the fact that the 0° VAS spectrum contains
no spinning sidebands with the fact that the 90° VAS spec-
trum contains only spinning sidebands at multiples of 2Qg,
we can design a DAS experiment that removes only first-
order broadenings with spinning sidebands occuring only at
multiples of 1.33Qg in the isotropic dimension. For first-
order broadenings the (0°, 90°) angle pair satisfies Eq. [12],
with x; = 0.33 and x, = 0.67. In Fig. 9 is the 2D DAS %*’Pb
NMR spectrum of PbNO; using the §, = 0° and 6, = 90°
angle pair. Since there are no spinning sidebands in the 0°
VAS spectrum the spinning sidebands in the isotropic DAS
dimension at integer multiples of x,Qr do not exist. In the
90° VAS spectrum, only spinning sidebands at integer mul-
tiples of 2Qg exist, and so, after the shearing transformation
of the 2D (0°, 90°) VAS spectrum, these spinning sidebands
are projected onto the isotropic DAS dimension at integer
multiples of x,2Qg = 1.33Q%.



200

i Projection
]

}WWAN\MMW

L il e
', (Hz)

', (kHz)

FIG. 5. Two-dimensional DAS spectrum of ¥RbClO, using 4, = 39.23°
and #, = 90°, where x, = 0.56 and x, = 0.44, The rotor frequency was Qg
= 3.2 kHz. In this example the spinning sidebands in the 2D DAS spectrum
are not aligned with respect 1o w' and a projection onto the w} axis contains
spinning sidebands separated by multiples of and also sum and difference
frequencies of 0.56Qx = 1.8 kHz and 0.44Q; = 1.4 kHz.

An important aspect of the sideband simplifications de-
scribed above is that the intensities of the suppressed side-
bands in the isotropic dimension are transferred to the cen-
terband and other sidebands. This is easily seen by noting
that the integrated intensity of the 2D DAS spectrum must
be constant regardless of which rotor-angle pair is used. Thus,
for example, the intensities of the x,Qg spinning sidebands
in the (0°, 63.43°) DAS experiment are not lost, but have
been transferred to the centerband and the x,{Qg spinning
sidebands. This is in contrast to other sideband manipulation
techniques like TOSS or PASS (23), where the intensities
of suppressed sidebands are not necessarily transferred to the
centerband. This can be seen using the approach outlined
in the previous section to analyze the simple two-pulse TOSS
sequence for eliminating first-order sidebands (24). The
propagator for this experiment can be written as a three-
dimensional experiment with unperturbed evolution periods
ti, 1>, and t3, where

Ults, 1) =U(L+ L+ 4, L+ 1)

X RU( + 1, )R U(1, 0), {13]
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and R, and R; are 7 pulses. This three-dimensional exper-
iment correlates the MAS spectrum with itself and contains
spinning sidebands appearing at integer multiples of Qg in
all dimensions. The one-dimensional TOSS spectrum is then
obtained from this three-dimensional time-domain data by
a cross section taken parallel to the 75 axis, intercepting the
1> and ¢, axes at the constant times 7, and 7, and starting at
a constant time delay 3. The constant times 7, are the cal-
culated fractions of the rotor period needed to cancel the
first-order spinning sidebands. In the frequency domain, this
cross section corresponds to a projection onto the w; axis
after linear phase corrections given by

¢l(wl):win [14]
have been applied to each w; dimension. These phase cor-
rections have the effect of modulating the spinning-sideband
amplitudes in the three-dimensional spectrum so that, in the
final projection onto the w; axis, the first-order sidebands
cancel. In general, with TOSS the spinning sidebands at all
multiples of Qp are present in the multidimensional spectrum
and vanish only in the projection onto the final axis. In con-

xy x; Qg
(@) “—lil\_jj SL_JL_N
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(CY J
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FIG. 6. Simulated 1D DAS spectra of ¥ RbClO, for various rotor-angle
pairs (8,.6,).(a)d, = 0° and ¢, = 63.43°, where x;, = 0.17 and x; = 0.83,
{(b)#, = 10.66° and #, = 63.96°, where x, = 0.18 and x, = 0.82, (¢) 8, =
15.38° and #, = 64.58°, where x, = 0.2 and x, = 0.80, (d) #, = 19.27° and
6, = 65.35°, where x; = 0.22 and x, = 0.78, (e) 8, = 22.81° and 4, =
66.33°, where x; = 0.25 and x, = 0.75, (f) #, = 26.22° and 8, = 67.64°,
where x, = 0.29 and x, = 0.71, (g) 8, = 29.67° and 6, = 69.51°, where x,
=0.33 and x; = 0.67, (h) ¢, = 33.31° and 8, = 72.55°, where x, = 0.4 and
Xy = 0.6, (i) 4, = 37.38° and 6, = 79.19°, where x; = 0.5 and x; = 0.5. All
spectra were obtained with a rotor frequency of Qg = 6.4 kHz. The quad-
rupolar coupling parameters of RbClO, used in the simulations are C, =
3.2 MHz and n = 0.1.
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FIG. 7. Experimental 1D DAS spectra of *’RbClQ, for various rotor-
angle pairs (#,. 6,). (a) 8, = 0° and 8, = 63.43°, where x, = 0.17 and x; =
0.83,(b)#, = 10.66° and 8, = 63.96°, where x; = 0.18 and .x; = 0.82, (¢)
#, = 15.38° and #, = 64.58°, where x; = 0.2 and x, = 0.80, (d) 6, = 19.27°
and #, = 65.35°, where x; = 0.22 and v, = 0.78,(e) 8, = 22.81° and 8, =
66.33°, where x; = 0.25 and x, = 0.75, (f) 6, = 26.22° and 9, = 67.64°,
where x; = 0.29 and x; = 0.71, (g) 8, = 29.67° and 8, = 69.51°, where x,
=0.33and x; = 0.67,(h)#, = 33.31°and §, = 72.55°, where x; = 0.4 and
X, =06.(i) 8, = 37.38% and 8, = 79.19°, where x;, = 0.5 and x, = 0.5. All
spectra were obtained with a rotor frequency of Qg = 6.4 kHz.

