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Abstract 

A theory of dynamic angle spinning (DAS) and double rotation (DOR) NMR is described using average Hamiltonian and 
irreducible tensor metbods. Sideband intensities in DAS and DOR spectra are analyzed by both the moment and Bessel 
function methods, and general formulae are derived. Results show that the DAS moments depend on the relative rotor 
phase between the first and the second evolution periods, whereas the second and third DOR moments are independent of 
the relative phase between the inner and outer rotors. Sideband intensities in DAS spectra also depend on the relative rotor 
phases between evolution at the first and second angles, as well as on the ratio of time spent at each angle. Sideband 
intensities and phases in DOR spectra are related to the relative rotor phases between the inner and outer rotors, and the 
sideband pattern is determined by the ratio of the inner and outer rotor spinning speeds. An inversion symmetry of the odd 
numbered DOR sidebands at the relative rotor phase yr = 0”. 180” permits the elimination of these sidebands. Finally, 
numerical simulations are implemented and shown to agree with experimental results. Quadrupolar parameters can 
therefore be recovered either by calculating the second and third moments or by simulating the sideband intensities and 
phases. 
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Introduction 

Nuclear magnetic resonance has often been 
used to provide information about local bonding 
environments for a wide range of nuclei. For 
nuclei with half-integer spins (I> i), the broad- 
ening of the central transition (i w - i) in a 
polycrystalline or amorphous sample comes pri- 
marily from second-order effects involving the 
nuclear quadrupolar moment interacting with lo- 
cal electric field gradients (EFG) [l-3]. From a 
sample with only one site, the quadrupolar cou- 
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pling and chemical shift information may be ob- 
tained through analysis of the powder pattern. 
When many inequivalent sites are present in a 
sample, however, this analysis is complicated by 
overlapping features which are hard to deconvo- 
lute, making the application of solid state NMR 
difficult for a large class of nuclei. The technique 
of magic-angle spinning (MAS) [4,51 has been 
successful for improving the resolution of nuclear 
signals that are broadened by either the chemical 
shift anisotropy (CSA) or dipole-dipole interac- 
tions, both of which have a spatial dependence 
proportional to a second-rank tensor. For most 
quadrupolar nuclei, though, MAS only reduces 
the linewidth of the central transitions by about a 
factor of three, since the anisotropy of a second- 
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order quadrupolar interaction is determined by a 
linear combination of both second- and fourth- 
rank spatial tensors [6-lo]. Further study has 
demonstrated that the second-order anisotropic 
broadening may be suppressed by making the 
spinning trajectories time dependent [6]. In par- 
ticular, dynamic angle spinning (DAS) [7,81 as 
well as double rotation (DOR) [9-111 have been 
shown to create the correct spinning trajectories 
for averaging both second- and fourth-rank spa- 
tial tensors. 

DAS experiments are implemented by allow- 
ing the sample to evolve at multiple angles se- 
quentially in time, through a flipping of the spin- 
ning axis, thereby canceling both the second- and 
fourth-rank spatial tensors. In DOR, by contrast, 
a small inner rotor spins within an outer rotor. 
The inner rotation is about an axis tilted at eC4) = 
30.56” (one of the magic angles of the fourth-order 
Legendre polynomial) with respect to the spin- 
ning axis of the outer rotor. The outer rotor spins 
about an axis inclined at 0(*) = 54.74” (the magic 
angle of the second-order Legendre polynomial) 
relative to the external magnetic field. Owing to 
mechanical limitations, typical spinning speeds in 
DAS experiments are in the range of 3 to 10 kHz, 
while under DOR the outer rotor spins at about 
1 kHz and the inner rotor at about 5 kHz. In 
many cases these spinning speeds are not fast 
enough to completely average the quadrupolar 
interaction, which is inhomogeneous, and spin- 
ning sidebands consequently appear in the DAS 
and DOR spectra. Although the presence of side- 
bands may make assignments difficult, they may 
also carry enough information to allow the extrac- 
tion of the quadrupolar and chemical shift pa- 
rameters [ 12- 141. 

In this paper, sideband intensities in DAS and 
DOR are analyzed using both the moment 
method proposed by Maricq and Waugh [12] and 
the Bessel function expansion used by Herzfeld 
and Berger [13] for MAS spectra. General formu- 
lae for the calculation of moments and sideband 
intensities are derived. Similar to the MAS case, 
the sideband intensities are generally dependent 
on the quadrupolar parameters Coo and qo) and 
the sample spinning speeds. One major differ- 
ence arises, however, since the sideband intensi- 
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ties in DAS spectra also depend on the relative 
rotor phases between evolution at the first and 
second angles, as well as on the ratio of time 
spent at each angle. Sideband intensities and 
phases in DOR spectra are related to the relative 
rotor phases between the inner and outer rotors, 
and the sideband pattern is determined by the 
ratio of the inner and outer rotor spinning speeds. 
Quadrupolar parameters can therefore be recov- 
ered by simulating the sideband intensities and 
phases. Numerical simulations are implemented 
and shown to agree with experimental results. 

The first-order average Hamiltonian with a 

quadrupolar interaction 

We consider a spin system subjected 
quadrupolar interaction in the presence 
strong, static external magnetic field. Its 
Hamiltonian in the laboratory frame is [15] 

= w()l, + @Q Ii ( - l)m~2-mL 
VI= -2 

to a 
of a 
spin 

(1) 

where w0 is the Larmor frequency and mQ is the 
quadrupolar coupling constant, given by 

A,,, and T,,, are the elements of the second-rank 
irreducible spatial and spin tensors, respectively. 
The spin irreducible tensor elements, T2,m, are 
defined in terms of the spherical angular momen- 
tum operators (I,, I,) for the quadrupolar inter- 
action as 

(3a) 

The spatial irreducible tensor elements, A2,m, 
can be represented by the principal values, 
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anisotropy (so), and asymmetry parameter (vo) where TV = 2rr/w,, the Larmor precession pe- 
of the quadrupolar coupling tensor as riod. 

where 9’?’ M ,m (0) are components of the Wigner 
rotation matrices, 0 are Euler angles for the 
transformation to the laboratory frame from the 
principal axis system (PAS) of the quadrupolar 
interaction, and 

For most internal spin interactions the zero- 
order average Hamiltonian is already a very good 
approximation to the time-dependent Hamilto- 
nian given in eqn. (6), since the Zeeman term is 
usually large enough to truncate the internal spin 
interactions. However, for half-integer quadrupo- 
lar nuclei, the quadrupolar coupling constants are 
often so large that the Zeeman interaction cannot 
effectively truncate the quadrupolar interaction. 
This situation is similar to that discussed by Van- 
derHart [18] for the CSA interaction in low mag- 
netic field. In such cases, higher order effects 
have to be taken into account when transforming 
the total Hamiltonian from the laboratory frame 
to the rotating frame. Inserting eqn. (6) into eqn. 
(7) yields the total average Hamiltonian up to the 
first-order approximation in the rotating frame, 

W 

In our case, 8, = 1. 
The quadrupolar coupling constant appearing 

in eqn. (1) can be related to the electrical-field- 
gradient tensor (EFG), which is determined by 
the charge distribution around a particular nu- 
cleus in the molecule. Measurement of the 
quadrupolar coupling constant therefore provides 
a method of obtaining local bonding information. 
In order to extract this information, we need to 
know how the density matrix evolves under the 
quadrupolar spin Hamiltonian. Following the 
conventional procedure, the total spin Hamilto- 
nian in eqn. (1) is transformed from the labora- 
tory frame into the rotating frame (or interaction 
representation): 

3(t) =e iw,,l,r~~e-iw,$,t 

In this rotating frame the Hamiltonian is modu- 
lated by the Larmor frequency and its harmonics. 
According to the average Hamiltonian theory 
[lS-171, the zero-order and first-order average 
Hamiltonian of eqn. (6) are given by 

(74 

The first term in eqn. (8) is the same as the 
first-order correction given by the perturbation 
theory. The second term is made up of two parts: 
a secular part (which commutes with the Zeeman 
Hamiltonian) and a non-secular part (which does 
not commute with the Zeeman Hamiltonian). As 
we will discuss, the secular part in the second 
term corresponds to the second-order correction 
of the eigenvalues. 