trast, with DAS the spinning sidebands are already absent
in the multidimensional spectrum, and thus there is no can-
celling of sidebands or loss of sideband intensity in the pro-
jection onto any axis.

CONCLUSIONS

We have attempted to present a general approach for
treating spinning sidebands in perturbed NMR experiments
and have used this approach to describe the complex spin-
ning-sideband behavior that is obtained in dynamic-angle-
spinning experiments. We exploit the fact that through a
transformation of time variables, which may require an in-
crease in dimensionality, the experiment can be redefined
in terms of unperturbed evolution times where the frequency
components associated with the time evolution operator due
to sample motion are easily understood. The redefined ex-
periment can be related back to the original experiment
through a similarity transform or a skew projection,

We have shown that the unsheared 2D DAS spectrum is
a simple correlation between two variable-angle-spinning
spectra, and that knowledge of the sideband amplitudes and
positions in the one-dimensional VAS spectrum associated
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with each of the DAS angles reveals the sideband amplitudes
and positions in the 2D DAS spectrum. Using this approach
we have demonstrated that, in general, the spinning side-
bands in the 1sotropic DAS dimension appear at multiples
and sum and difference frequencies of x, Qg and x,Qg, where
x,; and x; are the fractional dephasing and refocusing times
in the total evolution time. The highest effective spinning
speed when removing first- and second-order broadenings
with DAS is 0.83 times the actual spinning speed and is
obtained with the DAS angle pair (0°, 63.43°). We dem-
onstrate how the effective spinning speed in the isotropic
dimension can be extended to 1.33 times the actual spinning
speed in a (0°, 90°) DAS experiment designed to remove
only first-order broadenings such as chemical-shift anisot-
ropy. Finally, we show that in these experiments which in-
crease the effective spinning speed, the sideband intensity is
completely transferred to the centerband and other sidebands
without loss of any sideband intensity.

Of course, spinning-sideband behavior analogous to that
observed in DAS should appear in the NMR of a liquid
sample spinning in a static field gradient whose magnitude
and direction are switched during an evolution period.

APPENDIX: CALCULATION OF THE DAS SIGNAL

Considering the central transition (} < —1) of a quad-
rupolar nucleus as an isolated two-level system, the quad-
rupolar Hamiltonian truncated to second order (25) is given
by the effective Hamiltonian

HD= -, [15]
where
S 2l +1)—32 R
Q(_): [ ( ) 4] Z RZnRZ ] [16]
wz m>0 m

The R,,, are the lattice parts of the quadrupolar Hamiltonian
and depend on the orientation in the laboratory frame of
the principal axis of the quadrupolar interaction. Ry, Ra-,
can be expanded as

RomPRom=3 3 (JOI22m—m)(Jk+k'|22k k"

Kk’ J=02.4
)
X Dirola, B, ¥Y)pupar, [17]
where SDS(QA. o(a, B, v) i1s a Wigner rotation matrix element,

(J0]22m —m) and {J k+k'|2 2 k k" are the Clebsch-
Gordon coefficient (J M|j; j, m; m,), and

\/EQWCQ
4](21-1)

P20 =

“Q
vg L3
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FIG. 8. On the left is a *’RbCl0O, 2D NMR spectrum correlating the VAS spectra of the DAS angle pair #, = 0° and f, = 63.43°. The rotor frequency
was §lg = 3.2 kHz. Because the eigenvalues of the Hamiltonian when spinning at 0° are time independent, there are no spinning sidebands in a 0° VAS
spectrum. Therefore only spinning sidebands associated with spinning at 63.43° will be present in the 2D (0°, 63.43°) VAS-correlated spectrum of a
polycrystalline sample. After transforming this 2D VAS-correlated spectrum into the 2D DAS spectrum on the night using a shearing transformation as
described in the text and in the legend to Fig. 2 (x; = 0.17 and x; = 0.83), a projection of the 2D DAS spectrum onto the « axis contains only spinning
sidebands separated by multiples of 0.83Qg = 2.7 kHz. Thus, the (0°, 63.43°) angle pair provides the highest effective spinning speed when first- and

second-order broadenings are removed with DAS.

where
Prey & Os
o 2mCy nwg
P2x2 _“"——‘41(21_ D 6 ° (18]
where
C,
Cy = e%Q/h, onts 191

LTI -1

The Wigner rotation matrix in Eq. [17] may now be ex-
panded in terms of two separate rotations. The first rotation
is from the principal-axis system of the quadrupolar inter-
action through the Euler angles «, 3, v to the frame of the
rotor. The second rotation is from the frame of the rotor,
which is spinning at a frequency {2z about the angle 6, to the
laboratory frame. We then obtain for the central transition
frequency

4
Q(Z)(g’ t) - z VV,,(ﬁ, v, g)em(!lxl+a)’

(20]
where
Wa(B, v, 0) = QD00 + QDB v, 0).  [21]
Qi = - L’Q%”—ﬂ % (=D *ouprr.  [22]
and

_ 20U +1) - ]

wz

(J0122m—mY(Jk+k'|22 k k')

Q2(B, v, )

X2 2 X

kk’ m>0 J=24;J<|n)

X diin(B)dSH(0)e S pypoyr. (23]
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FIG. 9. Two-dimensional DAS spectrum of *’PbNQ; using the 8, =
0°. 8, = 90° angle pair, where x; = 0.33 and x; = 0.67. The rotor frequency
was Qg = 1.2 kHz. The projection onto the ' axis of the spectrum is devoid
of first-order broadenings and contains spinning sidebands separated by in-
teger multiples of 1.33Qg = 1.6 kHz.

In the DAS experiment the rotor angle 8 is switched from
#, after the first evolution period ¢, to 8, for the second evo-
lution period f,. The phase of the magnetization in this ex-
periment is given by

fn n+6
@(!1,12)=f Q‘z’(0,,t)dt+f Q2(8,, dt
0

3]
= Wo(B, v, 8t + Wo(B, v, 02)02

W8, v, 6) [ein|x2R1,+u) _ eina]
HQR

+ 2

n#*0

+ 3 Wa(B, v, 82) [ (SR backdr) _ gin(Sritacton)] (24
n#0Q nQR

where ¢r is the relative phase of the rotor between the end
of the first evolution period and the initiation of the second
evolution period.

The signal S(¢,, 1) is then simply the exponentiation of
this time-dependent phase. Using a property of delta func-
tions (26 ) we obtain the following expression for S(¢;, t,),

o) = o IWoBy.81)t oI Wo(B.y.02)02

R4

Z An(B)AX(8) AN, (02) AR, ()

Ng=— =

-

Ni=—x Nop=-» N3 *L.

R

—i[{N|— N3+ N3— N N+ N3—= Ny Qrt+ NV Ni—N,
X @~ UNI= N2t N3= Nodat (N1 3 N3= Ng) Qpiy+ N3ty +(Ny A)Q)R)’ [25]
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where
1 2r
‘4/’\'(9) = —f de
2x Jo

X exp[iNe + 3 WalB. v, 0) o . [26]

n#0 nilg

and A¥%(8) is the complex conjugate of Ax(8).

From Eq. [25] it is not clear that the centerband and all
sidebands will be real and positive. As mentioned earlier
experimental and simulated 2D DAS spectra indicate that
all sidebands of significant intensity are of the same phase.
This can be analytically shown to be true if Eq. [25] is av-
eraged over the powder angle « and one of the DAS angles
is 0°. The average over « gives

<S(t| , 12)>a = eiWo(ﬂ,7,0|)llei”b(ﬂry.ﬂz)rz
X% An(0)AR(0) AN, (02) AN, - nye vy (62)
NuN2 N3

X e—i[NzQR(ﬁ NiQrir+ (Na-Nye¢r]

(27]

When § = 0° the amplitude 4,(0°) will be zero except when
N =0, where A,(0°) = 1. Thus for #;, = 0° we obtain N, =
N, =0 and

<S(11 , t2)>a — eiW"O(B,'y,dﬂl)eiWo(b‘.'yﬁz)lg

X 2 | Any(82)|Pe™ ™02 [28]
N3 ’
and for 8, = 0° we obtain N; = N, — N, = 0 and
<S([1 , t2)>a - eiWo(ﬂmﬂ;)llei"b(ﬂmﬂz)lz
X 2 | An,(8))) e N [29]

N2

In a similar fashion one can show that when 6, or 6, is 90°,
all odd sidebands in the dimension associated with 90° are
Z€ero.

One approach that guarantees all sidebands to be real and
positive for any rotor-angle pair is to average the signal over
the rotor phase, ¢y, for each value of 1, and 1,. By varying
the rotor phase acquired during the hop, Eq. [25] can be
averaged over ¢g, in addition to the powder angle «, to obtain
NQ‘N] :N3_N4=03nd

(S 12) agy = €00r0m 37| 4, (8,)]2e NI
N

X ei"’ommﬂz,,z z I ANJ( 02) I Zefu‘\ﬁ()p\lz .
Ny

[30]
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