The presence of the non-secular term in the 
total Hamiltonian raises three issues. The first is 
why such a term exists in the first-order average 
Hamiltonian. The next concerns its contribution 
to the evolution of the spin system, and the final 
question is how to handle this non-secular term 
during the evolution of the density matrix. The 
answers to all these questions are related to the 
original assumptions of the average Hamiltonian 
theory [17]. According to the perturbation theory, 
the exact eigenvalues and eigenfunctions of the 
total Hamiltonian are gradually approached by 
adding higher order corrections to the energy 
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levels and the eigenfunctions of the perturbed 
Hamiltonian [193. On the other hand, in the aver- 
age Hamiltonian theory we first transform the 
total Hamiltonian from the Schrodinger repre- 
sentation to an interaction representation based 
on the Zeeman Hamiltonian. The total Hamilto- 
nian in the interaction representation becomes a 
periodic function of time with period rO, and we 
then concentrate only on the behavior of the 
density matrix at times n70 during its evolution. 
The elements of the density matrix at these peri- 
odic points are approximately given by an average 
Hamiltonian which is time independent and which 
discards the exact evolution during a cycle. The 
average Hamiltonian theory thus provides a stro- 

boscopic description of the time evolution of the 
density matrix under the total Hamiltonian. The 
average Hamiltonian can be approached by 
adding higher order corrections, which contain 
multiple time integrals over the products of the 
time-dependent Hamiltonian and which include 
all contributions from fast to slow variations of 
the density matrix. Therefore the average Hamil- 
tonian in general is not diagonal. If we are only 
interested in the slowest variation of the density 
matrix in the n-th order correction, we may sim- 
ply drop the non-secular part. Such a treatment 
of the average Hamiltonian corresponds to the 
secular average Hamiltonian theory [15,20-221. 

We now return to the derivation of the first- 
order average Hamiltonian. For half-integer spins 
(I > 4) only the central transition (- i ++ i) can 
be observed in FT-NMR experiments when the 
quadrupolar coupling constant is much larger than 
the rf field strength. Since the zero-order term in 
the average Hamiltonian does not alter this tran- 
sition frequency it can be ignored, and therefore 
from now on we need only focus on the secular 
part of the first-order term in the average Hamil- 
tonian. Using the product properties of irre- 
ducible tensors [23,241, this contribution may be 
rewritten as 

The A,,, T,, terms in eqn. (9) are the spatial and 
spin parts, respectively, of the I-th rank irre- 

ducible tensors arising from the direct product of 
two second-order irreducible tensors. The a,,! 
represent the coupling constants of the second- 
order quadrupolar interaction arising from the 
first-order average Hamiltonian. These values are 

x c ;c(2,2,1, m, -m, 0) 
mzo 

XC(2,2, I’, m, -m, 0) (10) 

where 

I (21+1+ l)! 1’2 

(z’TAz)=El (2Z)l(2Z-Z)! 1 (11) 
and 

=(ZlT,lZ) 21+1 C(Z, 1, Z; m, 4, m’) 

(12) 

In eqn. (lo), C(Z,, E,, 1; m,, m2, m) are the Cleb- 
sch-Gordan coefficients, W(2, 2, I, I; Z’, Z> are 
6 - j symbols, Z is the nuclear spin, and 1, 1’ are 
the tensor ranks. The values of (I I TI I I>, 
W(2, 2, I, I; I’, I>, and a,,! for Z = $, s, and $ 
are listed in Tables 1, 2, and 3, respectively. 

Since the quadrupolar coupling tensor is a real 
and symmetric operator, the odd rank irreducible 
tensors A,, are zero. Among the remaining terms 
in eqn. (9), Aa,, is a scalar operator whose value 
reflects the second-order isotropic shift of the 
quadrupolar interaction, and A,, and A,, are 

TABLE 1 

Valuesof (IIT,II) 

I=1 1=2 1=3 
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TABLE 2 

Value of W (2, 2, I, I, 1, I) coefficients 

represented using the Wigner rotation matrices 
_~,$),(cx, /?, y) and the principal values as 

orientationally dependent. Their principal values 
are given by 

( 13a) 

p20 = _ GC3 - 4) 
m 3 p2*1=0, 

- 

p2+2= d$ ?Q:, (13bl 

P4+7=% P4+4 = $haQ2 ( I3c) 

The orientation dependence of the spatial irre- 
ducible tensor A,,, can therefore be explicitly 

TABLE 3 

Values of v,[, 

!!I 

21 23 41 43 

where LY, p, y are the three Euler angles relating 
the transformation to the laboratory frame from 
the PAS of the quadrupolar interaction. 

Using eqns. (9) and (10) as well as the proper- 
ties of the Clebsch-Gordan and 6 -j coeffi- 
cients, the central transition frequencies of 
quadrupolar nuclei become 

wi’:_; = c C,A,,, 
/=0.2.4 ’ 

(15) 

where 

C,=w$‘[C(2, 2, 1,2, -2) + 2C(2, 2, 1, 1, -l)] 

(16) 

and 

(17) 

As can be seen from eqn. (15), the orientation 
dependence of the central transition frequencies 
can be expanded in second- and fourth-rank ten- 
sors, and the w$ in the coefficients, C,, is now 
defined as the second-order quadrupolar cou- 
pling constant. 

When the sample rotates around an axis in- 
clined at an angle of & relative to the external 
magnetic field, the central transition frequencies 
become time dependent. Since the sample rota- 
tion operator commutes with the spin operators 
in the Hamiltonian, the time dependence of the 
transition frequencies is given simply by 

6 6 18 17 where flsF”(t) are the three Euler angles of the 

5Jiz ti 5&i 5fi transformation to the laboratory frame from a 
16 

A 

48 17 sample-fixed-coordinate (SFC) frame. If the sam- 

5jliT 5JiG 5fi ple spinning axis is fixed in the laboratory frame, 
6 the explicit expression for tisFC(t) is 

G flSFC( f> = (w,t + aa’ 8, Y(,) (19) 
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Fig. 1. Powder lineshapes arising from the second-order effect 
of an I = G quadrupolar interaction under fast spinning about 
a single axis tilted at different angles. Spectra are shown for 
different values of the asymmetry parameter, nQ. 

where w, is the sample spinning speed, (~a and y0 
are the initial rotor phases, and f3 is the angle of 
the spinning axis with respect to the magnetic 
field. 

If the spinning speed is much larger than the 
amplitude of the second-order quadrupolar inter- 
action, wg’, then the rapidly oscillating time-de- 
pendent terms are averaged to zero. Under these 
circumstances, powder lineshapes are determined 
only by the time-independent term in eqn. (18). 
Figure 1 shows the variation of the simulated 
quadrupolar powder lineshapes with different 
asymmetry parameters (no) and different angles 
of the sample spinning axis. 

Dynamic angle spinning (DAS) and double rota- 
tion (~0~1 

It is well known that first-order inhomoge- 
neous broadenings originating from the chemical 
shift anisotropy can be efficiently averaged by 

magic-angle spinning [4,5]. However, applying 
MAS to a powder sample whose principal broad- 
ening arises from the second-order quadrupolar 
interaction reduces the linewidth by only a factor 
of l/P,(cos fY2’) = 2.57. Even under variable an- 
gle spinning WAS) there is no solution which 
completely eliminates the second-order broaden- 
ing, since the lineshapes are determined by both 
second- and fourth-rank spatial tensors simulta- 
neously. Under the fast spinning condition, the 
coefficients of the second- and fourth-rank ten- 
sors are second- and fourth-order Legendre poly- 
nomials, P,(cos 0) and P,(cos 13). As can be seen 
from Fig. 2, the node of P2 is eC2) = 54.74”, and 
the nodes of P4 are ei4) = 30.56” and 0i4) = 70.12 
in the interval of [Oo, 90’1. There are no common 
nodes for P, and P4, and hence sample spinning 
about only a single axis cannot eliminate all 
anisotropic broadening in central transitions of 
quadrupolar nuclei. 

(a) p2 

0.5 

(3) 

0.0 

10 20 30 40 50 60 70 80 90 

Angle (degree) 

Fig. 2. Plot of the second- and fourth-order Legendre polyno- 
mials, P,(cos 6) and P,(cos B), uersus the angle of the rotation 
axis in VAS. (a) Plot in polar coordinates, (b) in Cartesian 
coordinates. The nodes of Pa and P4 are indicated by the 
dashed line. 
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According to eqn. (17), the second-order 
quadrupolar coupling constant, ,g), is inversely 
proportional to the Larmor frequency wO. The 
overall second-order quadrupolar broadening 
consequently will decrease as the magnetic field 
is increased. As an example, consider a 
quadrupolar nucleus with a coupling constant wo 
= 100 kHz (a typical value for a spin + nucleus). 
In order to achieve 1 Hz linewidths in the spec- 
trum, the Larmor frequency, wO, of the nucleus 
has to be of the order of wa - 10 GHz, corre- 
sponding to a magnetic field between lo3 and 10” 
T for typical gyromagnetic ratios. It is obviously 
impossible to obtain such high magnetic fields 
with current technology, and so eliminating the 
second-order broadening simply by increasing the 
external magnetic field is not presently feasible. 

Dynamic angle spinning (DAS) 

An alternative way to look for a solution which 
eliminates quadrupolar broadening is to examine 
the frequency variations of the local magnetiza- 
tion under rapid rotation. Figure 3 shows how the 
central transition frequencies vary as a function 
of the spinning axis angle, 8, defined relative to 
the external magnetic field. The initial frequency 
of each line in Fig. 3a corresponds to a particular 
orientation of the quadrupolar PAS chosen ran- 
domly in the SFC frame. As can be seen, the 
central transition frequency of each quadrupolar 
spin oscillates as the sample spinning axis angle 
changes from 0.00” to 90”. The oscillations are 
also dependent on the orientation of the PAS in 
the SFC frame. However, if each line in Fig. 3a is 
divided by the value of its first point (correspond- 
ing to 13 = O.OoO), all the lines converge at two 
points: one at 0 = O.Oo”, and the other at 0 = 
63.43”. Such a convergence tells us that, although 
the central transition frequencies vary differently 
with 0, there are two angles, 8 = 0.00” and 8 = 
63.43”, at which the central transition frequencies 
are proportional to each other. The coefficient of 
proportionality is a negative number. If the total 
magnetization precesses with frequencies deter- 
mined by the orientation of the quadrupolar PAS 
in the SFC frame at 0 = O.OO”, the precession will 

Fig. 3. Variation of the second-order shifts with the angle of 
the sample spinning axis relative to the external field. (a) 
Frequency dependence. Each line corresponds to a particular 
crystal orientation chosen randomly in the SFC. (b) After 
each line in (a) is divided by its first point, corresponding to 
B = O”, all shifts refocus for Or = o”, O2 = 63.43”, and w, = 
-5~~. (c) Same as (b). but divided by the value at 0, = 37.38”. 
All lines then refocus at O2 = 79.19” and w, = - w? for all 
spins. 

reverse once the sample spinning axis flips from 
0 = 0.00” to 0 = 63.43”. The only difference is that 
the precession frequencies are changed by a fac- 
tor of 5 (see Fig. 3b1, but this scaling factor can 
be compensated for by allowing the magnetiza- 
tion to evolve five times longer at 8 = 63.43” than 
at 6’ = 0.00”. The total magnetization will then 
refocus into a DAS echo, and the anisotropic 
broadening can thus be completely eliminated. In 
fact, such behavior may also occur if each line is 
divided by the frequency at other 0 values of the 
spinning axis. Figure 3c shows a second pair of 
angles of the spinning axes, 8i = 37.38” and 0, = 
79.19”, which will refocus the second-order 
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quadropolar interaction with a scaling factor of 1. 
In addition, it can be shown that there are no 
convergences and therefore no solutions present 
when each line is divided by any frequency be- 
tween 8 = 39.23” and 8 = 63.43”. 

We can set up an experiment in which the 
sample is spinning at one angle, 8,, during the 
first evolution time, c,, and at another angle, 8,, 
during the second evolution time, t,. This is 
achieved by suddenly flipping the rotation axis of 
the sample from 8, to 0z between t, and t,, in 
an experiment called dynamic angle spinning [7]. 
From eqn. (18), the total evolved phase of the 
magnetization at the end of the second evolution 
time t, is 

+ I flt12$+_i[f2,2(t)] dt (20) 
fl 

where the two sets of Euler angles are defined by 

We assume that the spinning speeds during dif- 
ferent evolution times are the same, and take C#Q 
and 42 as the initial phases of the azimuth angle 
at the beginning of the two evolution times. yi 
and y2 are the initial phases of the rotation axis 
relative to the laboratory frame. Owing to the 
cylindrical symmetry of the magnetization around 
the external field H,, yi and y2 may be set equal 
to zero. 

When the sample spinning speed (w,) is much 
larger than oo , (2) the total evolved phase of the 
magnetization is only determined by the terms 
which are linearly dependent on time in eqn. 
(20): 

cp(t,, t2) = c +#,m>t1 + #,b(~2P2lhl 
1=2,4 

(22) 

To eliminate the anisotropic shifts from the cen- 
tral transition, we simply set the total evolved 

90”r 

TooE‘- 92 

k,=t,/t I 

Fig. 4. Graphic representation of DAS complementary angles 
[from eqns. (23a) and (23b)] as a function of the time ratio 
k, = tl /t2. (a) Individual plots of O1 and 0, uersus k,. (b) 
Three-dimensional plot of the DAS angles, with the time ratio 

k,. 

phase of the magnetization, cp(t,, t2), equal to 
zero, yielding 

P,(COS e,)t, + P,(COS e2)t2 = 0 

P,(COS e,)t, +P,(cos e2)t2 = 0 

in which we have replaced d& by Legendre 
polynomials P, (since d,,, - I (‘) - P >. The two pairs of 
angles shown in Figs. 3b and 3c exactly satisfy the 
simultaneous Eqns. (23a) and (23b). Other solu- 
tions are shown schematically in Fig. 4. In Fig. 4a, 
0, and 0, are each plotted separately as a func- 
tion of the time ratio k, = t,/t,. In fact, eqns. 
(23a) and (23b) have two sets of solutions: one is 
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related to k, and the other to l/k,. The analytic 
solutions corresponding to the curves in Fig. 4 are 

in Table 4 has the maximum scaling factor (k, = 
5), which requires the shortest time spent at 
fI1 = O.Oo”, The second pair consists of the magic 
angles of the fourth-order Legendre polynomial 
P,(cos tl), 8, = 30.56” and e2 = 70.12”, where k, = 
1.87. The third pair is usually used for the DAS 
experiment with k, = 1, corresponding to 8, = 
37.38” and 13~ = 79.19”. 

(244 

Each pair of rotation axis angles given by eqns. 
(24a) and (24b) are called DAS complementary 
angles. 

A few pairs of DAS complementary angles are 
listed in Table 4. From Fig. 1, the lineshape at /3r 
is the mirror image of that at 19~ about the 
isotropic shift scaled by k,. The first pair of DAS 
complementary angles, 0, = 0.00” and 19~ = 63.43”, 

It is well known that the MAS trajectory can 
be thought of as the path traversed by the mag- 
netic field on a cone in an octahedron in the SFC 
frame. The base of the cone passes through three 
vertices of the octahedron, and the apex of the 
cone is at the center of the octahedron (see Fig. 
5a). Similarly, the DAS trajectory with k = 1 can 
also be thought of as a path on two cones whose 
bases pass through the vertices of a dodecahe- 

TABLE 4 

Angles in an icosahedron or a dodecahedron a 

k, 

5 

49 
59-6fi 

Angle Dodecahedron Icosahedron coslB Pz03) P&O) 
- 

0 zz’ .z 1 1 I 
- 

63.43” .S( zV+, 1 I I 
-7 z 

30.56” 
15+2&i 5-3)&i 

_ _ 35 0 35 

70.12” 
15-2fl 5+3&G 

_ _ 
35 35 

0 

‘, 31.09 I, 1 i 
_ _ - I( 5 :c 
- - 

70.53” IQ?? c,c3 
I I I 
4 3 xi 

7+36 - - 
31.72 

Z&, Z’E;., 

J5+1 fi+3 3-6 

8 26 4J5 16 

71.03” 
6-l 5-36 46-9 

- _ 
5+3& 5 2 

a V is the vertices of the dodecahedron and icosahedron. and EC is the centers of the edges, T, is the centers of the triangles, and 

PC. is the centers of the pentagons. Latin letters in the indices are used to distinguish different centers (see Fig. 5). 
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(a) 

Once the spinning speed is comparable to w$), 
the contribution of other time-dependent terms 
in eqn. (20) has to be take into account in the 
total evolved phase of the magnetization. If the 
fid is acquired on the DAS echo peaks, then 
[from eqns. (24a) and (24b)l we have t, = k,t, 
within the range 4/5 5 k, _< 5. Thus using the 
Wigner rotation matrices and eqns. (181, (20) and 
(211, the net evolved phase of the magnetization 
at time t = t, + t, can be written as 

@AS@) = C e-‘“*[g,DAS(q ,-W++w,f) 

m#O 

xlcf( -k,t) -~:AS(‘4)~(t)] (25) 

where 

Fig. 5. The external magnetic field, as viewed in the SFC, 
PAS(B) = c rC,A,.,d$$(B), I m I I1 

‘n 

travels on one or two cones, depending on whether the 
1=2,4 mwr 

rotation is MAS or DAS. (a) The magic-angle cone crosses 

three vertices of an octahedron in MAS. (b) Two DAS cones 
mw,t 

cross ten vertices of a dodecahedron in the k, = 1 case, while 
$(t) = 1 - exp -il+k 

i I 
(26) 

r 
(c) is the DAS trajectory on an icosahedron. V is used to label 

a vertex; P denotes pentagon, T denotes triangle, E denotes 

edge, and C denotes center. Latin letters are used in the 
indices to distinguish different centers. 

Later we will see that eqn. (25) accounts for DAS 
sidebands. 

dron, and whose apexes are at the center of the 
dodecahedron in the SFC frame (see Figs. 5b and 
5~). Other solutions of the DAS trajectory also 
relate to both a dodecahedron and an icosahe- 
dron. The symmetry of the DAS trajectory is 
therefore determined by the icosahedral group 
[61. The physical position of the DAS comple- 
mentary angles listed in Table 4 on either an 
icosahedron or a dodecahedron are specified in 
the table and Figs. 5b and 5c. 

The isotropic portion of the spin Hamiltonian 
obviously will not be affected by flipping the 
rotation axis between the two evolution periods. 
Experimentally, the free induction decay (fid) 
points are acquired at the peaks of the DAS 
ethos formed by incrementing t, and t,. The 
amplitude of these ethos will therefore be modu- 
lated by the isotropic resonance frequencies of 
the nuclear spins. After Fourier transformation 
of the fid, a high resolution spectrum can be 
obtained. 
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Double rotation (DOR) 

A second method for narrowing quadrupolar 
patterns is double rotation 19-111. After applying 
a rotation about a fixed axis at a particular angle 
with respect to the magnetic field, the Hamilto- 
nian will be truncated along the rotation axis if 
the spinning speed is fast enough (w, z+ a$‘). 
The residual portions are then proportional to 
the Legendre polynomials P,(cos 0) (in our case, 
I= 2,4). For example, if the applied rotation is 
MAS, the residual lineshape of the central transi- 
tion for a powder sample is uniquely determined 
by the fourth-order Legendre polynomial, 
P,(cos 0). The linewidth will be reduced by a 
factor of l/P,(cos 13::)) = 2.57 where /32) = 54.74”. 
In the variation of PJcos 13) and P,(cos 0) with 
8, there are no angles for which the values of 
P,(cos 0) and P,(cos 0) are equal to zero simulta- 
neously (see Fig. 2). However, since the linewidth 
of a powder pattern varies with changes in the 
angle of rotation (see Fig. l), it can be further 
narrowed by applying another rotation relative to 
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the first. In other words, the linewidths of the 
powder patterns can be continuously narrowed to 
any degree by simultaneously applying the proper 
multiple rotations. Solutions can in fact be found 
which completely eliminate the second-order 
broadening with two rotations. One of these cor- 
responds to the DOR method, in which the first 
rotation is performed about the magic angle 02’ 
with respect to the external magnetic field while 
the second rotation occurs about one of the magic 
angles 0:) of the fourth-order Legendre polyno- 
mial P&cos e). 

After applying two rotations to eqn. (15) by 
using two iterations of eqn. (141, the transition 
frequency between two central levels (m = k i) 
becomes 

where C, is given by eqn. (16). Cl,, (t>, f2R,z (t) are 

Fig. 6. Scheme for the coordinate transformation involving the laboratory frame, the outer rotor frame, and the inner rotor frame. 

The rotation axis of the outer rotor is tilted at the magic angle, 0, (‘I = 54 74” of the second-order Legendre polynomial, while the . , 
inner rotor spins around 62’ = 30.56”, one of the magic angles of the fourth-order Legendre polynomial. 
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two sets of Euler angles which define the trans- 
formations to the laboratory frame from the first, 
outer rotor frame (ORF), and to the outer rotor 
frame from the second, inner rotor frame (IRF), 
respectively. We assume that the spinning speeds 
of the outer and inner rotors are w,, and wr2, 
that the first rotation axis angle is /3,, with re- 
spect to the external field, and that the second 
rotation axis angle is p,, relative to the first 
rotation axis. The initial phases of the first and 
second rotations are -yry,, and ?/r,, respectively. 
Explicit expressions for the two sets of Euler 
angles are therefore given by 

fl,., = (%lt + a,1Y P,,, YJ (2Sa) 

fl+ = @JTZt + ffr*’ P,,, YJ (2Sb) 

As in MAS, the cylindrical symmetry of the 
external magnetic field H, allows us to set yr, 
equal to zero. For a powder sample, the absolute 
orientation of each individual spin in the IRF is 
not important because each spin has equal proba- 
bility of being at each orientation; hence we can 
also set (Y,? to zero. Finally, (Y,~ and yr, deter- 
mine the relative phase yr between outer and 
inner rotors, which is given by -yr = (~,i + yr, (see 
Fig. 6). 

After expanding eqn. (27), three terms result: 
the first term (I = 0) is a scalar, independent of 
both orientation and time; the second is depen- 
dent on orientation but independent of time; and 
the third depends on both orientation and time. 
Furthermore, since the Hamiltonian commutes 
with itself at all times, the total phase of the 
magnetization evolved after application of a 90” 
rf pulse is 

$PDOR( t) = C,A,,,t + c C& 
l=2,4 

+ i BrFplz 
m,,m,=-4 

Xe- r(m,yr+'nla) 
(e- 

i(mFJb,+mPQ - 1) 

(29) 

where 

ml= i d!!‘,,,o( P,,)4$Nm( PJ Al. -Nm 

In= -I 

(30) 

(31) 

with N = w,~/o,,. The Euler angles (a, /3, y) are 
used to describe the orientation of a single spin 
in the IRF. Eqns. (29) and (31) have to be sub- 
jected to the condition of m, + m2 # 0 and Nm, 
+ m, # 0. The first term in eqn. (29) corresponds 
to the isotropic shift in a powder sample, whereas 
the second term determines the linewidth and 
lineshape. The third term generates a set of DOR 
sidebands. 

If we assume that the spinning speeds of both 
rotations are much larger than the amplitudes of 
the spin Hamiltonian Z(l) of the central transi- 
tion, the third term in eqn. (30, &t), becomes 
small enough to be neglected at all times. Since 
from the properties of Wigner rotation matrices 
we know that d#@) = P,(cos PI, we can elimi- 
nate the anisotro&c shift, wI, in eqn. (29) if 

p*(cos P,,)K+os P,,) = 0 (32a) 

p,(cos Pq)~4(cos P,,)= 0 P-J) 

and if N = wT2/wT, is not an integer smaller than 
5, present in eqn. (30). The solutions of eqns. 
(32a) and (32b) are &, = 19~~) = 54.74” and /3,, = 
eC4) = 30.56”, 70.12”, or vice versa. If N is an 
integer less than five, the residual broadening 
cannot be totally suppressed owing to interfer- 
ence between the two spinning speeds. Figure 7 
shows the variation of the residual line broaden- 
ings in the central transition of a powder sample 
after application of DOR, for different ratios N. 
From this figure it can be seen that when the two 
spinning speeds are equal, N = 1, the linewidth 
of the centerband is about one tenth of the static 
linewidth, and will narrow with increasing ratios 
of the two spinning speeds. The linewidth reaches 
the order of the relaxation broadening, or of the 
higher order residual broadenings, when the ratio 
of the two spinning speeds is larger than 3. This 
means that the condition we gave earlier is not 
essential, and therefore the design of a double- 
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Fig. 7. Residual lineshapes of the centerband for the I = $ 
central transition under DOR. The quadrupolar coupling 
constant is 433 kHz. The ratio of the DOR two spinning 

speeds. wT, /w,,, and the asymmetry parameter no are var- 
ied. 

rotor probe should concentrate on increasing the 
spinning speed of the outer rotor. 

Experimental results 

Experimental DAS spectra of rubidium per- 
chlorate (RbClO,) were obtained using a home- 
built DAS probe [25] on a Chemagnetics spec- 
trometer. The magnetic field was 11.7 T at which 
the resonance frequency of rubidium-87 is 163.6 
MHz. The quadrupolar coupling constant, wo, of 
the rubidium nucleus in rubidium perchlorate is 
540 kHz and the asymmetry parameter, qo, is 0.1. 
The pulse sequence used was the same as in ref. 
26. The central transition seIective 90” pulses 
were - 4 ps, the recycle delays were - 1 s and 
the angle flipping times were N 30 ms. 

DOR spectra of sodium oxalate were recorded 
with an improved home-built DOR probe [ll] on 
a Bruker AM-400 spectrometer at 9.4 T with a 
resonance frequency of 105.8 MHz for sodium-23. 
The outer rotor was spun between 400 and 900 

Hz while the inner rotor was spun at approxi- 
mately 4000 Hz. The quadrupolar coupling con- 
stant of the sodium nucleus in sodium oxalate is 
405 kHz, and the asymmetry parameter is 0.72. 
The selective 90” pulse was - 10 ps. A synchro- 
nized DOR experiment was implemented by 
monitoring the rotation of the outer rotor using a 
LED sensor, and the detected optical signal was 
converted into TTL pulses using a logic circuit. 
The TTL pulses were then used to trigger the 
pulse programmer of the spectrometer. By chang- 
ing the triggering times, we were able to vary the 
rotor phase from 0” to 360”. 

Figure 8 shows how the sideband intensities of 
DAS spectra vary with different spinning speeds 
in the case of k, = 1, corresponding to 0, = 37.38 

3.2 kHz 

z 

3.8 Wz 

1 6.5 kHz 

-10 -5 0 5 IO 

Frequency &Hz) 

Fig. 8. Experimental DAS spectra of rubidium perchlorate 
(RbCIO,) with sidebands varying for different spinning speeds. 
The quadrupolar coupling constant of the rubidium nucleus is 
540 kHz and the asymmetry parameter is 0.1. 
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DOR(440Hd 

U-l DOR(850Hz) 

Frequency @Hz) 

Fig. 9. Experimental variation of DOR sidebands in sodium-23 
spectra of sodium oxalate, with different spinning speeds. The 
quadrupolar coupling constant is 405 kHz, the asymmetry 
parameter is 0.72, and the Larmor frequency is 105.8 MHz. 

and e2 = 79.19”. All sidebands are in phase and 
the difference between the nearest sidebands is 
one half of the spinning speed, but in general is 
dependent on the choice of k, [271. 

Figure 9 shows experimental spectra of sodium 
nuclei in sodium oxalate. It can be clearly seen 
that the spectra consist of high-resolution 
isotropic peaks accompanied by a train of side- 
bands like those under MAS. However, the enve- 
lope of sidebands does not mimic the static pow- 
der pattern (a characteristic observed in MAS 
spectra under slow spinning conditions). Rather, 

the envelope of sidebands arising from the first 
rotation (at the magic angle 8”‘) forms a P4 
lineshape, while the envelope associated with the 
second rotation (at 19~~)) forms a P, lineshape. 
The total sideband envelope is determined by the 
spinning speeds of both rotors, and is related to 
the convolution of the Pz and P4 lineshapes. 

In addition, the frequency difference between 
two nearest sidebands in a MAS spectrum is 
uniquely determined by the spinning speed w, of 
the sample. In DOR spectra by contrast, there 
are a total of 81 different sets of sidebands, in 
principle. Each of them has a frequency differ- 
ence, mlw,, + m2w, , corresponding to a particu- 
lar pair of m,, m, Galues from -4 to 4. All sets 
of sidebands overlap each other and consequently 
make the pattern of sidebands complicated. Ex- 
perimentally, though, since the inner rotor spins 
much faster than the outer rotor, the intensities 
of the sidebands are primarily determined by the 
outer rotor spinning speed. 

Moment analysis 

The moment analysis method was first pro- 
posed by Van Vleck [28] in order to characterize 
powder lineshapes in NMR spectra arising from 
homogeneous spin interactions, such as dipolar 
couplings between like nuclei. Later, Maricq and 
Waugh [12] applied this same method to analyze 
the sidebands in MAS spectra, and used the 
second and third moments to extract the chemi- 
cal shift anisotropy parameters S,,, and qcsA. 
Here we adapt a corresponding analysis for DAS 
and DOR sidebands, and similarly use moments 
to obtain the quadrupolar parameters. 

The n-th moment is defined as 

M,, = irn dwwnG(o) = f &IN (33) 

where o,,, is the resonance frequency of the N-th 
sideband, and Z, is its intensity. G(w) is the 
frequency spectrum given by G(w) = CN 1,s 
(w - wN), resulting from Fourier transformation 
of the fid signal G(t) without relaxation broaden- 
ing. Once the spectrum is measured experimen- 
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tally, the moments can be calculated by use of 
eqn. (33). 

In order to relate the moments to the 
quadrupolar coupling parameters, it is possible to 
derive a relationship between the fid and the 
moments given by [29] 

+ c u’,:!,.~uja!-,,-,I-,nIS(Ll, . . . 13) 
L.l,,rn, 11 (374 

m ( -it)” 
G(t) = c ----j--M,, 

n=o ‘I. 
(34) 

By solving eqn. (34) for the n-th moment we get 
the following expression 

M,, = i” -&G(r) lt=o 

The fid is defined by 

G(t) 

(35) 

Xsin p dp dy da (36) 

in terms of the total evolved phase of the magne- 
tization, qo( t >. 

After inserting the total evolved phases, 
pDAS(t) and cp DoR(t), of the magnetization given 
in eqns. (25) and (291, respectively, into eqn. (361, 
and then applying eqn. (35), expressions for the 
moments of DAS and DOR spectra can be ob- 
tained. The DAS and DOR moments are indeed 
quite similar in form, and, using properties of 
irreducible tensors, can be written as 

M,, = 1 (37a) 

M, =o (37b) 

‘M, = c L7’,‘$‘,“,s( f) . 3 (37c) 
/.??I 

IV, = c a!$??, 3aI:.L&) 
l,,m, [ 
+ c aj~lmzaj:!-,,-,ZS(1,121,) 1 (374 I,.l,,rn, 

The coefficients SC,!,, * . . Lk_J,, . . . I,) in the 
above equation relate to the zero-rank irre- 
ducible tensors (or scalar operators), poo(L, . . . 
L 1 ... k-3 1, l,>, through 

= C(f,l,L,, m,, m2) ... 

( 

k-2 

xc Lk_,, lk-l? lk? c mi? mk-l 

i=l 

i 

k-l k-l 

XC l,l,O, C m,- C mi 
i=l i=l I 

xp”,( L, ’ ’ ’ L,_,l,, ’ ” 1,) (38) 

where C(l,l,l,, m1m2) are the Clebsch-Gordan 
coefficients. The scalar operators p&L, . . . 

Lk-J1l, ” . lk) arise from the product of k spatial 
irreducible tensors, S, ,m for i = 1 . . . k, and the 
relationship with the brhcipal values of the sec- 
ond-order quadrupolar coupling tensor, P/,~, 
shown in eqn. (13) is 

xc Lk-3, 1k-l7 lk, c mi, mk- 
i 

k-2 

i= 1 

i 

k-l k-l 

xc lklko, c mi,- c m, Pt,rn, ” ’ 
i= 1 1=1 I 

XPl l_,mr_,P h-1 (39) 
lk.FZlrn, 

1=1 

The coefficients uffb in eqn. (37) arise from 
the i-th derivative of the total evolved phase of 
the magnetization. The expressions for the DAS 
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case are different from those for the DOR, 
namely 

+4’&)1 (dOa) 

’ 
u’rfi(DOR) = c 

C,d$,,( eg))d;)J eg 

*‘= -1 m’w,, + mwr2 

Xe -imfyr[ m’orl + mwrZ]’ WY 

where wr, w,,, and wrZ are the spinning speeds of 
the DAS rotor, the DOR outer rotor, and the 
DOR inner rotor, respectively. d$!,,(8) are the 
reduced Wigner rotation matrix elements, and 8, 
and 8, are a pair of DAS complementary angles. 
0:) are the magic angles of the l-th order Legen- 
dre polynomial, P,(cos 6). 

As can be seen from eqns. (37) and (38), the 
n-th DAS and DOR moments are represented by 
a set of scalar operators, poO(L, * * f Lk_&, . . . 
t,>, for k = 2 .. . n. Actually, the representation 
of the n-th moment in terms of a set of scalar 
operators given in eqn. (39) holds for the non- 
spinning case as well. The difference is that the 
n-th moment of a static powder pattern only 
relates to a single scalar operator, which is a 
product of n second-order quadrupolar coupling 
tensors. Under sample rotation, the scalar opera- 
tors present in the lower moments are multiplied 
by the spinning speeds and are folded into higher 
moments. From eqns. (40a) and (40b) the coeffi- 
cients a(,f?, are independent of the spinning speed 
only if i = 1, and therefore only the second mo- 
ment is the same as in the static case. In other 
words, the higher moments increase as the spin- 
ning speeds increase, and the parameter p = 
MJ@, which characterizes the lineshapes, ap- 
proaches infinity, resulting in high resolution 
peaks. It has been proven by Maricq and Waugh 
[12] that the third moments obtained from MAS 
spectra are also independent of the spinning 
speed owing to the symmetry properties of the 
Wigner rotation matrix elements, whereas the 
fourth moments increase as WT. The halfwidth of 
the envelope of the MAS sidebands therefore 

decreases according to a quasi-Lorentzian line- 
shape as the spinning speed increases. However, 
under DAS and DOR, the situation could be 
different since the second moment is indepen- 
dent of spinning speed. The third and higher 
moments may in general depend on the spinning 
speeds, although, for DOR the third moment is 
also independent of speed and relative phase. 
The fourth moment may have both linear and 
bilinear dependences on the spinning speeds. The 
parameter p also increases with the spinning 
speeds both linearly and bilinearly; this means 
that the halfwidth of the envelope of the DOR 
and DAS sidebands decreases according to a 
quasi-super-Lorentzian lineshape, a feature that 
can be seen in Fig. 9. 

The quadrupolar coupling parameters ho and 
ho are encoded in the scalar operators. To ex- 
tract these values, in practice it is necessary to 
evaluate the expressions explicitly in terms of 6, 
and ho as 

PO&) = 
sQ3 + 77:)2 

14J?iX (414 

Poo(w = 
a&(27 - 13577; + 4571; - 17;) 

986 
(4lb) 

~d.24) = ~~~(242) = ~~~(422) 

6;( 162 - 2437; + 14477; + 7;) 
= 

980 

(41c) 

p&244) = p&424) = ~~(442) 

a;(81 + 162r/1:, + 977; + 477;) 
= 

49\/110 

poo(444) = Wl87 - 1m 77; + 16297; -t 3177;) 

49om 

(4Ie) 

In general, all of the moments except the 
zeroth and first are dependent on the relative 
rotor phase yr under DOR and C$ under DAS. 
Inserting eqns. (381, (40), and (41) into eqn. (37) 
yields the relationships of the second and third 
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DAS moments with the quadrupolar parameters 
and the relative rotor phase, 4, given by 

M,(DAS) = K3 + yi-i:l’ 

M3( DAS) = 
-i3 X 10-4[(3 + ~&)S~o$‘]’ 

70 

m=O n=O 

XCOS(rn~) (42b) 
where the coefficients c,Jkr), c,,,(kt), and s,(k,) 
are determined only by k,. Their values for k, = 1, 
2, 3, 4, 5 are listed in Tables 5, 6, and 7. As can 
be seen from eqn. (42) and Table 7, the imaginary 
part of the third moment is dependent on the 
spinning speed only when k, z 1, 5, as expected. 
Introduction of the relative rotor phase depen- 
dences in the DAS moment calculation does not 
introduce any new information, and only makes 
the whole expression more complicated. Experi- 
mentally, by randomly taking the relative phase at 
different times, the relative phase effects may be 
averaged out. This averaging process is equivalent 
to integrating over the relative phase in eqns. (37) 
to yield m = 0 in eqn. (42), and the third moment 
is independent of the spinning speed. Using eqn. 
(42), we have been able to determine the 

quadrupolar parameters from the experimental 
spectra shown in Fig. 8. The measured quadrupo- 
lar coupling constant varies between 537 and 570 
kHz with different spinning speeds. This result 
agrees with the reported value (540 kHz) within 
an error of about seven percent. 

Similarly using eqns. (37), (38), (40) and (411, 
the resulting second and third DOR moments are 

M,(DOR) = $$[(3 + ~~)S&J~)]~ (43a) 

M,(DOR) = 10-3[ S:,~j:‘]~(38.2478 - 261.153~; 

+ 79.2827~; - 2.27972~;) (43b) 

Surprisingly, both the second and third DOR 
moments are independent of the relative rotor 
phase, yr. This means that there are no possible 
combinations of spectra aquired with different 
relative rotor phases that can cancel all of the 
spinning sidebands without canceling the entire 
signal. 

Bessel analysis of DAS and DOR sidebands 

The moment analysis may have severe prob- 
lems in practical cases since, in principle, an 
infinite number of sidebands must be taken into 
account, or else the short-time behavior of the 
rotational spin echoes must be analyzed very ac- 
curately. Therefore, the accuracy of the 
quadrupolar parameters is strongly dependent on 
the signal-to-noise ratio of the spectra. Further- 
more, this method will fail if two or more peaks 
in a spectrum overlap. A solution to these prob- 
lems is provided by the analysis of MAS sideband 

TABLE 5 

4 

Coefficients of second moment, Mz = 1 [S4(3 + ~j’)~/35]c, cos(m4), of DAS spectrum 
m=O 

k, 
1.0 

co Cl c2 c3 c4 

0.575305 0.0231429 0.0462857 - 0.00880272 0.0143401 

2.0 0.67649 0.00752257 0.0394718 0.0346066 - 0.00557871 

3.0 0.76751 0.00218131 0.0181915 0.0294343 -0.0172256 

4.0 0.833515 0.000386193 0.00533654 0.0151341 -0.0174731 

5.0 0.881699 0.00000000 0.0000000 0.0000000 0.0000000 
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TABLE 6 

Coefficients ci,j (k,) in third moment of DAS spectrum 

k, 

1 
x 10-4 

59.8784 
- 617.817 

170.558 
- 6.14889 

48.7159 
378.641 

- 57.078 

5.87744 

2 3 4 5 

x10-5 x 10-6 x 10-6 x 10-3 

1104.72 16381.9 20437.1 23.4809 

- 10246.6 - 130835 - 149443 - 162.156 

2890.75 38175.6 44563.6 49.0797 

- 99.2240 1210.76 - 1340.36 - 1.42215 

307.501 2238.31 1352.53 
3487.90 31491.6 22304.2 _ 

- 604.255 5754.62 - 4205.08 _ 

50.6531 444.052 308.756 _ 

2 0 42.2577 168.462 1005.12 442.213 _ 

2 525.393 164.81 - 3089.92 - 2372.00 _ 

4 - 93.2775 56.9653 1245.05 772.785 _ 

6 7.52973 6.19424 13.3293 - 18.3651 _ 

3 0 12.9165 55.0751 253.827 74.4609 _ 

2 - 293.504 - 1251.48 - 5767.74 - 1691.99 
4 72.399 308.704 1422.74 417.364 _ 

6 - 3.30458 - 14.0905 - 64.9394 - 19.0502 

4 0 6.45826 10.4963 30.4359 5.38857 _ 

2 - 146.752 - 238.509 - 691.600 - 122.445 _ 

4 36.1995 58.8332 170.598 30.2037 

6 1.65229 2.68538 7.78677 - 1.37862 

intensities developed by Herzfield and Berger, 
using Bessel functions [13]. 

From the properties of Bessel functions {J,$z)}, 
we can derive 

exp( -iz ePi”) = C/j(z) eeike 
k 

TABLE 7 

- i3X 1O-5 
Coefficients sick,) 

I I 
S& (3 + T&)~ of third mo- 

ment of DAS spect>um 
/ 

k, SI s2 s3 s4 DAS sidebands 
1.0 0 0 0 0 
2.0 - 9.29785 115.355 197.359 50.1505 

3.0 - 43.0639 147.172 136.436 21.8131 
4.0 - 52.4194 90.8046 48.0288 4.63432 

5.0 0 0 0 0 

where 

fk( z) = $ ( -i)k’Jkt( z)Jk_kf( -iz) 

and where z is a complex number. The ‘inverse 
transformation of eqn. (44) is 

xk(z) = &L2rexp[i(kf9-r ePie)] de (46) 

Using eqn. (44) and the total evolved phase of 
the magnetization under DAS given in eqn. (251, 
the fid can be expanded into a Bessel function 
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series as The fid after averaging over (Y is thus a sum over 
N+ of the products of the fid’s g(B,) and g(B,), 
which arise from spinning at 8, and e2, respec- 
tively, and a phase factor ePiNd4. The overall 
sideband pattern under DAS is a sum of convolu- 
tion spectra involving two individual sets of side- 
bands due to the evolution during times t, and 
t,. The summation disappears once averaging over 
the relative rotor phase is performed, and the 
sideband spectrum becomes simply a convolution 
of sideband patterns at 8, and e2. 

u,[ -B,DAS 

X exp ( [ 
-i N,a + N&I 

+ (Nr, + N&q + WZO’~~] > 

where 

4 

N,= c m(i,+j,+k,+l,) 
m= -4 

4 

A$= c m(i,+j,) 
m=-4 

4 

N,, = c mkn 
m=-4 

Nr, = i mi, 
m= -4 

1 

wr, = iTyr 

k, 
w 

r2 = iTq+ 

(47) 

(484 

(48b) 

(484 

( 4gd) 

(48e) 

(48f) 

For a powder sample, we assume that all nu- 
clear spins have an equal probability of being in 
any orientation. The fid of the powder sample is 
then given by integrating eqn. (47) over all Euler 
angles. After averaging eqn. (47) over (Y, the fid 
becomes 

where 

xAm[ 4,(e)] eeiNrwrl (50) 
and 

for e=e, 

for 8 = e2 (51) 

In order to evaluate the sideband intensities, 
we have to apply to eqn. (49) the inverse transfor- 
mation of the Bessel function given in eqn. (46). 
The resulting expression for the fid is 

gDAdt) = c c ‘I$(~,> 
Ng N,.N, 

Xexp i NCU- c B,(B) 
[( m+O 

After averaging eqn. (521 over the 
Euler angles, p and y, the powder 
given by 

Np2) 

(52) 

e -ima 

11 

(53) 

remaining two 
averaged fid is 

G,,,(t) = c Ij$;2 e-i(Nlorl+N2wr2)’ 

N, J$ 
(54) 

where 

As can be seen from eqn. (52), after g,&,(B, t> 
is expanded into a Fourier series, the coefficients 
(sideband intensities) of each individual harmonic 
are dependent on the relative rotor phase be- 
tween 8, and Oz. This dependence might prove 
interesting for sideband suppression if the inten- 
sities varied symmetrically with the relative rotor 
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phase. However, the dependence appears as an 
averaged form of multi-order trigonometric func- 
tions in eqn. (55). Because the order, N,, is 
determined by the ratio of the quadrupolar pa- 
rameters and the spinning speed, the variation of 
the sideband intensities with the rotor phase 
changes as the sample spinning speed changes, 
and does not show any symmetry properties. This 
characteristic can also be seen in eqn. (26), where 
the symmetry of the coefficients B, is dependent 
on the symmetry of A,, unlike the case of DOR 
in which A,,, is truncated by the spinning of the 
inner rotor. Thus the evolved phase of the mag- 
netization given by eqn. (25) does not have sym- 
metry with respect to the relative rotor phase. 
Further proof of this property will be seen in the 
numerically simulated spectra. 

The structure of the sidebands in DAS NMR 
spectra can be interpreted as follows. If we as- 
sume that k, = k,/k,, where k, and k, are two 
integers, the maximum number of sidebands is 
k, + k, in one rotor cycle w,. Of course the 
intensities of the sidebands are different. In gen- 
eral those corresponding to small N, and N2 in 
eqn. (52) have larger intensities,. and, therefore, 
there are three main sidebands in one cycle whose 
frequencies are or,, w,*, and or, respectively. In 
the case where k, = 1, two sidebands in the mid- 
dle will overlap so that the whole pattern is 
uniquely determined by the frequency 0,/2. If 
k, = 5, then the w,~ sidebands disappear and the 
difference between two sidebands is uniquely de- 
termined by wT1 = 2~~. This condition leads to 
maximum effective rotational speed because the 
rotation at 8, = 0” commutes with the spin 
Hamiltonian. 

Experimentally, if the rotor is not synchro- 
nized during spinning, the relative phase is a 
random variable for different acquisitions. This is 
equivalent to taking an average over the relative 
initial phase [N, = 0 in eqn. (55)] and the side- 
band intensity becomes 

xl INp2) I* 

The sideband intensities therefore are always 
positive. 

DOR sidebands 

Applying eqn. (44), with the total evolved phase 
of the magnetization under DOR given in eqn. 
(29), we obtain the fid arising from the central 
quadrupolar transitions as 

g,,,(t) = 

x ew( -i[(N,,w,, +Npr2)t 

where 

(584 

(58b) 

for i = 1,2 
Averaging the fid expressed in eqn. (57) over 

the three Euler angles and then applying the 
inverse transformation of Bessel functions given 
in eqn. (46) yields 

where 
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In the limit that the inner rotor spins infinitely 
fast, the coefficients Bm,,m2 given in eqn. (31) are 
equal to zero for all m2 except m2 = 0. This 
property leads to the fact that the integration of 
eqn. (61) over 8, is equal zero except for N,, = 0, 
and that the number of integrations required to 
determine F reduces to one. 

From Eqns. (60) and (60, it can be seen that 
both the phases and intensities of the sidebands 
are dependent on the relative rotor phase be- 
tween two applied rotations. Such a property is 
different from MAS where all sidebands are in 
phase after averaging over the Euler angle (Y. It is 
therefore interesting to find out if there is sym- 
metry in the variation of the sideband intensities 
and their phases with respect to the relative rotor 
phase. In order to derive this symmetry for DOR 
sidebands, we extend to the limiting case in which 
the spinning speed of the inner rotor is much 
larger than the second-order quadrupolar inter- 
action. Hence all terms containing w,~ in eqn. 
(31) can be ignored, yielding the phase of the 
magnetization evolved at time t as 

cpDOR(t) 
4 

= x1 B,DOOR[ sin m(r, + w,,t) - sin my,] 

(62) 

Now we can define pFoR and qFoR by 

cpeDORk Yr) 

= C BzFR[sin m(r, + w,,t) - sin my,] 
m=2,4 

(63a) 

) - sin mr,] 

787 

and, substituting yr = 0” and y, = 180” into eqn. 
(63), represent the total evolved phase of the 
magnetization as 

ipDOR(t, y,=O”) =qqOR(t, y,=O”) 

+cpgoR(t,yr=OO) (@a) 

cpDOR(t, r,=lNP) =cpyyt, y,=0”) 

_ cpfOR (t, x=0”) (64b) 

If we average the fid generated by eqn. (64), the 
total fid signal for central transition is 

x {e-i'ptoR(t,y,=OO) + eiq~oR(t.vr=W} 

(65) 

Using eqn. (44), the fid can be written as a series 
of Bessel functions as 

GDoR( t) = Indfl e-i~??l,y~=O”) c [ 1 + ( _ I)“] 
N,X 

xJN_,,( BEoR)Jk( B&O") eiNwrlt 

(66) 

In eqn. (66), ‘pFoR only contributes to even side- 
bands because the basic harmonic frequency is 
2w,,. The odd sidebands are then determined by 
the second part. When N is an odd number, the 
intensities of all odd-order harmonics are zero. 
This reveals an inversion symmetry of the odd 
number sideband intensities at y, = 0“ and yr = 
180”. Such a feature can be used to suppress odd 
number sidebands experimentally by adding two 
spectra obtained at yr = 0” and yr = 180”. 

The DOR sidebands will be in phase only after 
averaging eqn. (60) over the relative rotor phase. 
Experimentally this can be done by accumulating 
the fid without synchronizing the outer rotor. The 
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fid under DOR then becomes 
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Numerical calculations of the sideband intensi- 
ties 

DAS and DOR sideband intensities have been 

/ 

evaluated by numerical integration of eqns. (52), 
X 2Tdy 1 Fgpi 1 2 e-i(N+,,+N,,+r 

0 ’ ‘2 
(56), (60) and (67) for a variety of cases. Compos- 

(67) 
ite ten-point Gaussian (Gauss-Legendre) 
quadrature has been used to approximate all 

(a) Real (b) Imaginary 

0.32 

0.00 

0.021 / / I I I I 4.04 1 1, I 
0" 90" 180" 270' 360" 0" 90" 180' 270" 360" 

Relative Rotor Phase Q (degree) Relative Rotor Phase cj (degree) 

Fig. 10. Variation of simulated DAS sideband intensities, IN,,N2, as the relative phase, 4, changes, for the case that k, = 1, 
BI = 37.38”, and O7 = 79.19”. The quadrupolar coupling constant is 405 kHz, and the asymmetry parameter is 0.72 (sodium oxalate). 
The sample spinning speed is 3 kHz, and the Larmor frequency is 105.8 MHz. Dashed lines correspond to negative N, values. 
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integrals over CX, p, y. Owing to a complicated 
orientation dependence, simulation of these side- 
band intensities is more time consuming than it is 
for MAS, especially in the case of DOR. 

From eqn. (521, we see that the DAS sideband 
intensities and even their phases depend on the 
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Spinning Speed w, &Hz) 

Fig. 11. Variation of simulated DAS sideband intensities, 
I ,v,,NZ with the sample spinning speed for the case that k, = 1, 
corresponding to 0t = 37.38” and 8, = 79.19”, and Nz = 0. 
N, = 0, i. 1, k2. The quadrupolar coupling constant of the 
sodium-23 nucleus is 405 kHz, its asymmetry parameter is 
0.72, and the Larmor frequency is 105.8 MHz. Dashed lines 
correspond to negative N, values. 

12 

__~___ __ .._ _ ._. -.__- 
6 II -6 -12 

Frequency (kHz) 

Fig. 12. Simulated DAS spectra using the same parameters as 
for sodium oxalate (w. = 405 kHz, vo = 0.72, ws = 105.8 
MHz). (a) Static powder lineshape; (b) residual lineshape 
after MAS; (c) DAS spectrum obtained with w, = 3.36 kHz. 

relative phase 4. As has been discussed, this 
dependence does not exhibit any symmetry which 
can be used to suppress DAS sidebands. This 
conclusion can be further proven by examining 
the variation of the DAS sideband intensities as 
the relative rotor phase, 4, changes from 0“ to 
360”, which is shown in Fig. 10. In this figure the 
rear components of the DAS sidebands are al- 
ways positive for k, = 1, corresponding to 0i = 
37.38” and 8, = 79.19”. The spinning speed is 
w, = 2 kHz or higher, and we assume that the 
quadrupolar coupling constant ho is 405 kHz, 
the asymmetry parameter r], is 0.72, and the 
Larmor frequency is 105.8 MHz. 

Using eqn. (561, we have evaluated how the 
DAS sideband intensities vary with the spinning 
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weed, or, as shown in Fig. 11. As can be seen 
from this figure, the sideband intensities around 
the centerband are distributed more symmetri- 
cally than those in MAS. This feature makes the 
sideband intensities less sensitive to the asymme- 
try parameter compared to MAS. 
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Fig. 13. Schematic variation of simulated sideband intensities 
as the spinning speed of the outer rotor, wr,, changes, for 
different ratio between the two spinning speeds of the inner 
and the outer rotors, wr2 /w,,, after average over the relative 
phase yr. w - 105.8 MHz (sodium oxa,zte=),405 kHz, qQ = 0.72, and m. - 

Figure 12a shows the simulated spectra of 
polycrystalline sodium oxalate using the same pa- 
rameters as in Fig. 11. The other simplest solu- 
tion is for k, = 5. In this case one of the rotation 
axes is aligned with the external magnetic field 
H, (0, = O), and accordingly B,(O) = 0 for all 
m + 0. Furthermore, in eqn. (56) the number of 
summations reduces to one. The frequency differ- 
ence between two nearest sidebands is o,~. Maxi- 
mum spectral resolution can be obtained under 
these conditions. 

Figure 13 shows how the DOR sideband inten- 
sities vary with the spinning speed of the outer 
rotor, for different ratios of the two spinning 
speeds after averaging over the relative rotor 

phase, yr. 
As has been discussed, both the DOR side- 

band intensities and phases depend on the phase 
between the outer rotor and inner rotor. Experi- 
mental results and simulations show that even 
when yr = 0” there are still phase differences 
among the individual sidebands. Figure 14 shows 
the variation of the sideband intensities, IN,,Nz 
for N2 = 0, and N, = 0, _t 1, i2 with the relative 
phase. Both the intensities and phases of all of 
the sidebands vary with 7,. The intensities of the 
real components of the even-order sidebands (N, 
= 0, + 2, etc.) are always positive, while the odd- 
order sidebands oscillate about zero. Especially 
interesting are the intensities of the odd-order 
sidebands, which at yr = 0” are just the opposite 
of those at yr = 180”. The exact variation of the 
sideband intensities with the relative rotor phase 
is determined by the quadrupolar parameters, wo 
and ho, as well as the two spinning speeds of the 
inner and outer rotors. In practice, these varia- 
tions can be used to extract the quadrupolar 
information by comparing simulated and experi- 
mental results. As an example, Fig. 15 shows 
sideband intensities obtained expeimentally from 
sodium oxalate under DOR by varying the rela- 
tive phase. These values are in agreement with 
the simulated results shown in Fig. 14. In actual- 
ity, the extraction of the quadrupolar parameters 
can be achieved by fitting only the variation of 
the centerband (N,,, = 0) intensities with respect 
to the relative rotor phase. The advantage of this 
method is that the centerband is usually the most 
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Real Imaginary 

0 x 2rr 0 7t 2x 

Relative phase yr between the inner and outer rotors 

Fig. 14. Variations of the simulated DOR sideband intensities with different relative rotor phases yr between the inner and outer 
rotors. Parameters are w - 405 kHz, 7Q = 0.72, and w0 = 105.8 MHz. The outer rotor spinning speed is 700 Hz while the inner 
rotor sinning speed IS 3JQkLz. 

intense peak in the sideband envelope which al- 
lows us to obtain the best accuracy when fitting 
experimental results with simulations. Figure 16 
contains parametric plots showing how the cen- 
terband intensity varies with Ye. 

We have shown above that DOR exhibit inver- 
sion symmetry at yr = 0” and yr = 180” under the 
limiting condition of fast inner spinning speed. 
This property holds true even under slow inner 
spinning speeds for sidebands near the center- 
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Fig. 15. Experimental DOR sideband intensities in sodium oxalate as the relative rotor phase yr between the inner and outer rotors 
changes. uQ = 405 kHz, 7a = 0.72, and w,, = 105.8 MHz. The outer rotor spinning speed is 700 Hz while the inner rotor rotates at 

the rate of 3.3 kHz. 

band. Practically, such an inversion symmetry can 
be used to eliminate the odd sidebands and 
thereby improve the spectral resolution. To 
achieve this, the outer rotor has to be synchro- 
nized at yr = 0” and ‘y, = 180”. After adding two 

spectra together, the odd sidebands near the cen- 
terband can be totally suppressed [11,30]. Figure 
17 shows experimental and simulated results for 
sodium oxalate. 
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Conclusion 

We have described general theories of DAS 
and DOR sidebands based on moment and Bessel 
function analysis. From the moment analysis we 
have shown that the third and higher moments 
increase with We, and that the envelope of the 
DAS and DOR sidebands changes as a quasi-su- 
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per-Lorentzian lineshape with increasing spin- 
ning speed. Bessel function analysis has been 
used to evaluate the structure and intensity of the 
DAS and DOR sidebands, and the dependence 
of the sideband intensities on the quadrupolar 
parameters and the spinning speeds has been 
numerically simulated. All the results are in 
agreement with the experiments. In DAS spectra, 

0.15 0.25 0.35 0.45 
I ’ * 7 ’ , ’ ’ 0 

Fig. 16. Parametric plots showing the variation of the DOR centerband intensities as the relative rotor phase (yr) between the 
inner and outer rotors changes from 0” to 360”. Results for different asymmetry parameters are shown. wo = 433 kHz, and 
oc = 105.8 MHz. The outer rotor spinning speed is 700 Hz while the inner rotor spins at the rate of 3.3 kHz. 



294 B.Q. Sun et al. /Solid State Nucl. Magn. Reson. 1 (1992) 267-295 

(4 

Unsynchronized 

Synchronized 

J.----L-L 

I I I I I I I I I I I I I 1 
6 4 2 0 -2 -4 -6 6 4 2 0 -2 -4 -6 

Frequency &Hz) Frequency &Hz) 
Fig. 17. Suppression of odd number sidebands by use of the inversion symmetry about the relative phase yr = 0 and yr = P. The 
outer rotor spins (a) at 604 Hz, and (b) at 800 Hz. A cornouter simulation is shown in the bottom row, with parameters oo = 405 
!cHz. ho = 0.?2, and w0 = 105.8. 

the sidebands consist of a sum of convolutions 
involving two individual sets of sidebands gener- 
ated during the evolution times of t, and t,, 
respectively, over the relative rotor phase 4. Both 
the intensities and the phases of the sidebands 
vary with the relative rotor phase, but no inver- 
sion symmetry similar to that in DOR has been 
found. After averaging over the relative phase, 
the sideband intensities become more or less 
symmetric around the centerband, especially 
when the spinning is fast, and thus they are not 
very sensitive to the asymmetry parameter. The 
dependence on the time ratio between the two 
evolution periods in the DAS experiment results 
in a complicated sideband structure. New side- 
bands appear over one rotational cycle, adding 
k, + k, signals when the time ratio is k, = k,/k,. 
For example, in the case of k, = 1 (k, = k, = l), 
there are three sidebands: two are at w,/2 and 

the other is at or, where w, is the sample spin- 
ning speed. We have also discussed the possibility 
of extracting the quadrupolar parameters by sim- 
ulating the sideband intensities. 

In DOR spectra, the sidebands are highly re- 
solved only if the ratio of the two spinning speeds 
is larger than 4. The sideband intensities and 
phases are determined by the spinning speeds, 
the quadrupolar parameters, and the relative ro- 
tor phase between the outer and inner rotors. 
The odd numbered sideband intensities near the 
centerband exhibit an inversion symmetry at yr = 
0 and y, = r. This symmetry property which has 
been proven theoretically in the limiting case 
where the inner spinning speed is much larger 
than the second-order quadrupolar coupling con- 
stant, permits complete suppression of the odd 
numbered sidebands. 

The DOR centerband intensities are sensitive 
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to the relative rotor phase. By simulating this 
dependence we may accurately extract the 
quadrupolar parameters. 

The above results can be applied to any other 
inhomogeneous interaction. For homogeneous in- 
teractions, if wr7 in DOR is much larger than the 
amplitude of the interaction, we can average over 
the second rotation first, which reorients the spins 
along the rotation axis. The broadening then be- 
comes approximately inhomogeneous. By apply- 
ing the first rotation without the condition of fast 
spinning, the broadened line will split into a set 
of sidebands and the spectral resolution will be 
much higher than that resulting from MAS with 
the same spinning speed as the outer rotor. 
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